ASM International

24th Heat Treating Society Conference 2007

“Driving the Engines of Change in Manufacturing”

September 17-19, 2007
Detroit, Michigan, USA

Printed from e-media with permission by:

Curran Associates, Inc.
57 Morehouse Lane
Red Hook, NY 12571
www.proceedings.com

ISBN: 978-1-60423-930-0

Some format issues inherent in the e-media version may also appear in this print version.
TABLE OF CONTENTS

Applied Energy

How to Improve Inductor Life, Part 2

W.I. Stuehr, D. Lynch, Induction Tooling, Inc., North Royalton, OH, USA

Optimizing Axle Scan Hardening Inductors

R. Goldstein, V. Nemkov, R. Madeira, Fluxtrol, Inc., Auburn Hills, MI, USA

Processing of Multi-Layer Materials by Induction Heating Gradient Effect

E. Baake, H. Schülbe, A. Nikanorov, R. Mergen, A. Eberhard
(1) Leibniz University of Hannover, Hannover, Germany;
(2) Miba Bearing Group, Laakirchen, Austria

Increasing Inductor Lifetime by Predicting Coil Copper Temperatures

R. Goldstein, V. Nemkov, Fluxtrol, Inc., Auburn Hills, MI, USA

Heat Transfer Characteristics of Laminar Methane/Air Flame Impinging on a Flat Surface

S. Chander, A. Ray,
(1) National Institute of Technology, Punjab, India;
(2) Indian Institute of Technology, New Delhi, India

Controlling Induction Heating Magnetic Fields with Flux Field Concentrators

T. Learman, Alpha 1 Induction Service Center, Columbus, OH, USA

Thermodynamic and Kinetic Aspects of Endothermic Carburizing Atmospheres with Natural Gas Enrichment

(1) Worcester Polytechnic Institute, Worcester, MA, USA;
(2) Caterpillar, Inc., Mossville, IL, USA

Emerging Technology

New Applications of EPM in Metal, Oxide and Semiconductor Processing

B. Nacke, Leibniz University of Hannover, Hannover, Germany

An Attractive Materials Process: Exploring High Magnetic Field Processing for Developing Customized Microstructures with Enhanced Performance

Oak Ridge National Laboratory, Oak Ridge, TN, USA

Heat Treating Atmosphere Activation

Z. Zurecki, Air Products and Chemicals, Inc., Allentown, PA, USA
Microwave Processing and Heat Treating of Metals ... 69
E.B. Ripley, R.L. Hallman, Jr., J.A. Oberhaus, B.C. Warren,
Y-12 National Security Complex, Oak Ridge, TN, USA

Fluidized Bed: An Energy Efficient Heat Treating Technology for Cast Al Alloys 77
S.K. Chaudhury, D. Apelian, Worcester Polytechnic Institute, Worcester, MA, USA

Integrated Heat Treatment – System for Precise Die Hardening in Automotive Industries 87
S. Bonss, J. Hannweber, U. Karsunke, M. Seifert, B. Brenner, E. Beyer,
Fraunhofer IWS Dresden, Dresden, Germany

Effect of Post-Spray Heat Treatment on Mechanical Properties of Ni-TiC
Composite Coatings Produced by Cold Gas Dynamic Spray .. 94
K.Y. Sastry, M. Lubrick, V. Leshchynsky, R.Gr. Maev, University of Windsor,
Windsor, ON, Canada

Dr. George E. Totten International Symposium on Quenching & Cooling

Microstructure and Property Predictions by Using a Heat-Treatment
Planning System, CHT-q/t .. 100
L. Zhang, Y.M. Rong, R. Purushothaman, J.W. Kang
(1) Worcester Polytechnic Institute, Worcester, MA, USA;
(2) Tsinghua University, Beijing, China

Modeling of Microstructure Evolution during the Rapid Heating of Hypoeutectoid Steels 108
B.J. Yang, W. Li, A. Hattiangadi, G. Zhou, N. Singh, M.L. Johnson, Caterpillar, Inc, Peoria, IL, USA

Assessing Heat Treatment Distortion Sensitivity .. 115
A.M. Freborg, Z. Li, B.L. Ferguson, Deformation Control Technology, Inc., Cleveland, OH, USA

Optimal Spray Characteristics in the Air-Assisted Water Spray Cooling of a
Downward-Facing Heated Surface ... 126
R.J. Issa, West Texas A&M University, Canyon, TX, USA

Some New Approaches in the Field of Quenching Fundamentals 134
N. Kobasko, IQ Technologies, Inc., USA, Intensive Technologies, Ltd., Ukraine

Intensive Quenching to Reduce the Carburizing Cycle for Automotive Cross Production 141
L.C.F. Canale, E. Merheb, J.C. Vendramim, G.E. Totten, N.I. Kobasko, M.A. Aronov
J.A. Powell, (1) University of São Paulo, São Carlos, Brazil; (2) Isoflama Ind. E Com. Eq. Ltda.,
Indaiatuba, Brazil; (3) Portland State University, Portland, OR, USA; (4) IQ Technologies, Inc.,
Akron, OH, USA

