American Institute of Chemical Engineers

Education

Presentations at the
2007 AIChE Annual Meeting

November 4-9, 2007
Salt Lake City, Utah, USA

Printed from e-media with permission by:
Curran Associates, Inc.
57 Morehouse Lane
Red Hook, NY 12571
www.proceedings.com
ISBN: 978-1-60560-002-4

Some format issues inherent in the e-media version may also appear in this print version.
TABLE OF CONTENTS

Nano-Particle Toughening of Epoxy Composites Using Polyethyleneimine Dendrimer Shell Materials
Aaron Saks ... 1

Synthesis of Starch-G-Polymethylmethacrylate through Emulsion Photopolymerization
Dan Weber .. 2

Transport in Epdm Elastomer: Molecular Simulation and Experimental Study (No abstract)
David T. Limmer .. 3

Cellular Uptake of Modified Red Clover Necrotic Mosaic Virus and Small Molecule Release from the Virion
Kenneth Wesley Overton ... 4

On-Board Hydrogen Storage and Production: An Application of Ammonia Electrolysis
Amy Weber, Bryan K. Boggs ... 5

Direct Sequence Detection of Human H5 Influenza Viral RNA
Matthew B. Kerby, Sarah Freeman, Kristina Prachanronarong, Andrew W. Artenstein, Steven M. Opal, Anubhav Tripathi .. 22

Amp-Activated Protein Kinase (AMPK) May Affect Fat Storage by Controlling an Enzyme That Oxidizes Fatty Acids
Alisha Bloodworth, Elmus G. Beale 25

Retrofit of Sour Water Networks in Oil Refineries: A Case Study
Lisa Scodari, Daniel Sujo-Nava, C. Stewart Slater, Mariano Savelski, Kevin Dahm ... 33

Porous Monolith Structures in Microfluidic Devices
Thomas Schwei .. 34

Molecular Interactions to Product and Process Design: Crystallization, Education and Beyond
Ryan C. Snyder .. 35

3-Dimensional in Vitro Model of Hepatic Tissue for Investigating Liver Physiology and Pathophysiology
Rohit Jindal ... 37

Advanced Nonlinear Programming Formulations and Algorithms: Expanding the Scope of Industrial Nmpc Applications
Victor M. Zavala .. 38

Transport Phenomena within Tissue Engineering Materials
Benjamin J. Lawrence ... 41

Nanocomposite Properties and the Polymer Interphase
Karl Putz .. 42

Effects of Nanoparticle Addition on the Bulk, Surface and Interfacial Properties of Polymers
Anish Tuteja, Wonjae Choi, Joseph M. Mabry, Michael E. Mackay, Gareth H. McKinley, Robert E. Cohen .. 43
Towards Understanding the Gecko Adhesive System ... 46
Noshir S. Pesika

Engineering Drug, Gene and Cell-Based Delivery Systems for the Treatment of Human Disease ... 47
Michelle R. Dawson, Dan G. Duda, Rakesh K. Jain

Engineering a Multifunctional Scaffold for Spinal Cord Repair ... 49
Noelle K. Comolli, Itzhak Fischer, Birgit Neuhuber, Anthony M. Lowman

Effect of Phosphorus on Acid Cracking of Lipids for the Production of Green Diesel 50
Stephen Dufreche, Rafael Hernandez, Todd French, Mark G. White, Earl G. Alley, William E. Holmes

Proteins of Novel Composition .. 51
Tae Hyeon Yoo

Enhanced Polymeric Nanoparticles for Gene Delivery ... 52
Jordan J. Green

Processing and Phase Behavior: Tools for Creating Nanoscale Polymer Structures 53
Christopher J. Ellison

Novel Methods for Microfabrication of Cellular Interactions and Detection of Cell Phenotype Expression ... 55
Ji Youn Lee

Quantifying Cellular Physiology Using Metabolic Models and Isotope Labeling 56
Patrick F. Suthers

Molecular Simulation of Heterogeneous Polymer Systems: From Biomimetic Materials to Energy Research .. 58
Vikram K. Kuppa

Analysis of Recognitive Polymer Systems: Focusing on the Tailorability of the Macromolecular Structure in Order to Enhance Binding Characteristics .. 59
Asa D. Vaughan

