TABLE OF CONTENTS

Session 1: Having Too Many and Too Few Clocks

Obtaining Consistent Global State Dumps to Interactively Debug Systems on Chip with Multiple Clocks .. 1
Bart Vermeulen–NXP Semiconductors, Netherlands; Kees Goossens–Eindhoven University of Technology, Netherlands

System Level Simulation Guided Approach to Improve the Efficacy of Clock-Gating ... 9
Sumit Ahuja–Virginia Tech, USA; Wei Zhang–Cebatech Inc., USA; Sandeep K. Shukla–Virginia Tech, USA

State Space Reductions for Scalable Verification of Asynchronous Designs ... 17
Haiqiong Yao and Hao Zheng–University Southern Florida, USA; Chris Myers–University of Utah, USA

Session 4: Other High Level: Arithmetic and Tools

Analysis of Range and Precision for Fixed-Point Linear Arithmetic Circuits with Feedbacks ... 25
O. Sarbishei, Y. Pang and K. Radecka–McGill University, Montreal, Canada

Retiming Arithmetic Datapaths using Timed Taylor Expansion Diagrams ... 33
Daniel Gomez-Prado, Dusung Kim and Maciej Ciesielski–University of Massachusetts Amherst, USA;
Emmanuel Boutillon–Lab-STICC, Université de Bretagne Sud, France

HIFSuite: Tools for HDL Code Conversion and Manipulation ... 40
Nicola Bombieri, Giuseppe Di Guglielmo, Luigi Di Guglielmo–University of Verona, Italy; Michele Ferrari–EDALab s.r.l., Italy; Franco Fummi and Graziano Pravadelli–University of Verona, Italy and EDALab s.r.l., Italy; Francesco Stefanni–University of Verona, Italy; Alessandro Venturelli–EDALab s.r.l., Italy

Session 5: Advances in Formal Methods

Quick Formal Modeling of Communication Fabrics to Enable Verification ... 42
Satrajit Chatterjee, Michael Kishinevsky and Umit Y. Ogras–Intel Corporation, USA

An Improvement in Decomposed Reachability Analysis for Symbolic Model Checking ... 50
Nicholas Donataccio and Hao Zheng–University of Southern Florida, USA

Semi-Formal Functional Verification by EFSM Traversing via NuSMV ... 58
Giuseppe Di Guglielmo, Franco Fummi, Graziano Pravadelli and Stefano Soffia–University of Verona, Italy;
Marco Roveri–Fonazione Bruno Kessler, Italy
Panel–Clock Domain Verification Challenges

Moderator: Prab Varma–Blue Pearl Software, USA
Panelists: Iredamola Olopade–Intel; Pranav Ashar–Real Intent; Harry Foster–Mentor; and Shaker Sarwary–Atrenta

Abstract: The As semiconductor manufacturing technologies shift from 65 to 45nm and below, the design of increasingly complex systems on a chip (SoCs) that contain multiple interfaces, with differing frequencies, is enabled. To address concerns such as the minimization of power consumption and clock skew across large chips, the number of asynchronous clocks in SoCs is increasing rapidly. This is resulting in myriad challenges for designers, who are faced with ensuring that metastability, data loss, and data incoherency issues associated with the failure to correctly synchronize data are avoided. Issues such as hazards caused by reconvergence from independent synchronizers can cause intermittent design failure that is very difficult to debug with traditional simulation tools. As a result, such problems often escape to the field - causing expensive design re-spins. In addition, the incorrect specification of clock constraints related to false paths associated with clock domain crossings can result in critical (and costly) problems that are only found after tape-out. Recently static approaches based on structural analysis and formal techniques have been introduced commercially and are increasingly being adopted by the industry. This panel will address some of the issues involved in using these approaches and panelists will address the question of what really works well today and what challenges remain. The panel will also discuss emerging challenges related to 22nm designs, which might force some design teams doing large, high speed chips to abandon classic CDC approaches and adopt NoC design solutions. This panel will also discuss the emerging challenge of verification of purely asynchronous NoC protocols.

Clock Domain Verification Challenges and Scalable Solutions ... 66
Pranav Ashar–Real Intent Inc., USA

Session 7: Coverage and Constraints

Towards Analyzing Functional Coverage in SystemC TLM Property Checking ... 67
Hoang M. Le–University of Bremen, Germany; Daniel Große–University of Bremen, Germany and Albert-Ludwigs-University, Germany; Rolf Drechsler–University of Bremen, Germany

Coverage Metrics for Verification of Concurrent SystemC Designs using Mutation Testing 75
Alper Sen–Bogazici University, Turkey; Magdy S. Abadir–Freescale Semiconductor Inc., USA

Static Analysis of Deadends in SVA Constraints .. 82
Ashvin Dsouza–Synopsys Inc., USA

A Case Study of Time-Multiplexed Assertion Checking for Post-Silicon Debugging .. 90
Ming Gao and Kwang-Ting Cheng–University California, Santa Barbara, USA

Session 8: (Special)–Transaction-Level Modeling

Fast and Accurate UML State Chart Modeling using TLM® Control Flow Abstraction .. 97
Rainer Findenig–Upper Austrian University of Applied Sciences, Austria; Thomas Leitner–DICE GmbH & Co. KG, Austria; Michael Velten and Wolfgang Ecker–Infineon Technologies AG, Germany

Automatic Generation of Host-Compiled Timed TLMs for High Level Design ... 103
Samar Abdi–Concordia University, Canada

Automatic Synthesis of OSCI TLM-2.0 Models into RTL Bus-based IPs ... 105
Nicola Bombieri, Franco Fummi and Valerio Guarnieri–University of Verona, Italy
Session 9: Systems and Modeling

Automated Synthesis of EDACs for FLASH Memories with User-Selectable Correction Capability ... 113
Maurizio Caramia–Thales Alenia Space Italia, Italy; Michele Fabiano, Andrea Miele, Roberto Piazza
and Paolo Prinetto–Politecnico di Torino, Italy

Utility of Transaction-Level Hardware Models in Refinement Checking .. 121
Yogesh Mahajan and Sharad Malik–Princeton University, USA

An Ontology and Constraint based Approach to Cache Preloading ... 129
Rajiv Bhatia–IBM Systems and Technology Group, USA; Eyal Bin, Eitan Marcus and
Gil Shurek–IBM Research Labs, Israel

Session 10: (Special)–Verification Challenges at ESL

ESL Flows are Enabled by High-Level Synthesis with Universality ... 137
Rishiyur S. Nikhil–Bluespec, Inc., USA

The Relationship of Code Coverage Metrics on High-level and RTL Code ... 138
John Sanguinetti–Forte Design Systems, USA; Eugene Zhang–Jeda Technologies, USA

ESL Design and Multi-Core Validation using the System-on-Chip Environment .. 142
Weiwei Chen, Xu Han and Rainer Dömer–University California, Irvine, USA

Session 11: (Special)–HW-Dependent Software Validation

Model Reduction Techniques for the Formal Verification of Hardware-Dependant Software ... 148
Wolfgang Ecker and Volkan Esen–Infineon Technologies, Germany; Rainer Findenig–Infineon Technologies,
Germany and Upper Austrian University of Applied Sciences, Austria; Thomas Steininger and
Michael Velten–Infineon Technologies, Germany

Verification of Real-Time Properties for Hardware-Dependant Software ... 154
Wolfgang Mueller, Marcio F. da S. Olivera, Henning Zabel and
Markus Becker–University of Paderborn/C-LAB, Germany