Non-Aqueous Electrolytes for Lithium Batteries

Editors:

T. R. Jow
U.S. Army Research Laboratory
Adelphi, Maryland, USA

W. Henderson
North Carolina State University
Raleigh, North Carolina, USA

B. Lucht
University of Rhode Island
Kingston, Rhode Island, USA

M. Ue
Mitsubishi Chemical Corporation
Yokohama, Japan

Sponsoring Divisions:

Battery

Physical and Analytical Electrochemistry

Published by
The Electrochemical Society
65 South Main Street, Building D
Pennington, NJ 08534-2839, USA
tel 609 737 1902
fax 609 737 2743
www.electrochem.org
Table of Contents

Preface iii

Chapter 1

New Salts/Solvents/Additives

- Novel Electrolyte for Lithium Ion Batteries: Lithium Tetrafluorooxalatophosphate (LiPF4C2O4)
 - M. Xu, A. Xiao, L. Yang and B. Lucht
 - Page 3

- Ion Diffusion and Lithium Jump of Li2B12F12 dissolved in Propylene Carbonate (PC) studied by NMR Spectroscopy
 - K. Hayamizu, M. Hattori, J. Arai and A. Matsuo
 - Page 13

- Physical and Electrolytic Properties of Partially Fluorinated Organic Solvents and Its Application to Secondary Lithium Batteries: Partially Fluorinated Dialkoxyethanes *
 - Page 23

- Lithium-Ion Electrolytes Containing Flame-Retardant Additives for Increased Safety Characteristics
 - K. A. Smith, M. C. Smart, G. Prakash and V. B. Ratnakumar
 - Page 33

Chapter 2

Ionic Liquid Electrolytes

- Mixtures of Ionic Liquid in Combination with Graphite Electrodes: The Role of Electrolyte Additives and Li-salt *
 - Page 45

- Electrochemical and Physicochemical Properties of PYR14-FSI Based Electrolytes with LiFSI
 - E. E. Patillard, Q. Zhou, W. Henderson, G. B. Appetecchi, M. Montanino and S. Passerini
 - Page 51
<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Solid/Polymer Electrolytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Investigation of Electrochemical Properties and Ionic Motion of Functionalized Copolymer Electrolytes Based on Polysiloxane</td>
<td>F. Wang, Y. Wang and C. Wan</td>
</tr>
<tr>
<td>Investigation on the Anion Complexation Ability of Organoboron Additives in Lithium-ion Battery Electrolytes - Spectroscopic Approach</td>
<td>G. Zukowska, M. Szczechura, M. Marcinek, A. Zubrowska, A. Adamczyk-Woziak, A. Sporzyński and W. Wieczorek</td>
</tr>
<tr>
<td>Preparation and Performance of Novel Acrylonitrile (AN)-based Copolymer Gel Electrolytes for Lithium Ion Batteries</td>
<td>W. Pu, S. Zhang, L. Zhang, X. He, C. Wan and C. Jiang</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Interface/Kinetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionic Liquids and their Analogs—Electrochemical Behavior at Electrode/Electrolyte Interface *</td>
<td>T. Matsui, M. Deguchi and H. Yoshizawa</td>
</tr>
<tr>
<td>Lithium-ion Kinetics at Interface between Lithium-ion Conductive Electrolyte/DMC-based Electrolyte Interfaces *</td>
<td>Y. Yamada, T. Abe and Z. Ogumi</td>
</tr>
<tr>
<td>Surface Analysis of Solid Electrolyte Interphase on Binder-free Graphite Electrodes in Advanced Electrolytes</td>
<td>A. Xiao, B. Lucht, L. Yang, S. Kang and D. Abraham</td>
</tr>
</tbody>
</table>