2005 AMOS TECHNICAL CONFERENCE PROCEEDINGS

Volume 1

SSA OVERVIEW

Making Vision a Reality: Delivering Counterspace Capabilities to the High Frontier ... 10
 Colonel James Haywood, Space Superiority Materiel Wing (SMC)

Situational Awareness: Space/Near Space to the Warfighter .. 11
 Cindi Schmitt, Space and Missile Defense Battle Lab

IMAGING

Rendering High-Dynamic Range Images: Algorithms that Mimic Human Vision ... 19
 John McCann, McCann Imaging

SPQR: Imaging Experiments Illuminating the ISS .. 29
 Doug Currie, University of Maryland

Temporal Constraints in the Blind Restoration of High-Cadence Imagery Obtained Through Atmospheric Turbulence .. 39
 Stuart Jeffries, Maui Scientific Research Center

Quantifying the Benefits of Positivity ... 44
 Brandoch Calef, Boeing LTS Maui

Spatial Frequency Bounds of a Polarimetric Sensor ... 52
 David Strong, Air Force Institute of Technology

Diffraction-Limited Image Restoration Using a New Object Prior ... 59
 Doug Hope, Maui Scientific Research Center, University of New Mexico

Experimental Studies of Anisoplanatism and Anisoplanatic Effects in Compensated Imagery from the AMOS 3.67 m Telescope .. 65
 Michael Roggemann, Michigan Technological University

Blind Iterative Restoration of Images with Spatially-Varying Blur .. 78
 Robert Plemmons, Wake Forest University

NON-RESOLVED OBJECT CHARACTERIZATION

Non-Resolved Object Characterization (NROC) Mission Effectiveness to Space Situation Awareness (SSA) ... 87
 Gary Nelson, SPARTA, Inc.

The Visual Magnitude Distribution and Optical Variability of LEO Space Objects .. 99
 Charles Gow, Northrop Grumman Corporation

Simultaneous Spectral Data and High Accuracy Positional Metrics of GEOs ... 108
 David Monet, U.S. Naval Observatory

Satellite Brightness Estimation Using Kriging Optimized Interpolation .. 113
 Jennifer Okada, AMOS (Boeing LTS)

ANDE Risk Reduction Flight Observing Opportunities and Mission Update ... 124
 Andrew Nicholas, Naval Research Laboratory
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility of a Multi-Color Photometric Database</td>
<td>137</td>
</tr>
<tr>
<td>Tamara Payne, AMOS (Boeing LTS)</td>
<td></td>
</tr>
<tr>
<td>Comparisons Between Simulated and Observed Color Photometric Signatures of Geosynchronous Satellites</td>
<td>146</td>
</tr>
<tr>
<td>Stephen Gregory, AMOS (Boeing LTS)</td>
<td></td>
</tr>
<tr>
<td>Applying Space Weathering Models to Common Spacecraft Materials to Predict Spectral Signatures</td>
<td>154</td>
</tr>
<tr>
<td>Kira Abercromby, ESCG/Jacobs Sverdrup</td>
<td></td>
</tr>
<tr>
<td>A Technique for Space Aging Incorporation in Satellite Photometry Models</td>
<td>162</td>
</tr>
<tr>
<td>Anil Chaudhary, Applied Optimization, Inc.</td>
<td></td>
</tr>
<tr>
<td>Spectral Unmixing Methods for Non-Resolved Space Object Characterization</td>
<td>171</td>
</tr>
<tr>
<td>Kris Hamada, AMOS (Boeing LTS)</td>
<td></td>
</tr>
<tr>
<td>Hyperspectral Algorithms for Extraction of Information about Subpixel Targets</td>
<td>180</td>
</tr>
<tr>
<td>John Schott, Rochester Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Model of the AEOS Spectral Imaging Sensor (ASIS) for Spectral Image Deconvolution</td>
<td>189</td>
</tr>
<tr>
<td>Travis Blake, Air Force Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>ORBITAL DEBRIS</td>
<td></td>
</tr>
<tr>
<td>The Second Confirmed Unintentional On-Orbit Collision</td>
<td>199</td>
</tr>
<tr>
<td>Timothy Payne, HQ AFSPC/XPY</td>
<td></td>
</tr>
<tr>
<td>The LEO Environment as Determined by the LMT Between 1998 and 2002</td>
<td>206</td>
</tr>
<tr>
<td>Ed Barker, NASA Johnson Space Center</td>
<td></td>
</tr>
<tr>
<td>Properties of the High Area-to-Mass Ratio Space Debris Population in GEO</td>
<td>216</td>
</tr>
<tr>
<td>Thomas Schildknecht, Astronomical Institute, University of Bern</td>
<td></td>
</tr>
<tr>
<td>An Optical Survey for GEO Debris in High Inclination Orbits</td>
<td>224</td>
</tr>
<tr>
<td>Pat Seitzer, Department of Astronomy, University of Michigan</td>
<td></td>
</tr>
<tr>
<td>METRICS</td>
<td></td>
</tr>
<tr>
<td>Rapid Orbit Characterization and Real-Time State Vector Hand-Off Using High Accuracy Metrics</td>
<td>230</td>
</tr>
<tr>
<td>Tom Kelecy, AMOS (Boeing LTS)</td>
<td></td>
</tr>
<tr>
<td>Orbit Determination Using Raven Telescope for Highly Eccentric Orbits</td>
<td>240</td>
</tr>
<tr>
<td>Mike Thrall, Space Systems Operations, Naval Postgraduate School</td>
<td></td>
</tr>
<tr>
<td>Canadian Surveillance of Space Concept Demonstrator, Performance Assessment After One Year of Automated Operation</td>
<td>250</td>
</tr>
<tr>
<td>Lauchie Scott, Defence R&D Canada-Ottawa, Space Systems Group</td>
<td></td>
</tr>
<tr>
<td>INSTRUMENTATION</td>
<td></td>
</tr>
<tr>
<td>The Rice University CCD Imager for Gamma-Ray Burst Studies</td>
<td>260</td>
</tr>
<tr>
<td>Ian Smith, Rice University</td>
<td></td>
</tr>
</tbody>
</table>
The HiVIS Spectrograph at AEOS: A Unique Tool for Visible and Infrared Spectroscopy

