2009 IEEE/LEOS Winter Topicals Meeting Series

(WTM 2009)

Innsbruck, Austria 12-14 January 2009

IEEE Catalog Number: CFP09WTM-PRT ISBN: 978-1-4244-2610-2

Table of Contents

WTM 2009 The IEEE/LEOS Winter Topical Meeting Series

Nanophotonics

MA1.	Photonic Crystal I	
MA1.1	Photonic Band Gap Materials: Light Trapping Crystals	1
MA1.2	Plane-Wave Transfer-Matrix Method and Its Application to Photonic Crystal Devices	2
MA1.3	Observation of Stimulated Emission and Lasing in Quantum-wire Photonic-crystal Nanocavities	4
MA2.	Applications of Nanophotonics I	
MA2.1	Nanophotonic Interconnection Networks in Multicore Embedded Computing	6
MA2.2	Scalable Coarse WDM Transceiver Modules for Satellite Applications	8
MA2.3	Nanostructured LED's for Solid-State Lighting	10
MA2.4	Characterization of a New 90° Phase Shift for QAM-QPSK Photonic Vectorial Modulators/Demodulators	12
MA2.5	Numerical Investigation of a SiGe HBT Electro-Optic Modulator	14
маз.	Photonic Crystal II	
MA3.1	Sharp Asymmetric Fano Resonance with a Side-Coupled Photonic Crystal Microcavity	n/a
MA3.2	Broad Resonance for Improving Imaging Quality of a Photonic Crystal Lens	16
MA3.3	Discrimination of Higher-Order Modes in Photonic-Crystal VCSEL	18
MA3.4	High-Q Optical Filter Based on Photonic Crystal Surface-Mode Microcavity	20

MA3.5	Vertically Stacked Square Lattice Photonic Crystals for Large Angle Optical Beam Steering	2 2
MA3.6	Enhancement of Nonlinearity in Nonlinear Photonic Crystal Ring Resonators for All-Optical Switching	24
MA4.	Silicon Photonics	
MA4.1	Efficient Wavelength Conversion via Four-Wave Mixing in Sub-Micron Silicon Rib Waveguides	2 6
MA4.2	All Optical Switching in Silicon-On-Insulator Photonic Wire Nano-Cavities	28
MA4.3	Silicon Cross-Slot Waveguides Insensitive to Polarization	30
MA4.4	Nonlinearity of Optimized Horizontal Slot Waveguides	32
MA4.5	Low Loss, Small Crosstalk Offset Crossing Structure of Si Wire Waveguide	34
MA4.6	All Optical Switch Using Stimulated Raman Scattering and Free Carrier Absorption in Silicon	36
TuA1.	Plasmonics I	
TuA1.1	Surface Plasmon Circuitry and Devices	n/a
TuA1.2	Plasmonic Nanoguides	38
TuA1.3	Active Components for Integrated Plasmonic Circuits	40
TuA2.	Plasmonics II	
TuA2.1	Surface Plasmons for Micro- and Nano-Optical Manipulation	42
TuA2.2	Fabricating Plasmonic Components for Nanophotonics	44
TuA2.3	Silver Nanoparticle Impregnated Polycarbonate Substrates for Plasmonic Applications	46
TuA2.4	Polarization Independent Lensing and Superbeaming in Plasmonic Crystals and Applications to Focal Plane Arrays	48
TuA2.5	Investigation of Coupling Parameters and the Effect of Edges in Nano-plasmonic Waveguides	50

TuA2.6	Compacted Splitter based on the Interlaced Metallic Particle Arrays	52
TuA3.	Photonic Crystal III	
TuA3.1	Patterning of Photonic Quasi-Crystals on GaN LEDs	54
TuA3.2	Spurious-Free Dynamic Range (SFDR) Improvement in a True-Time-Delay System based on Highly Dispersive Photonic Crystal Fiber	56
TuA3.3	Nested Photonic Crystal Cavity for On-Chip Wavelength Conversion	58
TuA3.4	Lateral Current Injection Photonic Crystal Emitters	60
TuA3.5	Photonic Crystals in Lithium Niobate by Ion-Beam Enhanced Etching	62
TuA3.6	Hybrid Photonic Crystal Fiber Coupler Infiltrated with Liquid Crystals	64
TuA4.	Applications of Nanophotonics II	
TuA4.1	Nanophotonics for Life	66
TuA4.2	Lab-on-a-Chip Sensing using Ultra-Compact Si Nanophotonic Structures	67
TuA4.3	Annular Holes and Their Arrays for Light Extraction from High Refractive Index Substrates	69
TuA4.4	Domain-Inversion-Equivalent EO Polymer based Y-fed Directional Coupler Modulator with High Linearity	71
TuA4.5	Multi-Point In-Line Refractometry Using Tilted Fiber Bragg Gratings	73
WA1.	Nanostructures I	
WA1.1	Nanoscale Nonlinear Optics	75
WA1.2	Subwavelength-Diameter Optical Fibers: Connecting Fiber Optics with Near-Field Optics, Nonlinear Optics and Quantum Optics on the Micro/Nanoscale	n/a
WA1.3	NanoPen: Light-actuated Patterning of Nanoparticles	76
WA2.	Metamaterials	

