TABLE OF CONTENTS

Volume 1

COMMERCIAL SYSTEMS ENGINEERING AND TRANSIT

Optimal Integration and Test Planning Applied to Lithographic Systems ..1
R. Boumen, Eindhoven University of Technology, I. de Jong, Eindhoven University of Technology,
ASML, J. van de Mortel-Fronczak, J. Rooda, Eindhoven University of Technology

The Compilation of an Integrated Qualification and Commissioning Programme
for a Nuclear Power Plant ..14
B. Brits, PBMR Ltd

Using Stakeholder Analysis to Define the Problem in Systems Engineering24
T. Trainor, G. Parnell, Department of Systems Engineering, USMA

An Enterprise Architecture Framework for Developing Command and Control Systems38
L. Yeoh, Defence Science and Technology Agency, H. Syn, ST Electronics (Info-software
Systems) Pte Ltd, C. Lam, Defence Science and Technology Agency

From Foresight to Insight: A Strategic Alignment Model for New Product
Development ..53
H. Lee, National Tsing Hua University / INER, C. Liu, M. Lee, National Tsing Hua University

Eight Deadly Defects in Systems Engineering and How to Fix Them ..69
J. Kasser, SEEC/University of South Australia

Requirements for Outsourcing ..83
T. Gilb, RPL

Optimized Airport Security Infrastructure System (OASIS) ..98
J. Gonzalez, S. Harris, E. Castaneda, J. Kim, George Mason University

Combined Requirements Engineering (CRE): The Quest for Widening the Applicability
of Requirements Engineering Practices in the Emerging Product-Service Paradigm111
V. Agouridas, University of Leeds, M. Kossmann, University of West England and Airbus UK

Standardized Process as a Tool for Higher Level Systems Thinking125
C. Lamb, D. Rhodes, Massachusetts Institute of Technology

Divergence: The Impact of Lifecycle Changes on Commonality ..136
R. Boas, E. Crawley, Massachusetts Institute of Technology

Five Avoidable Problems in Process Improvement ...152
M. Hoppe, HOOD Group

Enabling Economics-Driven Systems Engineering Through Reusable Software
Architectures and Components ...167
R. Selby, Northrop Grumman Corporation

Object-Oriented Systems Engineering Method (OOSEM) Applied to Joint Force
Projection (JFP), a Lockheed Martin Integrating Concept (LMIC) ..176
L. Izumi, S. Friedenthal, A. Meilich, Lockheed Martin Corporation

Improvement of Software Engineering Performances: A Case Stude at
Bombardier Transportation - Total Transit Systems Signaling Group197
C. Laporte, Ecole de Technologie Superieure, M. Doucet, Bombardier Transportation - Canada,
D. Roy, Centre de Recherche Informatique de Montreal, M. Drolet, Bombardier Transportation - USA
Heading Down a New Track: Growing an SE Practice in a Big, Bureaucratic, Legacy Enterprise

Tailoring to Transit: Case Studies Applying SE to the Rail/Transit Domain

Managing Rail Requirements: Case Studies Applying SE to Rail/Transit Projects

Integrating Systems Engineering with Program and Project Management

Challenges and Successes in the Deployment of Systems Engineering in the Commercial World
As. Jain, UTC/P&W, L. Brickley, IBM Global Services, G. Reichart, BMW Group, F. Smith, New York City Transit

PROCESS AND MODEL-BASED SYSTEMS ENGINEERING

Modeling of Hardware Software Performance of High-Tech Systems
G. Muller, Embedded Systems Institute, P. van den Bosch, Océ Technologies BV, M. Verhoef, Chess, O. Florescu, Technische Universiteit Eindhoven

Modeling Hierarchy, Coping with the Dynamic Range from Design Details up to Business Metrics; Illustrated by a Semiconductor Case
G. Muller, Embedded Systems Institute

Driving System Development Process from Strategic Goals to Requirements Specification
H. El Ghazi, Centre de Recherche en Informatique (CRI)

Enterprise Domain Modelling Process Using SysML for the Tooling Enterprise at the U.S. NNSA’s Pantex Plant
D. McGrath, BWXT Pantex, R. Griego, Sandia National Laboratories, L. Mayes, BWXT Pantex

Model-Based Techniques for Intelligent Integration and Testing in Industry
N. Braspenning, Eindhoven University of Technology, D. van der Ploeg, ASML Netherlands B.V., J. van de Mortel-Fronczak, J. Rooda, Eindhoven University of Technology

Benefits and Costs of Model-Based Fault Diagnosis for Semiconductor Manufacturing Equipment
J. Pietersma, A. van Gemund, Delft University of Technology

A Formal Universal Systems Semantics for SysML
M. Hamilton, W. Hackler, Hamilton Technologies, Inc.