Dynamics of DNA and Swimming Microorganisms Using Theory and Coarse-Grained Simulations .. 60
Patrick T. Underhill

Improved Polymer Properties for Use in Nanolithography .. 61
Robert A. Riggelman, Juan De Pablo

Nucleation Behavior of Nanoparticles and Crystals .. 62
Venkateswarlu Bhamidi

Isotopically Nonstationary Metabolic Flux Analysis .. 64
Jamey D. Young

Colloidal Suspensions: Fundamental Physics and Engineering Applications 66
Jacinta C. Conrad

Molecular Mechanisms for the Aggregation of Proteins and Therapeutic Antibodies 68
Naresh Chennamsetty

Surfactant Adsorption at Fluid Interfaces .. 69
Alissa J. Prosser

Reactions of Alcohols over H^+/ZSM-5 ... 70
Amit C. Gujar, Hossein Toghiani, Mark G. White

Multi-Compartment Drug Carriers .. 76
Guohui Wu, Joseph A. Zasadzinski

Cellular Bioengineering: Towards in Vitro Models for Disease Pathophysiology and Toxicology .. 77
Anand K. Ramasubramanian
At the Interface of Neuroscience and Cell & Biomolecular Engineering 78
 David Colby

Drug Delivery through Epithelial Tissues ... 79
 Harvinder S. Gill

Ordering of Spherical-Domain Block Copolymers in Monolayers and Multilayers 80
 Gila E. Stein, Edward J. Kramer

Systems Biology Approach to Endocrine Signaling ... 82
 Pamela K. Kreeger

Reversible Addition-Fragmentation Chain Transfer in Microemulsion Polymerizations 84
 Jennifer O’Donnell, Eric W. Kaler

Nanoengineering Systems for Targeted Drug Delivery, Cell-Based Therapy, and
Microfluidic Biosensors/chips .. 85
 Hongyan He

Computer Simulations of Complex Fluids and Materials .. 86
 O. Berk Usta

in Aqueous Electrolyte Solutions ... 87
 James B. Falabella, Xin-Sheng Chai, Amyn S. Teja

Determination of Ozone Uptake in Human Lungs: Study of the Effects of Smoking 88
 Tim Brenza, Melissa Lowe Bates, Aziz Ben-Jebria, James Ultman

Protein Engineering Strategies for the Creation of Fluorescent Biosensors 90
 Tej Pavoor, Eric Shusta

Modeling Extracellular Mass Transport of Nutrients and Byproducts around Metabolizing Bacteria ... 91
 Michael R. Benoit

Engineered Polymer Vesicles (Polymersomes) for Targeted Adhesion,
Bioimaging, and Controlled Delivery .. 92
 Anthony J. Kim, Daniel A. Hammer

Investigating Membrane Surface Interactions with Lipid-Coated Particles 93
 Esther W. Gomez, Jay T. Groves

Acid Catalysis of Lipids to Produce Green Fuels: Advancing Biofuels in a Fossil Fuel World ... 94
 Tracy J. Benson

Computational and Theoretical Studies of Soft Materials and Biological Systems 96
 Arthi Jayaraman, Kenneth S. Schweizer, Carol K. Hall, Jan Genzer

Designing for Sustainability with CO2-Tunable Solvents .. 98
 Jackson W. Ford, Charles L. Liotta, Charles A. Eckert

 Xiaoyan Wang, Benny D. Freeman, Isaac C. Sanchez

Surfactants and Polyelectrolytes as Building Blocks for Soft Materials 100
 Yakov Lapitsky, Molly S. Shoichet, Eric W. Kaler

Hydrophilic Biopolymer Mediated Enhancement of Lung Surfactant Adsorption 102
 Patrick C. Stenger, Joseph A. Zasadzinski

Engineering Protein Folding and Function Using Native Escherichia Coli Processes 104
 Adam C. Fisher, Matthew DeLisa

Growth, Characterization, and Material Property Control of Silicon Carbide Thin Films for Micro- and Nanosystems ... 105
 Christopher S. Roper
Affinity Adsorption of Viruses ... 106
 Caryn L. Heldt, Patrick V. Gurgel, Lee-Ann Jaykus, Ruben Carbonell

From the Synthesis and Characterization of Electronic and Optical Oxide Nanostructured Materials towards Device Applications ... 107
 Yuanbing Mao