WA2.1	Photonic Metamaterials: Recent Progress	78
WA2.2	Nanophotonics at Sandia National Laboratories	79
WA2.3	Double-Negative Polarization-Independent Fishnet Metamaterial Operating in the Visible Spectrum	81
WA2.4	Negative Index Metamaterial through High-Order Plasmon Resonances on U-Shaped Nanowires	83
WA3.	Resonators	
WA3.1	Ultra-High Quality Factor Silicon Nitride Planar Microdisk Resonators for Integrated Photonics in the Visible Range: A New Coupling Scheme	85
WA3.2	Interferometrically-Coupled Traveling-Wave Resonators For Nonlinear Optics Applications	87
WA3.3	Metal Nanoantennas and Dielectric Microresonators for Solid-State Quantum Optics	89
WA3.4	Sub-Wavelength Imaging of Optical Modes in Silicon Microdisk Cavities using a Near-field Probing Technique	90
WA3.5	Spectral Characteristics of Coupled Silica Disc Microresonators	92
WA3.6	Improved Mach-Zehnder Interferometer with Ring-Resonator-Based Two-Beam Interferometer	94
WA4.	Nanostructures II	
WA4.1	Dense (1010 cm -2) Arrays of Ordered Quantum Dots with Narrow (< 10 meV) Photoluminescence Spectra	96
WA4.2	Optical Anisotropy of Semiconductor Nanowires	98
WA4.3	Valence Band Engineering and Polarization Switching in Quantum Dots Grown in Inverted Pyramids	100
WA4.4	Silicon Nano-Membranes for Efficient Large Angle Optical Beam Steering	102
WA4.5	Analysis of Scattering in Photonics Polymer Doped with Optically Anisotropic Cylinder Particles	104

Table of Contents

WTM 2009 The IEEE/LEOS Winter Topical Meeting Series

Nonlinear Dynamics in Photonic Systems

Nonlinear Dynamics in Photonic Systems Committee

MB1.	Innovative Light Sources & All-Optical Generation	
MB1.1	Dynamics of Optical Modes in Modulated Photonic Structures	106
MB1.2	Parabolic Pulse Generation and Applications	108
MB1.3	Harmonic Generation with Transverse and Longitudinal Phase-Matching	110
MB1.4	Dynamics of 2D Photonic Crystal Lasers	112
MB2.	Plenary II	
MB2.1	Chaotic Polarization Dynamics and Chaos Synchronization in VCSELs	114
MB2.2	Experimental Observation of Bloch Oscillations in the Spectral Domain	116
MB2.3	Nonlinear Effects in Silica and Hybrid Silica-Silicon Disc Micro Resonators	118
MB2.4	Design of Low-Contrast Periodic Structures in Highly Non-Linear Glass for the Ultra-Short Pulse Processing in Mid-Infrared	120
мвз.	Chaotic Optical Behavior	
MB3.1	Chaos Dynamics in Semiconductor Lasers	n/a
MB3.2	Optical Sources for Chaos based Communications	122
MB3.3	Synchronization of Chaos in Mutually Coupled Vertical-Cavity Surface-Emitting Lasers with Time Delay	124
MB3.4	Wireless to Optical Frequency Locking and Chaos using a Resonant Tunnelling - Laser Diode Circuit	126

