Serviceability of Concrete Members Reinforced with Internal/External FRP Reinforcement

Session at the ACI Spring 2009 Convention

ACI SP 264

San Antonio, Texas, USA
15-19 March 2009

Editors:

Carlos E. Ospina Tarek Alkhrdaji
Peter H. Bischoff

Some format issues inherent in the e-media version may also appear in this print version.
TABLE OF CONTENTS

SP-264—1
Deflection Control for FRP-Reinforced Concrete Members: An Overview ... 1
by A. Scanlon

SP-264—2
Effect of Sustained Loads on Flexural Crack Width in Concrete Beams Reinforced with Internal FRP Reinforcement ... 13
by S.P. Gross, J.R. Yost, and D.J. Stefanski

SP-264—3
Cracking and Deflection Behavior of One-Way Parking Garage Slabs Reinforced with CFRP Bars 33
by S. El-Gamal, B. Benmokrane, and E. El-Salakawy

SP-264—4
The Story Behind Proposed Changes to ACI 440 Deflection Requirements for FRP-Reinforced Concrete 53
by P.H. Bischoff, S. Gross, and C.E. Ospina

SP-264—5
Effective Moment of Inertia Expression for Concrete Beams Reinforced with Fiber-Reinforced Polymer (FRP) .. 77
by H. Vogel and D. Svecova

SP-264—6
Deflection and Cracking Behavior of RC Beams Strengthened in Flexure .. 95
by S. Matthys and L. Taerwe

SP-264—7
Modified Branson’s Formula for Deflection of FRP Strengthened Concrete Beams ... 111
by H.A. Rasheed and H. Charkas

SP-264—8
Deflection Control of Reinforced Concrete Beams and One-Way Slabs with Externally Bonded FRP 129
by C.E. Ospina

SP-264—9
Effective Moment of Inertia of Concrete Beams Prestressed with Aramid Fiber-Reinforced Polymer (AFRP) Tendons .. 147
by Y.J. Kim

SP-264—10
Design Implications of Creep and Long-Term Deflections in FRP-RC Beam-Columns 163
by A. Mirmiran, H. Erdogan, and A. Singhvi

SP-264—11
Significance of Cracking Uncertainty on Predicting Deflection of FRC-RC Beams ... 179
by J.J. Kim, A.M. Said, and M.M. Reda Taha