Fundamental Mechanisms of Biomaterial Interfaces: An Integrated Simulation and Experimental Approach ... 110
 Jason C. Hower, Shaoyi Jiang

Integrating Multiscale Models, Experiments, Dynamics and Control: Applications in Energy Generation and Systems Biology .. 111
 Vinay Prasad

Dynamics of Colloidal Dispersions at Equilibrium and Under Flow .. 113
 Samantha G. Anekal

“Nanoions”: Fundamental Properties and Applications of Charged Nanoparticles 114
 Kyle J. M. Bishop, Bartosz A. Grzybowski

Mechanistic Study of Methanol Synthesis Via CO2 Hydrogenation on Cu(111) 115
 Lars C. Grabow

System Engineering: Applications for Space Missions, Energy Analysis and Healthcare ... 116
 Selen Aydogan-Cremaschi

Engineering Model Catalysts towards Efficient Energy Conversion 117
 Weiwei Gao, Eric I. Altman, Cynthia M. Friend

Simulations of Polymer Self-Assembly Using Field Theoretic Techniques 118
 Erin Lennon, Glenn H. Fredrickson

Directed Evolution of Enzymes and Biosynthetic Pathways .. 119
 Tyler Johannes, Huimin Zhao

Developing Predictive Statistical Models to Understand the Dynamics of Inflammatory Cell Signals .. 120
 Arthur C. Goldsipe, Christopher W. Espelin, Peter K. Sorger, Douglas A. Lauffenburger

Field-Mediated Control of Materials Synthesis and Biological Applications 121
 William D. Ristenpart

Micro/nanofluidic Devices for Sensing and Reaction Engineering 124
 Adarsh D. Radadia

Design of Multifunctional Polymer-Polymer Nanocomposites .. 125
 Aflal M. Rahmathullah, Giuseppe R. Palmese

Nanostructured Oxide for Energy Storage and Conversion ... 126
 Donghai Wang

Measuring and Modeling Fundamental Parameters from Gas Phase Electrophoresis 127
 Leonard F. Pease III

Biomedical and Energy Applications of Lipids .. 128
 Liangfang Zhang, Steve Granick, Robert Langer

Micro/nano/molecular Engineering of Soft Materials for Drug/gene Delivery and Biosensing ... 129
 Jingjiao Guan, L. James Lee

High Surface Area Ocvd Deposited Pyrrole-Co-Thiophene-3-Acetic Acid Conducting Copolymer Films for Resistance-Based Sensing Applications 131
 Sreeram Vaddiraju, Kris Senecal, Karen K. Gleason
What Can Fundamental Research on Metal and Metal Oxide Surfaces Contribute to Solutions of Global Energy and Environmental Problems? ... 132
Ling Zhou, Robert J. Madix

Self-Assembly of Magnetorheological Fluids Confined in Microfluidic Devices ... 133
Ramin Haghgooie

Computational and Experimental Studies of Protein-Self Assembly with Applications in Nanotechnology and Medicine ... 135
Troy Cellmer

Probing the Molecular Mechanism of ATP Bioenergy Conversion: A Multifaceted Approach Combining Computational Modeling with Single Molecule Analysis ... 136
Jung-Chi Liao

Novel Nanomaterials Development in Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells ... 138
Zhongwei Chen, Yushan Yan

Nanomaterials for Energy Conversion .. 141
Michael P. Tate, Hugh W. Hillhouse

Sustainability, Green Engineering and Industrial Ecology ... 143
Arunprakash T. Karunanithi

Simulation Studies of Phase Behavior and Crystal Structures of Colloidal Suspensions ... 144
Antti-Pekka Hynninen

Large-Scale Synthesis of Salt and Metal Nanoparticles by Flame Synthesis and Application of Magnetic Nanobeads in Separation Technology ... 145
Robert N. Grass

Combining Colloidal Chemistry and Microfluidics .. 147
Rhutesh K. Shah

Properties of Surfaces and Films from Viscous Liquids to Elastic Solids ... 148
Hongbo Zeng, Jacob N. Israelachvili, Matthew Tirrell, L. Gary Leal

Sustainable Alternatives for Chemical Processing ... 149
Jason P. Hallett

Cardiac Tissue Engineering Using Embryonic Stem Cell Derived Cardiomyocytes and Novel Biomaterials ... 150
Elizabeth A. Lipke