Hybrid Systems Dynamics, Petri Net, and Agent-Based Modeling of the Air and Space Operations Center
B. White, J. Mathieu, J. James, P. Mahoney, R. Hubbard, L. Boiney, The MITRE Corporation

A Vision for Super-Model Driven Systems Engineering
S. Piggott, L. Hartman, P. Melanson, Canadian Space Agency

Bridging the Chasm - Tracing from Architectural Frameworks to SysML
M. Hause, F. Thom, Artisan Software Tools

HCI Aspects of SysML and Architectural Frameworks
M. Hause, F. Thom, Artisan Software Tools
Reuse and Usage for System Engineering Model Elements
D. Smith, Siemens - UGS PLM Software

Simulation-Based Design Using SysML - Part 1: A Parametrics Primer
R. Peak, Georgia Institute of Technology, R. Burkhart, Deere & Company, S. Friedenthal, Lockheed Martin Corporation, M. Wilson, M. Bajaj, I. Kim, Georgia Institute of Technology

Simulation-Based Design Using SysML - Part 2: Celebrating Diversity by Example
R. Peak, Georgia Institute of Technology, R. Burkhart, Deere & Company, S. Friedenthal, Lockheed Martin Corporation, M. Wilson, M. Bajaj, I. Kim, Georgia Institute of Technology

Model-Based Design and Verification of Fault-Tolerant Systems
M. Sorea, EADS Germany, H. Ruess, IABG mbH

Modeling the Enterprise: Case Studies and Approaches

SysML Early Applications and Lessons Learned
S. Friedenthal, Lockheed Martin Corporation, D. Brookshier, No Magic, R. Peak, Georgia Institute of Technology, R. Steiner, Raytheon

Discovering a Strategy for Whole Systems Modeling

SYSTEMS ENGINEERING APPROACHES AND PERSPECTIVES

Incorporating Software Cost and Risk Assessment into Early System Development Trade Studies
K. Weiss, Jet Propulsion Laboratory, N. Leveson, Massachusetts Institute of Technology, J. Francis, Payload Systems, Inc.

MV² Tool: A Management Tool for the Validation and Verification of Requirements by Airbus
C. Ducamp, A. Lagarrigue, Airbus

Promoting The Real Value of Systems Engineering Using an Extended SCARIT Process Model
S. Saunders, Raytheon Australia Pty Ltd

Coupling Enterprise and Technology by a Compact and Specific Architecture Overview
G. Muller, Embedded Systems Institute

Does INCOSE Need PR?
A. Zonnenshain, RAFAEL

A Model for Successful Engineering Internship: Growing Our Own Future Engineers
M. Malloy, The MITRE Corporation

Intelligent Operational Scenarios: A Strategy for Cost-Saving Scenario Selection
S. Dam, Systems and Proposal Engineering Company (SPEC)

The Problem
T. Ferris, SEEC/University of South Australia

The Hitchins-Kasser-Massie (HKM) Framework for Systems Engineering
J. Kasser, SEEC/University of South Australia

The Solution
T. Ferris, SEEC/University of South Australia
J. Simpson, Systems Concepts, C. Dagli, A. Miller, University of Missouri-Rolla

A Metric Framework for Capability Definition, Engineering and Management
S. Lam, Defence R&D Canada Ottawa, J. Pogotto, Defence R&D Canada, C. Pogue, D. Hales, CAE Professional Services, Inc.