Kathryn Whitman, University of Hawaii, Institute for Astronomy

New Thermal IR Spectroscopic Capability on AEOS

Ray Russell, The Aerospace Corporation

Results from the AOptix Laser Communications Test Range

Buzz Graves, AOptix technologies

Multiple Wavefront Sensor Characterization with Dynamic Aberration Control

Jonathan Andrews, Naval Research Laboratory

Noiseless, High Frame Rate (>kHz), Photon Counting Arrays for Use in the Optical to Extreme UV

John Vallerga, Space Sciences Laboratory, University of California at Berkeley

Spatio-Spectral Point Source Tracking with a Dispersive Multiplex Spectrometer

Evan Cull, Duke University

ASTRONOMY

Advanced Space Telescopes

Jim Breckinridge, NASA/JPL

The Advanced Technology Solar Telescope: Planning for Haleakala

Jeff Kuhn, University of Hawaii, Institute for Astronomy

Scintillation in High Dynamic Range Coronagraphy

Anand Sivaramakrishnan, The American Museum of Natural History

Recent Advances in the Near-Earth Asteroid Tracking Program Using the MSSS 1.2-Meter Telescope and the Palomar Samuel Oschin 1.2-Meter Schmidt Telescope

Ray Bambery, Jet Propulsion Laboratory, California Institute of Technology

WIDE FIELD SURVEY SYSTEMS

Design and Performance Trade Space for an Air Force Space Surveillance Telescope

Lt Col Mark Ackermann, AFRL/DEB

Photometric Calibration Plan for the Pan-STARRS AP Survey

Eugene Magnier, University of Hawaii, Institute for Astronomy

Astrometric Expectations for the Pan-STARRS AP Survey

David Monet, U.S. Naval Observatory

The Pan-STARRS Solar System Simulation

Larry Denneau, University of Hawaii, Institute for Astronomy

The Near Earth Space Surveillance Initiative (NESSI) Precision Astrometric and Photometric Survey

John McGraw, University of New Mexico

Advanced Optical Design of the Texas-New Mexico Sky Survey Telescope

Mark Ackermann, Sandia National Laboratories
SPACE WEATHER

Ionospheric Studies at the Reagan Test Site .. 429
 Linda Schuett, Kwajalein Range Services