Self-Assembly of Functional Rod-Coil Block Copolymers ... 152
Bradley D. Olsen, Rachel A. Segalman

Multiscale Modeling of Viscoelastic Flow and Complex Fluids in Micro/nanofluidics ... 155
Xin Hu, Ly James Lee

A Systems Biology Approach to Protein Translation ... 157
Hermioni Zouridis, Vassily Hatzimanikatis

Modulating Catalytic Properties at the Gas-Solid Interface ... 159
Raj Ganesh Pala

Towards Solid State Silicon Nano and Microwire Photovoltaic Devices ... 162
Michael A. Filler, Brendan M. Kayes, Morgan C. Putnam, Michael D. Kelzenberg, Harry A. Atwater

Metabolic Engineering of the Terpenoid and Indole Pathways in Catharanthus Roseus Hairy Roots ... 164
Christie A.M. Peebles, Susan I. Gibson, Jacqueline V. Shanks, Ka-Yiu San

Effects of Confinement and Interfaces on Structural Relaxation of Thin Polymer Films above, below, and at the Glass Transition ... 165
Rodney D. Priestley
Engineering Extremophilic Chaperones for Biocatalysis and Nanobiotechnology 167
 Timothy Whitehead

Computational Chemistry for Better Catalysis ... 169
 N. Aaron Deskins

Modeling Biological Ligand Design with Pharmaceutical Accuracy 171
 Michael R. Shirts

Directed Differentiation and Tissue Engineering of Keratinocytes Derived from Human Embryonic Stem Cells .. 172
 Christian M. Metallo, Lin Ji, Juan J. de Pablo, Sean P. Palecek

Engineering the Ribosome for the Development of New Technologies 173
 Lydia M. Contreras, Matthew P. DeLisa

Automating Development of Genome-Scale Metabolic Networks: Clostridium Acetobutylicum, a Known Singularity and Biofuel Production ... 174
 Ryan S. Senger, Eleftherios T. Papoutsakis

Enabling Microscopic Simulators to Perform System-Level Analysis of Viscoelastic Flows ... 175
 Zubair Anwar, Robert C. Armstrong

New Materials for Reduced Cost, High Performance, Micro Direct Methanol Fuel Cells 177
 William Mustain

Insights on Biological and Material Properties of Nanoscale Systems from Multiscale Modeling, Simulation, and Experiment .. 180
 Elaine R. Chan

Development of a Biomems Pulsatile Hormone Delivery System 182
 Eric E. Nuxoll

Molecular Engineering of Surfaces for Biomaterials and Biosensors 183
 Matthew Bernards, Shaoyi Jiang

Micro/nano Electrochemical Systems for Sensor and Energy Applications 186
 Ilwhan Oh

Catalytic Routes for the Production of Fuels and Chemicals ... 188
 Carsten Sievers, Pradeep K. Agrawal, Christopher W. Jones, Johannes A. Lercher

Solvent Design for Pharmaceutical Process ... 191
 Charles Acquah

Copper Electrodeposition Onto Resistive Ruthenium Substrates in the Presence of Solution Additives .. 192
 Jennifer Younker

Nanocomposites of Polyurethane Elastomers ... 193
 J. J. Huang, S. M. Liff, G. H. McKinley, M. C. Boyce

Multiscale Approaches towards Nanomaterials Design: Microporous Thin Films and Nanoparticle Assemblies ... 194
 Mark A. Snyder

Engineering Novel Surfaces to Control Cell Adhesion and for Drug Delivery Applications ... 197
 Srivatsan Kidambi

Time-Series Transcriptomic Analysis of a Systematically Perturbed Arabidopsis Thaliana Liquid Culture System: A Systems Biology Perspective .. 198
 Bhaskar Dutta, Maria Klapa