MB3.5	Partial Coherence in Coupled Photonic Crystal Vertical Cavity Lasers	128
TuB1.	Plenary III	
TuB1.1	Ultrafast Nonlinear Optics in Emerging Waveguide Structures	n/a
TuB1.2	New Propagation Effects in Semiconductors in the UV Range: Inhibition of Absorption, Negative Refraction, Anomalous Momentur States, Sub-Wavelength Imaging, and Non-Plasmonic Nanometer-si Guided Waves	
TuB2.	VCSELs	
TuB2.1	VCSEL Structures and Applications	132
TuB2.2	Optically Controllable Microlasers and 3D Light Confinement based on Cavity Solitons in Vertical-Cavity Devices	134
TuB2.3	Polarization Dynamics in Vertical-Cavity Surface-Emitting Lasers Subject to Optical Injection or Current Modulation	136
TuB2.4	All-Optical Flip-Flop Operation in Polarization Bistable VCSELs and Its Application for Photonic Buffer Memory	138
TuB3.	Photonic Crystals & Random Materials	
TuB3.1	Second Harmonic Generation in Nonlinear Disordered Media	140
TuB3.2	Nonlinear Control of Light in Periodic Photonic Structures: From Waveguides to Cavities	142
TuB3.3	Control of Spatial Instabilities with Intracavity Photonic Crystals	144
TuB4.	Slow Light & QWs/QD	
TuB4.1	Four Wave Mixing and Wavelength Conversion in Slow Light Regime	146
TuB4.2	Exploring Carrier Dynamics in Semiconductors for Slow Light	148
TuB4.3	Nonlinear Dynamics of Quantum Dot Lasers	150
TuB4.4	All-Optical Switch based on Intersubband Transition in Quantum Wells	152

WB1.	Ultra-Fast Optical Pulse Dynamics	
WB1.1	Ultrahigh Speed Nanophotonics	154
WB1.2	Dynamics in Isolator-Free Injection-Locked Lasers	156
WB1.3	High-Speed Signal Processing using Silicon Nanophotonics	n/a
WB2.	Regular & Random Structures	
WB2.1	Light Shaping in Periodic Photonic Structures	158
WB2.2	Nonlinear Wave Dynamics in 2D Periodically Poled Waveguides	160
WB2.3	Spatio-Temporal Light Propagation in Complex Two-Dimensional Waveguide Lattices	162
WB2.4	Second Harmonic Generation from Multilayer Structures	164
WB3.	Mode Switching Dynamics	
WB3.1	Mode Locked Laser Diodes in Integrated Optoelectronics: Some Anticipated Challenges and Possible Solutions	166
WB3.2	Squeezed Light Generation via Spatial Symmetry Breaking	168
WB3.3	Nonlinear Mode Coupling of Ultra-Short Pulses in Optical Fibers	170
WB4.	Solitons	
WB4.1	Recent Advances in Dissipative Optical Solitons	172
WB4.2	Spatial and Discrete Solitons	n/a
WB4.3	Spatial Filtering of Light Beams in Chirped Photonic Crystals	174
WB4.4	Monolithic Cavity Soliton Laser	176
WB4.5	Analysis of Polarization States of Broad-Area Vertical-Cavity Surface-Emitting Lasers Below and Above Threshold	178

Table of Contents

WTM 2009 The IEEE/LEOS Winter Topical Meeting Series

Nonlinear Processing in Optical Fibers

Nonlinear Processing in Optical Fibers Committee

MC1.	Joint Plenary Session	
MC1.1	10 Years of Nonlinear Optics in Photonic Crystal Fiber: Progress and Perspectives	180
MC1.2	Octave Spanning High Quality Super Continuum Generation using Ultrashort Pulse Fiber Laser ~Highly Functional Optical Control using Ultrafast Nonlinear Effects in Optical Fibers~	181
MC2.	Parametric Amplification I	
MC2.1	Tunable Optical Delays	183
MC2.2	High Resolution Optical Waveform Sampling	185
MC2.3	Demonstration of Parametric Amplification at 1 μ m by use of a Microstructured Optical Fiber	187
MC2.4	BER Estimation of a Long-Haul Transmission System with Phase-Sensitive Amplifiers	189
MC2.5	Parametric Multicasting of 320 Gb/s OTDM Data	191
MC2.6	Polarization-Insensitive 2R-Regenerator based on Two-Pump Fiber Optical Parametric Amplifier	193
мсз.	Supercontinuum	
MC3.1	Towards a Thermodynamic Description of Supercontinuum Generation	195
MC3.2	CW Pump Supercontinuum Generation in Dispersion-Tailored Photonic Crystal Fibers	197
MC3.3	Route to Coherent Supercontinuum Generation in the Long Pulse	199