An Integrated Approach to Developing Systems Professionals
H. Davidz, M. Maier, The Aerospace Corporation

Defining Changeability: Reconciling Flexibility, Adaptability, Scalability, and Robustness for Maintaining System Lifecycle Value
A. Ross, D. Rhodes, D. Hastings, Massachusetts Institute of Technology

Architecture Scenario Analysis: Estimating the Credibility of the Results
M. Gammelgård, M. Ekstedt, P. Närman, Royal Institute of Technology / KTH

Architecture Frameworks in System Design: Motivation, Theory, and Implementation
M. Richards, N. Shah, D. Hastings, D. Rhodes, Massachusetts Institute of Technology

The Continued Evolution of Validation: Issues and Answers
J. Armstrong, Systems and Software Consortium

Systems Architecture: A View Based on Multiple Impacts
T. Gilb, RPL

Applying Measurement Principles and Adapting a Defect Predictability Model to Hardware Development
P. Frenz, General Dynamics Advanced Information Systems

Incorporating Security and Survivability into the System of Systems Architecting
A. Singh, C. Dagli, University of Missouri-Rolla

Usability of Formal Verification on EFFBD Models: Applying Petri Nets to Systems Engineering Issues
C. Seidner, SODIUS - IRCCyN, J. Lerat, SODIUS, O. Roux, IRCCyN

Exploring Concurrent Activities: Using State Machines to Understand Net-Enabled Operations
R. Sorensen, Vitech Corporation, R. Funk, M. Ball, Centre for Operational Research and Analysis

Lessons Learned From Industrial Validation of COSYSMO

The ROI of Systems Engineering: Some Quantitative Results
R. Valerdi, Massachusetts Institute of Technology, B. Boehm, University of Southern California, E. Honour, Honourcode, Inc.

Challenges in the Development of Systems Engineering as a Profession
I. Dixit, University of Southern California, R. Valerdi, Massachusetts Institute of Technology

Measurement-Driven Systems Engineering Using Six Sigma Techniques to Improve Software Defect Detection
R. Selby, P. Selby, Northrop Grumman Corporation

Measurably Improving Your Systems Engineering Requirements
T. Olson, Quality Improvement Consultants, Inc. (QIC)

Rule-Based Design Reviews
T. Gilb, RPL

The Value-Based Theory of Systems Engineering: Identifying and Explaining Dependencies
B. Boehm, Ap. Jain, University of Southern California
Decision Analysis for Design Trades for A Combined Scientific-Technological Mission Orbit on Venus Micro Satellite
J. Herscovitz, D. Linn Barnett, Rafael

SYSTEMS ENGINEERING PROCESSES, STANDARDS AND HEURISTICS

Synthesizing the Organizational System
E. Arnold, BAE Systems Land & Armaments

P. Simpkins, Vitech Corporation, C. Riley, D. Sandor, National Renewable Energy Laboratory

Exploring Intelligent Enterprise System Limitations
K. Palmer, SEEC Student

Practical Process Implementation: Using SE Methods to Develop SE Processes
J. Nolte, D. Newbern, P. Vanghel, Northrop Grumman Corporation

Evolution of Assessment in a Hierarchical Team Project at Final Year Undergraduate Level
T. Ferris, SEEC/University of South Australia

Damn the Torpedoes! Lessons from Underwater Warfare
T. Fossnes, Norwegian Defence Procurement Division - Submarines

Systems are Imaginary -- Systems are Not Real: Some Thoughts on the Nature of Systems Thinking
J. Martin, The Aerospace Corporation

Self-Assessment Scheme and an Evaluation of Its Reliability Based on ISO 9004:2000
Y. Hwang, S. Kim, Electronics and Telecommunications Research Institute, D. Kim, Carleton University

Managing Dynamic New Product Development Processes
Y. Reich, A. Karniel, Tel Aviv University

Some Powerful Systems Engineering Heuristics
T. Gilb, RPL

Applying Creativity in Modelling and Simulation
D. Cropley, SEEC/University of South Australia

YADSES: Yet Another Darn Systems Engineering Standard
D. Walden, Sysnovation, LLC

Architecture-Based Drivers for System-of-Systems and Family-of-Systems Cost Estimating
G. Wang, P. Wardle, A. Ankrum, BAE Systems

System of Systems Engineering Model by Multistage Analytical Target Cascading
H. Kim, University of Illinois at Urbana-Champaign

Case Study in Establishing Systems Engineering Principles: One Organizations Experience
A. Reutzel, Sandia National Laboratories

Is the Systems Engineering Profession Quantitative Enough?
A. Zonnenshain, RAFAEL, D. Dori, Technion, E. Honour, Honourcode, Inc., J. Kasser, SEEC/University of South Australia, N. Malotaux, N R Malatoux - Consultancy
SYSTEMS ENGINEERING WITH RISK AND UNCERTAINTY