Analysis of Transcription Networks .. 199
 Mark P. Brynildsen, James C. Liao
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted Intracellular Delivery of Drugs and Genes</td>
<td>200</td>
</tr>
<tr>
<td>Yah-el Har-el</td>
<td></td>
</tr>
<tr>
<td>Applications of Flux Analysis to Plant Oilseeds</td>
<td>201</td>
</tr>
<tr>
<td>Doug K. Allen</td>
<td></td>
</tr>
<tr>
<td>Sensor-Aided Bioprospecting</td>
<td>202</td>
</tr>
<tr>
<td>Karen M. Polizzi</td>
<td></td>
</tr>
<tr>
<td>Generation of Renewable Fuels and Chemicals from Lipids Via Supercritical Fluid Processing</td>
<td>203</td>
</tr>
<tr>
<td>Darrell L. Sparks</td>
<td></td>
</tr>
<tr>
<td>Control of the Interspecies Biofilm Signal Indole in Pathogenic E. Coli O157:H7 and Pseudomonas Aeruginosa and Proteome and Transcriptome Analysis of Engineered E. Coli for Aerobic Mineralization of Cis-1,2-Dichloroethylene</td>
<td>205</td>
</tr>
<tr>
<td>Jintae Lee, Thomas K. Wood</td>
<td></td>
</tr>
<tr>
<td>Bridging the Scales: From Contact Mechanics to Fluidized Beds</td>
<td>209</td>
</tr>
<tr>
<td>Gustavo G. Joseph</td>
<td></td>
</tr>
<tr>
<td>Detection and Analysis of Biomolecules Using Diagnostic Microfluidic Systems</td>
<td>212</td>
</tr>
<tr>
<td>Edgar D. Goluch</td>
<td></td>
</tr>
<tr>
<td>Engineering Peptides to Build Inorganic Materials</td>
<td>214</td>
</tr>
<tr>
<td>Scott K. Stanley</td>
<td></td>
</tr>
<tr>
<td>Crowding and Confinement in Fluids and Biological Systems</td>
<td>217</td>
</tr>
<tr>
<td>Jeetain Mittal</td>
<td></td>
</tr>
<tr>
<td>Utilizing Surface Science to Improve the Attachment of a Biopolymer Coating on Titanium, An Implant Metal</td>
<td>220</td>
</tr>
<tr>
<td>Holly J. Martin, Kirk H. Schulz</td>
<td></td>
</tr>
<tr>
<td>Liquid Fuel Production Via the Integration of Glycerol Processing Over C-Supported Pt-Re Catalysts with Fischer-Tropsch Synthesis</td>
<td>222</td>
</tr>
<tr>
<td>Dante A. Simonetti, Edward L. Kunkes, Jeppe Rass-Hansen, Ricardo R. Soares, James A. Dumesic</td>
<td></td>
</tr>
<tr>
<td>First Principles Studies of Energy Materials</td>
<td>223</td>
</tr>
<tr>
<td>Devina Pillay</td>
<td></td>
</tr>
<tr>
<td>Real Laboratories At A Distance</td>
<td>226</td>
</tr>
<tr>
<td>Jim Henry</td>
<td></td>
</tr>
<tr>
<td>Fem Using Comsol: Applications For Fuel Cells</td>
<td>227</td>
</tr>
<tr>
<td>Jason M. Keith, Faith A. Morrison, Julia A. King</td>
<td></td>
</tr>
<tr>
<td>Superpro Designer: An Interactive Software Tool For Designing And Evaluating Integrated Chemical, Biochemical, And Environmental Processes</td>
<td>228</td>
</tr>
<tr>
<td>Nirupam Pal, Demetri Petrides, Charles Siletti</td>
<td></td>
</tr>
<tr>
<td>Solving Problems in Binary Batch Distillation on the Computer Using Mathcad® - Part 2</td>
<td>229</td>
</tr>
<tr>
<td>Ernest N. Bart, Joseph Kisutcza</td>
<td></td>
</tr>
<tr>
<td>Polymath - Now Integrates Problem Solving with Excel and Matlab</td>
<td>234</td>
</tr>
<tr>
<td>Michael B. Cutlip, Mordechai Shacham, Michael Elly</td>
<td></td>
</tr>
<tr>
<td>Incorporating Food Into The Chemical Engineering Curriculum</td>
<td>235</td>
</tr>
<tr>
<td>Majid Salim, Chris Barr, Allen Hersel</td>
<td></td>
</tr>
<tr>
<td>Incorporating Risk Assessment And Inherently Safe Design Into Process Design Education</td>
<td>236</td>
</tr>
<tr>
<td>Jeffrey R. Seay, Mario R. Eden</td>
<td></td>
</tr>
<tr>
<td>Nanoscale Studies Course Development At North Carolina A&t State University</td>
<td>237</td>
</tr>
<tr>
<td>Kenneth L. Roberts</td>
<td></td>
</tr>
</tbody>
</table>
Understanding Gibbs Free Energy Through 3D Phase Diagrams For Pure Components ... 238
A. Alarcón-García, L. G. Ríos-Casas, D. R. Téllez-Muradás, J. R. Flores-Tapia