Applying CFD to Characterize Gear Response during Intensive Quenching Process 147
A. Banka, J. Franklin, Z. Li, B.L. Ferguson, M. Aronov
(1) Airflow Sciences Corporation, Livonia, MI, USA ; (2) Deformation Control Technology, Inc.,
Cleveland, OH, USA ; (3) IQ Technologies, Inc., Akron, OH, USA

Improving Gear Performance by Intensive Quench .. 156
B.L. Ferguson, A.M. Freborg, Z. Li, Deformation Control Technology, Inc., Cleveland, OH, USA
Historical Review of Residual Stress in Quenched Fe-Ni Alloy Cylinders and Explanation of Its Origin Using Computer Simulation .. 163
K. Arimoto, K. Funatani, (1) Arimotech, Ltd., Osaka, Japan, (2) IMST Inst., Nagoya, Japan

Effect of Quenching on the Dimensional Stability of SAE 52100 Make Bearing Components .. 173
S. Bhattacharya, M.B.N. Raju, Tata Steel, Jamshedpur, India

George E. Totten, Ph.D., FASM: A Biographical Overview of His Life and a Brief Overview of His Impact on Global Quenching Technology .. 183
L.C.F. Canale, A.C. Canale, University of São Paulo, São Carlos, Brazil

The Contribution of Dr. George E. Totten to Unitize World Heat Treatment R&D, and Update State of the Quenching and Control of Distortion .. 191
K. Funatani, IMST Institute, Nagoya, Japan

History of Quenching .. 196
D.S. MacKenzie, Houghton International, Inc., Valley Forge, PA, USA

Effective Design of Heat Treat Processes Using Computer Simulations................................. 205
Z. Li, A.M. Freborg, B.L. Ferguson, Deformation Control Technology, Inc., Cleveland, OH, USA

Using Wave Technology for Heat Treatment ... 214
A. Sverdlin, A. Ness, R. Ganiev, (1) Bradley University, Peoria, IL, USA;
(2) Research Scientific Center, Moscow, Russia

The Analysis of Gas Flow in the Wind Tunnel of High Pressure Gas Quenching Furnace 220
Y. Luo, J. Kang, B. Liu, Y. Rong, (1) Tsinghua University, Beijing, China;
(2) Worcester Polytechnic Institute, Worcester, MA, USA

Fluidized Bed Quenching Performance and Its Application for Heat Treating Aluminum Alloys .. 225
J. Keist, S. Chaudhury, D. Apelian, (1) Arizotah, LLC, Plymouth, MN, USA;
(2) Metals Processing Institute, Worcester, MA, USA

Mathematical Model of the Microstructural Response of a Medium-Carbon, Low-Alloy Steel Quenched in a Fluidized Bed .. 231
J.B. Hernández-Morales, A.M. Dueñas-Pérez, M. Díaz-Cruz, R. Yates
(1) Universidad Nacional Autónoma de México, México; (2) ESIQIE-Instituto Politécnico Nacional, México; (3) Alternativas en Computación, México

Processes & Applications

The Nitrocarburizing of Plain Carbon Steel Automotive Components 239
V. Campagna, R. Bowers, D.O. Northwood, X. Sun, P. Bauerle
(1) University of Windsor, Windsor, ON, Canada;
(2) DaimlerChrysler Corporation, Auburn Hills, MI, USA

Optimization of Oxygen-Free Heat Treating ... 245
K. Connery, S. Ho, Praxair, Inc., Burr Ridge, IL, USA
Statistical Process Control and Process Validation in Gas Carburizing of Gears ..249
C.R. Kinser, TRW Automotive, LLC, Lebanon, TN, USA

Case Histories Involving Embrittlement of Steel ..254
S. Suess, Stork Technimet, Inc., New Berlin, WI, USA

A Probabilistic Modeling Approach for Industrial Carburizing Operation ...261
S.S. Sahay, Tata Research Development and Design Centre, Pune, India

Heat Treatment of Cr-Mo Powder Metallurgy Steels for High Performance Applications265
A. Klekovkin, N. Nandivada, D. Milligan, North American Höganäs, Hollsopple, PA, USA

Fatigue Studies and Characterization of Induction Tempered Welded Steel Tubes275
P. Shanmugam, M. Preethi, R. Natarajan, Tube Investments of India, Avadi, Channai, India

Non-Contact Ultrasonic Treatment of Metals in a Magnetic Field ...281
Oak Ridge National Laboratory, Oak Ridge, TN, USA

Evaluation of Aging Response of Al-Cu-Mg-Si Based Cast Aluminum Alloy and Its Effect on Tensile Property ...288
M. Maniruzzaman, E. Wallhagen, R.D. Sisson, Jr., Worcester Polytechnic Institute,
Worcester, MA, USA

The Aging Behavior of AA7136 Wrought Aluminum Alloy ...294
C. Nowill, M. Maniruzzaman, R.D. Sisson, Jr., D.S. MacKenzie
(1) Worcester Polytechnic Institute, Worcester, MA, USA;
(2) Houghton International, Inc., Valley Forge, PA, USA