Turbulence in Paradise ... 430
 Lewis Roberts, (AMOS) The Boeing Company

Differential Absorption Lidar for Profiling Water Vapor in Atmospheric Transmission and
Refractivity Studies ... 440
 Syed Ismail, NASA Langley Research Center

Volume 2

Improvements in Modeling Radiant Emission from the Interaction Between Spacecraft Emanations
and the Residual Atmosphere in LEO ... 449
 William Dimpfl, The Aerospace Corporation

Characterization of Meteorological and Seeing Conditions at Haleakala 460
 Mark Skinner, AMOS (The Boeing Company)

Observations of Scintillation at AEOS .. 471
 Bill Bradford, AMOS (The Boeing Company)

LASERS

HI Class Ranging Accuracy Assessment Using Geodyn ... 492
 Doug Currie, Textron Systems

Enabling Laser and Lidar Technologies for NASA’s Science and Exploration Mission’s Applications 502
 Upendra Singh, NASA Langley Research Center

Implementing a New Unified Prediction System to Perform Laser and Transponder Ranging Within
the Inner Solar System ... 508
 Randall Ricklefs, Center for Space Research, University of Texas at Austin

Laser Ranging to Vulnerable Targets .. 515
 Peter Shelus, Center for Space Research, University of Texas at Austin

Ramifications of Non Log Normal, Weak Fluctuation Irradiance Behavior in Earth to Space
Gaussian Beams ... 520
 Gary Baker, Lockheed Martin Advanced Technology Center

HIGH PERFORMANCE COMPUTING

Floating-Point Implementation of a Probabilistic Neural Network Image Classifier 530
 Robert Riley, AFRL/MNAV

Performing Practical Software Engineering for the Pan-STARRS Image Processing Pipeline 536
 Bruce Duncan, AMOS (Maui High Performance Computing Center)

CTI-II Data Pipeline Design .. 546
 Pete Zimmer, Physics and Astronomy Department, University of New Mexico
ADAPTIVE OPTICS

Gemini Observatory’s Adaptive Optics Program ... 556
Doug Simons, Gemini Observatory

Laser Guide Star Adaptive Optics on the 5.1 Meter Telescope at Palomar Observatory 566
Rich Dekany, Caltech Optical Observatories

Solar Adaptive Optics: Conventional and Multi-Conjugate .. 575
Thomas Rimmele, National Solar Observatory

Improving Wave Front Residuals for Near-Infrared Coronagraphy with AEOS 585
Russell Makidon, Space Telescope Science Institute

Observing Deep-Space Microsatellites with the MMT and Large Binocular Telescopes 600
S. Pete Worden, Center for Astronomical Adaptive Optics,
Steward Observatory, University of Arizona

The Giant Magellan Telescope, 24m Aperture Optimized for Adaptive Optics 610
Roger Angel, Center for Astronomical Adaptive Optics,
Steward Observatory, University of Arizona

Adaptive Optics for the Thirty Meter Telescope .. 621
Brent Ellerbroek, Thirty Meter Telescope Project, Caltech

Tests at the MMT of Multi-Laser Guide Star Wavefront Sensing for Advanced Adaptive Optics 633
Michael Lloyd-Hart, Center for Astronomical Adaptive Optics,
Steward Observatory, University of Arizona

Recent Results Using the 50 Watt Sodium Guidestar Pump Source at the Starfire Optical Range 646
Craig Denman, AFRL/DED

Gemini North Laser Guide Star First Light .. 656
Celine d’Orgeville, Gemini Observatory

The Center for Adaptive Optics – Midterm Technical Progress and Strategic Plans 666
Scot Olivier, Center for Adaptive Optics

UCO/Lick Laboratory for Adaptive Optics – Developing Adaptive Optics
Technology for the Next Generation of Astronomical Telescopes 667
Donald Gavel, UCO/Lick Observatory, University of California Santa Cruz

MEMs and LC for Compact AO Systems .. 672
Sergio Restaino, Naval Research Laboratory

Wavefront Control Limitations Due to Scintillation in Multi-Conjugate Adaptive Optics 678
Lawton Lee, Lockheed Martin Advanced Technology Center

Binary Star and Asteroid Imaging with the Lick Observatory NGS AO System 688
Julian Christou, Center for Adaptive Optics, University of California
POSTER PRESENTATIONS

Particle Swarm Optimization in Periodic Analysis of Photometric Data ... 699
 Brian Birge, Boeing LTS

Turbulence Models for AMOS from Mesoscale Meteorological Models .. 708
 Bill Bradford, The Boeing Company

Predictions of AMOS Observations of Space Shuttle Engine Firings .. 709
 Matthew Braunstein, Spectral Sciences, Inc.