Force Computation Between Spheres And Flats In An Aqueous 1:1 Symmetric Electrolyte Solution Using Matlab ... 239
Xiaoting Hong, R. Eric Berson, Gerold A. Willing

Industrial Collaboration For Improving Undergraduate Hands-On Process Control Education .. 240
Atanas Serbezov, Ronald Artigue, Richard Plapp, Darryl Carpenter

Experiences Applying Statistical Concepts and Designed Experiments in the Laboratory Courses .. 241
David R. Mills

Energizing An Introductory Chemical Engineering Course with Biodiesel .. 242
Katherine A. Taconi, R. Michael Banish

Capstone Design Project for Non-Chemical Engineering Major Students: Production of Biodiesel .. 243
Ping Wang, Weilu Lin

Global Projects in Engineering- a Multidisciplinary Course .. 244
Allyson Frankman, Jacob Jones, W. Vincent Wilding, Randy S. Lewis

Teaching of “Sustainability, Technology, and Society” at Northwestern University ... 245
Harold H. Kung

Microbial Fuel Cells as a Multidisciplinary Teaching Tool .. 246
Mohammad A. A. Dewan, Bernard J. Van Wie, Zbigniew Lewandowski, Haluk Beyenal

Coaching Students for Improved Team Performance .. 247
Pedro E. Arce, Joseph J. Biernacki

High Performance Learning Environments [Hi-Pele]: Role Of Team Functions on the Design, Implementation, And Assessment .. 248
Sharon Sauer, Pedro E. Arce

Lego Nxt Robotics--Introducing Che Freshmen To Engineering Skills and Concepts .. 249
Bill B. Elmore

Old Dead Guys: Using Active Learning Techniques To Teach History .. 250
Joseph H. Holles

Graduate Student Active Learning in Modeling and Numerical Methods .. 252
Karen High, Eric L. Maase

Advancing Green Engineering through Partnerships between University and Pharmaceutical Industry .. 254
C. Stewart Slater, Mariano J. Savelski, Brian G. Lefebvre, Robert P. Hesketh

Incorporating Semester-Long-Projects In Thermodynamics To Improve Critical Thinking / Real Word Problem Solving .. 255
Donald P. Visco

Introducing Labview Alongside Controls-First Semester Findings .. 256
Gregory E. Ogden, Anthony J. Muscat

Effective Use of E-Books in Chemical Engineering Classroom .. 257
Sasha Gurke

Podcasting In The Introductory Materials And Energy Balance Course .. 258
Jessica O. Winter

Session Introduction (No abstract) .. 259
John Corn, Marina Miletic
A Chemical Engineering Fundamentals Laboratory ... 260
J. M. Caruthers, D. Ramkrishna, F. Ribeiro, W.N. Delgass, Y. Zvinevich, D.S. Corti, R. Chhabra

Incorporation of An Industrial Distributed Control System in the Chemical Engineering Unit Operations Laboratory .. 261
Atanas Serbezov, Ronald Artigue, Richard Piapp, Darryl Carpenter

When Things Go Wrong... 262
William E. Josephson, Jaya Krishnagopalan, David R. Mills

The Chemical Engineering Laboratory Experience At The University Of South Carolina... 266
James A. Ritter, Charles E. Holland

Competition Between Student Groups In The Protein Production Challenge 269
Brian G. Lefebvre, Loren E. Connell, Kevin D. Dahm

Introduction (No abstract)... 270
Robert Wellek

NSF Cbet Overview... 271
Judy A. Raper

Highlights of Cbet Cluster on Chemical, Biochemical & Biotechnology Systems 272
John Regalbuto

Highlights of Cbet Cluster on Transport and Thermal Fluids Phenomena.. 273
Phillip R. Westmoreland

Highlights of Cbet Cluster on Environmental Engineering & Sustainability 274
Trung Van Nguyen

Highlights of Cbet Cluster on Biomedical Engineering and Engineering Healthcare 275
Robert J. Jaeger