MC3.4	Enhanced Supercontinuum Generation using Multi-Fibre Ultra-Long Raman Cavities	201
MC4.	Telecom Applications	
MC4.1	Tapered Chalcogenide Fibers	n/a
MC4.2	Bismuth Oxide Fiber-based Tunable Delay Schemes using Nonlinear Optical Processing Techniques	203
MC4.3	All-Optical Modulation Format Conversion from NRZ-OOK to RZ-Multilevel APSK based on Fiber Nonlinearity	205
MC4.4	640 Gbit/s Optical Time-Division Add-Drop Multiplexing in a Non-Linear Optical Loop Mirror	207
MC4.5	Reduction of Nonlinear Phase Noise in DPSK Transmission Using a NALM	209
TuC1.	Nonlinear Processing I	
TuC1.1	Optical Signal Processing using Nonlinearity in Optical Fibers	211
TuC1.2	Ultrafast All-Optical A/D Conversion using NOLMs with Multi-Period Transfer Functions	213
TuC1.3	Nonlinear Processing in Bismuth Optical Fibers	215
TuC2.	Emerging Topics	
TuC2.1	Fibre-Optical Analogue of the Event Horizon	217
TuC2.2	Nonlinear Optics in Photonics Nanowires	219
TuC2.3	New Concepts based on Nonlinear Polarization Effects and Raman Amplification in Optical Fibers	221
TuC2.4	Generation and Detection of Optical Rogue-wave-like Fluctuations in Fiber Raman Amplifiers	223
TuC2.5	Convective Instabilities and Optical Rogue Waves in Fibers with CW Pumping	225
TuC3.	Parametric Amplification II	
TuC3.1	Versatile Parametric Wavelength Exchange	227

TuC3.2	Continuous-Wave One-Pump Fiber Optical Parametric Amplifier with 230 nm Gain Bandwidth	229
TuC3.3	RZ Pulse Source for Optical Time Division Multiplexing Based on Self-Phase Modulation and Four Wave Mixing	231
TuC3.4	Wide-Band Generation of Pico-second Pulse via Idler Generation in Optical Parametric Amplifier	233
TuC4.	Fibers I	
TuC4.1	Nonlinear Fibers: A Fiber Maker's Tool Box	235
TuC4.2	Polarization Maintaining Highly Nonlinear Fibers and their Applications	237
TuC4.3	Emerging Nonlinear Optical Fibers: Fabrication and Access to New Properties	239
TuC4.4	Fiber-Bragg-Grating Writing in Highly Nonlinear PM Fibers for Raman Fiber Lasers	241
WC1.	Fibers II	
WC1.1	Recent Advances in Highy Nonlinear Fiber	243
WC1.2	A New Class of Fibers for the Management of Ultra-Short Pulses	245
WC1.3	SBS Shaping and Suppression by Arbitrary Strain Distributions Realized by a Fiber Coiling Machine	246
WC2.	Regeneration	
WC2.1	All-Optical Signal Regeneraion using Fiber Nonlinearity	248
WC2.2	Simultaneous 2R Regeneration of WDM Signals in a Single Optical Fibre	250
WC2.3	All-Optical Regeneration of Multi-Wavelength Signals	252
WC2.4	All-Optical Arbitrary Wavelength Conversion with Signal Regeneration based on Slicing of Supercontinuum Spectrum	254
WC2.5	Optimization of Dispersion-Imbalanced Loop Mirror for Phase-Preserving Amplitude Regeneration	256

WC3.	Parametric Amplification III	
WC3.1	Quantum Mechanics of Optical Parametric Devices	n/a
WC3.2	Fiber Optical Parametric Amplifiers with Alternating Fiber Twists	258
WC3.3	Tunable 2.5W Continuous-Wave Optical Source Based on Efficient Parametric Conversion in Highly Nonlinear Fiber	260
WC3.4	Widely-Tunable Triply-Resonant Optical Parametric Ring Oscillator	262
WC4.	Nonlinear Processing II	
WC4.1	Optical Pulse Compression based on Fiber Nonlinearity and Dispersion	264
WC4.2	High Performance Optical Processing Systems Incorporating Grating Based Pulse Shaping	266
WC4.3	Measuring Optical Waveforms with Fiber Frequency Combs	268
WC4.4	Pulse Shaping using the Optical Fourier Transform Technique - for Ultra-High-Speed Signal Processing	270