A Novel Data Fusion Demonstration for Detecting and Tracking Small Near-Earth Objects:
Bonding Current High-Performance Computing, Algorithms and Sensor Data ... 723
 Francis Chun, HQ USAFA/DFP

Ultra-High Speed Near Infrared Camera .. 729
 Brian Cromwell, Indigo Advanced Systems

Image-Based Wavefront Sensing for Space Optics Control ... 739
 Bruce Dean, NASA Goddard Space Flight Center

Approaching First Observations in the MAUI Space Experiment ... 753
 Rainer Dressler, AFRL/VSBXT

HPC Software Applications Institute for SSA ... 757
 Bruce Duncan, Maui High Performance Computing Center

Pan-STARRS Image Processing Pipeline (IPP) .. 758
 Bruce Duncan, Maui High Performance Computing Center

Background Survey of Work Related to Space Qualification of Laser Systems ... 759
 Suzanne Falvey, Northrop Grumman Information Technology

Atmospheric Turbulence Strength versus Laser Ranging Precision .. 788
 Karel Hamal, Czech Technical University

Multi Color Satellite Laser Ranging ... 793
 Karel Hamal, Czech Technical University

Simultaneous Optical and Laser Space Objects Tracking ... 795
 Karel Hamal, Czech Technical University

Wide Field of View Telescope Development at AMOS ... 800
 Bryan Law, AMOS (Boeing LTS)

Observational and Modeling Study of Mesospheric Bores ... 801
 Pamela Loughmiller, Cornell University

Superresolution of Telescopic Images by Deconvolution After Dimensional Reduction (SDDR) 802
 David Maker, Teledyne Brown Engineering

Precise and Accurate Stellar Photometry and Astrometry with Ugly Discrete Point Spread Functions and Ugly Detectors Using the MATPHOT Algorithm ... 815
 Kenneth Mighell, National Optical Astronomy Observatory
Wavefront Control using Power-in-Fiber Sensing ... 819
 Ruth Moser, AFRL/VSSL

Validation of the ESA MASTER-2005 Orbital Debris Model ... 820
 Michael Oswald, Institute of Aerospace Systems, TU-Braunschweig

Laser Vibrometry System for Space Situational Awareness .. 827
 Wilfred Otaguro, Boeing

Hyperspectral and Multispectral Scene Simulation of Mars .. 828
 Steven Richtsmeier, Spectral Sciences, Inc.

Simulation of SBV, Linear and Other Imaging Systems for Use in Signal Processing Assessment and Validation .. 838
 Fred Rosenberg, MIT Lincoln Laboratory

Synthetic Lightcurve Signatures of Unresolved Objects: A Comparison with Observations 839
 Eileen Ryan, Magdalena Ridge Observatory, New Mexico Tech

 Mark Schmalz, University of Florida

Evolution of a Co-rotating Telescope Enclosure for Survey and Surveillance Applications 849
 Adam Seedsman, EOS Space Systems Pty Limited

Space Surveillance Support to Commercial & Foreign Entities (CFE) Pilot Program 850
 Lt Col Glen Shepherd, HQ AFSPC/XOCS

Real-time Satellite Motion Animation from the Visible to LWIR .. 851
 Robert Sundberg, Spectral Sciences, Inc.

Spectral Information from the AEOS Burst Camera .. 859
 Heather Swan, University of Michigan

The Space Environmental Impacts Tool (SEIT™) ... 867
 Ronald Watt, ARINC Engineering Services, LLC

Militarily Critical Technologies Program .. 877
 Ray Wick, Institute for Defense Analyses

Using a Combined Wavefront Corrective Element for Adaptive Optics:
 Experimental Results ... 878
 Christopher Wilcox, Naval Research Laboratory

Author Index