NSF Special Programs Overview... 288
Judy A. Raper

Q And A Session (No abstract).. 289
Vijay T. John, William B. Krantz

Finite Element Simulations In The Unit Operations Laboratory ... 290
William M. Clark, David DiBiasio

Understanding The Fundamental Phenomena that Influence Physical Properties and Fluid Thermodynamics ... 291
David A. Gallagher, Andreas Klamt

Molecular Simulation Modules In Undergraduate and Graduate Education: Examples From Molecular Engineering.. 292
Christopher R. Iacovella, Aaron S. Keys, Michael J. Solomon, Mark A. Burns, Sharon C. Glotzer

Fascination and Frustration with Excel and the Peng-Robinson Equation for Mixtures 293
J. Richard Elliott

Nano/bio-Systems Modeling in Undergraduate and Graduate Education Using Gaussian’03 and Materials Studio... 294
Katherine L. Keeton, Daniela S. Mainardi

Simulation-Based Projects In Biotransport - An Elective Course In The Chemical Engineering Curriculum ... 302
Laurent Simon

Efficient Solution of Multiple-Model, Multiple-Algorithm Problems in Undergraduate and Graduate Education ... 303
Mordechai Shacham, Michael B. Cutlip, Michael Elly
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction - Workshop 2 (No abstract)</td>
<td>311</td>
</tr>
<tr>
<td>William B. Krantz</td>
<td></td>
</tr>
<tr>
<td>Proposal Writing Tutorial</td>
<td>312</td>
</tr>
<tr>
<td>John Regalbuto, James M. Lee, Geoffrey A. Prentice</td>
<td></td>
</tr>
<tr>
<td>Introduction and Overview of the Format for Breakout Sessions</td>
<td>313</td>
</tr>
<tr>
<td>Robert Wellek</td>
<td></td>
</tr>
<tr>
<td>Interactive Breakout Panels Coordinated by NSF Program Directors</td>
<td>314</td>
</tr>
<tr>
<td>Robert Wellek</td>
<td></td>
</tr>
<tr>
<td>Critical Thinking In A Senior-Level Capstone Lab: Construction Of Biodiesel Reactors</td>
<td>315</td>
</tr>
<tr>
<td>Holly A. Stretz, Mario A. Oyanader</td>
<td></td>
</tr>
<tr>
<td>Use Of The Aiche National Student Design Competition Problem As A Capstone Design Project</td>
<td>316</td>
</tr>
<tr>
<td>Richard L. Long</td>
<td></td>
</tr>
<tr>
<td>Design Of A Partial Oxidation Methanol Production Plant</td>
<td>317</td>
</tr>
<tr>
<td>Mark Bricka</td>
<td></td>
</tr>
<tr>
<td>Product And Process Design In Emerging Fields With Industrial By-In</td>
<td>318</td>
</tr>
<tr>
<td>Aydin Sunol</td>
<td></td>
</tr>
<tr>
<td>Papernol -- Recycle Paper to Ethanol</td>
<td>319</td>
</tr>
<tr>
<td>Jim Henry, James Grant, Jennifer Johnson, Aquila Hughley, Blake Nida</td>
<td></td>
</tr>
<tr>
<td>Capstone Objective: Develop the Skill of Time, Scope and Depth of Analysis in Complex Projects</td>
<td>320</td>
</tr>
<tr>
<td>Miguel J. Bagajewicz</td>
<td></td>
</tr>
<tr>
<td>Opportunities and Challenges Mingling Chemical Engineering into a Graduate Course of Food Colloids</td>
<td>321</td>
</tr>
<tr>
<td>Qixin Zhong</td>
<td></td>
</tr>
<tr>
<td>Popcorn! - - High School and First Year College Process and Product Design Experiences</td>
<td>322</td>
</tr>
<tr>
<td>Karen High, Sundararajan V. Madihally</td>
<td></td>
</tr>
<tr>
<td>A Project-Based Introduction to Data Analysis for Freshmen</td>
<td>323</td>
</tr>
<tr>
<td>Dr. Stephanie Farrell, Zenaida Otero-Gephart, Robert P. Hesketh</td>
<td></td>
</tr>
<tr>
<td>Food Experiments in the Unit Operations Lab</td>
<td>324</td>
</tr>
<tr>
<td>Mohammad Biswas, Laura Kelley, William E. Josephson, David R. Mills</td>
<td></td>
</tr>
<tr>
<td>Hot Potato: Edible Thermodynamics and Heat Transfer</td>
<td>329</td>
</tr>
<tr>
<td>Margot A.-S. Vigeant</td>
<td></td>
</tr>
<tr>
<td>Characterizing Rheological Properties of Newtonian and Non-Newtonian Fluid Food Products with a Statistical Method</td>
<td>330</td>
</tr>
<tr>
<td>Kyung C. Kwon</td>
<td></td>
</tr>
<tr>
<td>Session Introduction - New Experiments/Approaches (No abstract)</td>
<td>345</td>
</tr>
<tr>
<td>Marina Miletic, John Corn</td>
<td></td>
</tr>
<tr>
<td>Lactose Intolerance: a Simple Study of Kinetic Parameters Governing Lactose Conversion in Dairy Products</td>
<td>346</td>
</tr>
<tr>
<td>Jimmy L. Smart</td>
<td></td>
</tr>
<tr>
<td>An Inexpensive And Versatile Drying And Convective Heat Transfer Apparatus</td>
<td>347</td>
</tr>
<tr>
<td>David R. Mills</td>
<td></td>
</tr>
<tr>
<td>Efficiently Expanding A Unit Operations Laboratory</td>
<td>348</td>
</tr>
<tr>
<td>David L. Silverstein, Jimmy L. Smart</td>
<td></td>
</tr>
<tr>
<td>Complex Biological Concepts In A Hands On Laboratory Course For Engineers</td>
<td>349</td>
</tr>
<tr>
<td>Greg Sitton, Friedrich Srienc</td>
<td></td>
</tr>
</tbody>
</table>
Process Control Laboratory Using Unit Ops Equipment and Honeywell Plantscape 350
Laura P. Ford, Christi L. Patton