Case Study: Tailoring CMMI®-Based Command Media for a Company’s Individual Business Areas ..116

D. Turner, R. Adkins, Harris Corporation

Risk Analysis ..117

E. Smith, University of Missouri-Rolla, T. Bahill, University of Arizona

Taking Out the Garbage: How to Get Good Risks into Your Risk Tool ..118

V. Parker, Northrop Grumman Corporation

Cultural Models of Organizational Risk in Product Development ..119

S. Collins, University of Connecticut

A Decision Support System to Schedule Design Activities in Aircraft Industry121

I. Lizarralde, EADS CRC France, P. Esquirol, LAAS-CNRS, A. Riviere, EADS CRC France

Defining Military Pilot Training Requirements for 2015+ through the Application of Systems Approaches ..122

J. Cleveley, M. Woodhead, Loughborough University

Extracting Value from Uncertainty: A Methodology for Engineering Systems Design124

M. Cardin, Massachusetts Institute of Technology, W. Nuttall, Judge Business School, University of Cambridge, R. de Neufville, Massachusetts Institute of Technology, J. Dahlgren, The MITRE Corporation

Emerging Real-Time Intelligent Agents In Space Launch Verification and Anomaly Resolution ..126

D. Beshore, The Aerospace Corporation

Knowledge Management- A Key Element of Success ...127

L. Long, The Boeing Company, C. Dagli, University of Missouri-Rolla

Controlling Project Risk by Design ..129

N. Malotaux, N R Malatoux - Consultancy

Dialogic Design for the Intelligent Enterprise: Collaborative Strategy, Process, and Action ..130

P. Jones, Redesign Research, A. Christakis, Dialogic Design International, T. Flanagan, Dialogic Design International

Time-Expanded Decision Networks: A Framework for Designing Evolvable Complex Systems ..132

O. de Weck, M. Silver, Massachusetts Institute of Technology

Cultural, Psychological and Motivational Factors in Risk Management: 'Major Issues' or 'Let's Not Go There' ..133

J. Stein, Terumo Cardiovascular Systems Corp, A. Dolan, University of Toronto, T. Gilb, RPL, S. Jackson, University of Southern California, G. Roedler, Lockheed Martin Corporation, W. Siefert, Boeing