Special Heat Treatment Practices for Aerospace Aluminum Alloys ...299
P. Dungore, A. Agnihotri, Jawaharlal Nehru Aluminum Research Development and Design Centre, India

The Effect of Aluminum on Isothermal Oxidation Resistance of Austenitic Heat Resistant Steels303
M.O. Aminian, J. Hedjazi, Y. Kharazi, (1) Delta Advanced Ceramics Co., Tehran, Iran;
(2) Iran University of Science and Technology, Tehran, Iran

Effects of Quenching Variables on the Impact Resistance of 0.3C Hypo-Eutectoid Plain Carbon Steel ..313
M.O.H. Amuda, B.U. Amaechi, D.E. Esezobor, G.I. Lawal, University of Lagos, Lagos, Nigeria

Effect of Heat Treatment Cycle on the Mechanical Properties of Machinable Austempered Ductile Iron ...323
(1) National Institute of Technology, Warangal, India; (2) RWTUV Iran Joint Venture Co., Iran;
(3) Sharif University of Technology, Tehran, Iran

Tribology of Conformal Gears with Advanced Material Systems ..328
A.T. Wilder, J.G. Wilder, (1) University of Texas, Austin, TX, USA;
(2) Process Science, Inc., Leander, TX, USA
Effects of T6 Heat Treatment with Residual Heat of Casting on Microstructure and Mechanical Properties of 319 Aluminum Alloy Castings ..333
L. He, J. Kang, T. Huang, Y. Rong, (1) Tsinghua University, Beijing, China;
(2) Worcester Polytechnic Institute, Worcester, MA, USA

Plasma Nitriding of AISI H13 Tool Steel with Different Microstructures338
(1) Escola Eng. São Carlos – USP, São Paulo, Brazil;
(2) Universidade Regional do Cariri, Ceará, Brazil;
(3) Portland State University, Portland, OR, USA

Three Point Bending Behavior of Orthodontic Thermo-Active Nitinol Wires343
(1) Departamento de Metalurgia do CEFET-ES, Vitória, ES;
(2) Escola Eng. São Carlos – USP, São Paulo, Brazil;
(3) Portland State University, Portland, OR, USA

Thermal Spray Coatings on an Aged 7475 Aluminum Alloy Substrate346
(1) Escola Eng. São Carlos – USP, São Paulo, Brazil;
(2) Portland State University, Portland, OR, USA

Electric Resistivity Evaluation of the Fe-31Mn-7.5Al-1-5Si-1.0C Alloy351
(1) Escola Eng. São Carlos – USP, São Paulo, Brazil;
(2) Portland State University, Portland, OR, USA

On the Influence of the Process of Carbonitriding in Smoldering Discharge on the Properties of 25CrMnSiNiMo Steel ..355
A.Z.I. Ziumbilev, K. Nikolov, (1) TU Sofia, Plovdiv, Bulgaria;
(2) DOC Dortmunder Oberflächencentrum GmbH, Dortmund, Germany

Effect of Nitriding on the Fatigue Properties of Continuously Cast Gray Irons362
P.R. Gangasani, Dura Bar, Woodstock, IL, USA

Vacuum Technology

Hydrogen Pick-Up during Low Pressure Gas Carburizing Compared with Traditional Gas Carburizing Processes ...369
Ch. Laumen, B. Clausen, F. Hoffmann, (1) The Linde Group, Unterschleissheim, Germany;
(2) Institut für Werkstofftechnik, Bremen, Germany

The Benefits of Using 3 Gas Mixture Low Pressure Carburizing (LPC) for High Alloy Steels ...376
R. Gorockiewicz, A. Adamek, M. Korecki, (1) University of Zielona, Gòra, Poland;
(2) Seco/Warwick S.A., Swiebodzin, Poland

Numerical Simulation of Gas Quenching Process of Workpieces ..385
Y. Luo, J. Kang, B. Liu, Y. Rong, (1) Tsinghua University, Beijing, China;
(2) Worcester Polytechnic Institute, Worcester, MA, USA
Fast Track

Demonstrations of Intensive Quenching Methods for Steel Parts ...390
(1) IQ Technologies, Inc., Akron, OH, USA; (2) High Temp Furnaces Limited, Bangalore, India

Modern Gas Quenching Chambers Supported by SimVaCPlus Hardness Application398
P. Kula, R. Atraszkiewicz, E. Stańczyk-Wołowiec,
Institute of Materials and Engineering, Lodz, Poland

Curtains in Continuous Furnaces ..403
M.S. Stanescu, P.F. Stratton, L. Druga, (1) The Linde Group, Murray Hill, NJ, USA;
(2) The Linde Group, Huddersfield, UK; (3) UTTIS Industries, Bucharest, Romania

How to Organize and Run a Low-Cost and Highly Effective Metallurgical/Processing
Lab for Small- and Medium-Size Heat Treatment Facilities ..419
A. Khersonsky

The Role of Cleaning in the Heat Treatment Process ...424
X. Wang, W. Liu, M. Maniruzzaman, K. Rong, R.D. Sisson, Jr.,
Worcester Polytechnic Institute, Worcester, MA, USA