Workshop Laboratories And Experiments For K-12 Educators And Students 351
Steve R. Duke, Gopal Krishnagopalan

Build Your Own Water Gun - A Project To Introduce Chemical Engineering To Students 352
Keith Hohn

Creating the Scientist and Engineers of the Future Using Inquiry Based Learning 353
Nyrée V. McDonald

Oral Drug Delivery - Introductions to Methods and Practices in Chemical Engineering 354
Eric Maase

Summer Research For High School Students ... 355
Muthanna H. Al-Dahhan

How the Ch E Curriculum Is Failing Students, Industry and Society (And Some Things that Can Be Done About it) .. 356
Gavin P. Towler

Chemical Engineering Curriculum - Spiraling Out Of Control or Spiraling Into Control? 357
Vinay K. Gupta

Undergraduate Chemical Engineering Option: Biology Track ... 358
Stanley M. Barnett

Should We Teach Ethics In Chemical Engineering? ... 379
R. Ocone

Developing Design Projects That Scan The Length Scale .. 380
Richard Turton, Joseph Shaeiwitz

A Micro-Macro Transport Sequence for the Che Curriculum: Role of Scaling 381
Pedro E. Arce, Joseph J. Biernacki, Ileana C. Carpen, Venkat Subramanian

Curriculum And Course Assessment At Ohio University ... 383
Michael E. Prudich, Darin Ridgway, Kendree J. Sampson, Valerie L. Young

Progress In Developing A Web-Based Database-Driven Curriculum Assessment Tool 384
David A. Kofke, Jeffrey R. Errington, Andrew Schultz

Continuous Improvement Across The Curriculum ... 385
Joseph J. Biernacki

Ways to Succeed at Assessment of Educational Objectives from an Evaluator's Viewpoint .. 386
Gary K. Patterson

Engaging the Undergraduate through Research and Mentoring .. 387
Nyrée V. McDonald, Ronald Spatz

Interdisciplinary Research: An Reu Site Perspective .. 395
Mark E. Byrne, Steve R. Duke

Strategies For Increasing The Participation Of Women And Underrepresented Minority Students In Undergraduate Research ... 396
Lealon L. Martin

Use of Comsol Multiphysics in Undergraduate Research Projects to Solve Real-Life Problems .. 397
Bruce A. Finlayson

Ferreting Factors that Lead to Positive Outcomes for Undergraduate Researchers 413
Tamara Floyd-Smith

Author Index