SYSTEMS ENGINEERING AND INTELLIGENT ENTERPRISES

System Resilience: Capabilities, Culture and Infrastructure ..134

S. Jackson, University of Southern California

Milestone Driven Systems Engineering Methods ...135

B. Wells, Raytheon

Coping With System Integration Challenges in Large Complex Environments137

G. Muller, Embedded Systems Institute
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Approach to a Network Centric Product Development System</td>
<td>1388</td>
</tr>
<tr>
<td>R. Abbott, A. Miller, C. Dagli, University of Missouri-Rolla</td>
<td></td>
</tr>
<tr>
<td>Better Use of Design Descriptions to Embrace Complexity and Creativity in Systems Engineering</td>
<td>1404</td>
</tr>
<tr>
<td>G. Strengers, Tenix Defence Pty Ltd</td>
<td></td>
</tr>
<tr>
<td>Analysis of Singapore’s 1991 Strategic Economic Plan Using the Large-Scale Systems Engineering Framework</td>
<td>1413</td>
</tr>
<tr>
<td>E. Chia, Defence Science and Technology Agency</td>
<td></td>
</tr>
<tr>
<td>‘Tour d’ Horizon’ in Requirements Engineering - Areas Left for Exploration</td>
<td>1424</td>
</tr>
<tr>
<td>M. Kossmann, University of West England and Airbus UK, M. Odeh, A. Gillies, University of the West of England, C. Ingamells, Airbus UK</td>
<td></td>
</tr>
<tr>
<td>The US Ballistic Missile Defense System: A Case Study in Architecting Systems-of-Systems</td>
<td>1445</td>
</tr>
<tr>
<td>H. Hollon, C. Dagli, University of Missouri-Rolla</td>
<td></td>
</tr>
<tr>
<td>Systematic Enterprise Definition</td>
<td>1453</td>
</tr>
<tr>
<td>J. Grady, JOG System Engineering, Inc.</td>
<td></td>
</tr>
<tr>
<td>The Story of Verdal: How One Intelligent Community Uses Systems Engineering to Enable Sustainable Development</td>
<td>1465</td>
</tr>
<tr>
<td>C. Haskins, NTNU</td>
<td></td>
</tr>
<tr>
<td>Integrating the Intelligent Enterprise</td>
<td>1476</td>
</tr>
<tr>
<td>K. Dixon, University of Bath, S. Brown, BAE Systems, J. Keirl, Dstl</td>
<td></td>
</tr>
<tr>
<td>Evaluating Product Development Task Interactions Using Network Analysis</td>
<td>1491</td>
</tr>
<tr>
<td>S. Collins, University of Connecticut, A. Yassine, University of Illinois at Urbana-Champaign</td>
<td></td>
</tr>
<tr>
<td>No Vehicles on the Mall</td>
<td>1506</td>
</tr>
<tr>
<td>C. Pringle, R. Carson, Central Washington University</td>
<td></td>
</tr>
<tr>
<td>Human Factors Integration for MODAF: Needs and Solution Approaches</td>
<td>1519</td>
</tr>
<tr>
<td>A. Bruseberg, Systems Engineering and Assessment Ltd., L. Gavan, General Dynamics</td>
<td></td>
</tr>
<tr>
<td>Seven Secret Tips To Build Intelligent Enterprise Architectures</td>
<td>1535</td>
</tr>
<tr>
<td>J. Carl, Mosaic Renaissance International and Riverside Research Institute, J. Colombi, Air Force Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Towards an Integrated Model of Enterprise Systems</td>
<td>1547</td>
</tr>
<tr>
<td>G. Kennedy, C. Sieniwenich, M. Sinclair, Loughborough University, Systems Engineering Innovation Centre</td>
<td></td>
</tr>
<tr>
<td>Human Functional Analysis of Lean Staffing: Extensions to the Department of Defense Architecture Framework (DoDAF)</td>
<td>1566</td>
</tr>
<tr>
<td>G. Lintern, General Dynamics, A. Bruseberg, Systems Engineering & Assessment Ltd.</td>
<td></td>
</tr>
<tr>
<td>Defining Lean Systems Engineering Processes and Procedures</td>
<td>1581</td>
</tr>
<tr>
<td>T. Olson, Quality Improvement Consultants, Inc. (QIC)</td>
<td></td>
</tr>
<tr>
<td>Organizational Strategies for Systems Engineering Capability Improvement</td>
<td>1593</td>
</tr>
<tr>
<td>M. So, J. Andary, M. Caldwell, NASA/Goddard Space Flight Center</td>
<td></td>
</tr>
<tr>
<td>Get Smart- Enabling Enterprise Systems Intelligence and Decision-Making through Critical Parameter Management</td>
<td>1606</td>
</tr>
<tr>
<td>Principles of Complex Systems for Systems Engineering</td>
<td>1618</td>
</tr>
<tr>
<td>S. Sheard, Third Millennium Systems LLC and GWU</td>
<td></td>
</tr>
<tr>
<td>Systems Engineering for the Intelligent Enterprise - More Important Than You May Think</td>
<td>1634</td>
</tr>
<tr>
<td>R. Kaffenberger, Ferchau Engineering GmbH</td>
<td></td>
</tr>
</tbody>
</table>
From Research to Reality: Making COSYSMO a Trusted Estimation Tool in Your Organization
R. Valerdi, Massachusetts Institute of Technology, C. Miller, Systems and Software Consortium

A Research Agenda for Systems of Systems Architecting
E. Axelband, T. Baehren, B. Boehm, D. Dorenbos, S. Jackson, A. Madni, G. Nadler, P. Robitaille, S. Settles, R. Valerdi

Biologically Inspired Systems Concepts: A Personal History
G. Friedman, University of Southern California

Cultural Differences - and How They Affect Systems Engineering
A. Pandikow, Syntell AB, R. Larsson, L. Ruhe, Saab Services USA LLC, E. Herzog, Saab Aerosystems AB

Everything Always Works the Way It’s Supposed to Right? The Importance of Tool Integration and Customization in Today’s Development Programs
J. Colwell, The Boeing Company, C. Dagli, University of Missouri-Rolla

Measuring Outcomes and Objectives for ABET Accreditation in a Systems Engineering Undergraduate Program
P. Brouse, George Mason University

NCW - Nature’s Predator-Prey Abstraction
C. Dagli, University of Missouri-Rolla, M. Gregg, Boeing, A. Miller, University of Missouri-Rolla

Author Index