Coal for the Future

The Clearwater Coal Conference

Clearwater, Florida, USA
1-5 June 2008

Volume 1 of 2

Editors:

Barbara A. Sakkestad

Table of Contents

VOLUME I

Oxy-Fuel Technology I: Demonstrations and Experiments

Dr. Ligang Zheng, CANMET Natural Resources, Canada and Dr. Horst Hack, Foster Wheeler North America Corp.

30 MW, Clean Environment Development Oxy-Coal Combustion Test Program

D. K. McDonald, T.J. Flynn, and D.J. DeVault, Babcock & Wilcox Power Generation Group, Inc.; and Rajani Varagani, Susie Levesque, and Bill Castor, Air Liquide, USA......................1

Oxy-Coal Combustion Demonstration Project

Dante Bonaquist, Rick Victor, and Minish Shah, Praxair Inc. USA..................................13

Physical Properties and Liquid Vapor Equilibrium of Pressurized CO₂ Rich Gases from Pressurized Oxy-fuel Combustion of Coal

Alex Fassbender, Li Tao and Robert Henry, Thermo Energy Corporation, USA..................15

Design and Erection of an 100 kW CFB Test Plant for Oxyfuel Combustion

Ulrich Hohenwarter, Austrian Energy & Environment AG & Co KG, AUSTRIA..........................25

Impact of Recycled Gas Species (SO₂, NO) on Emission Behaviour and Fly Ash Quality During Oxy-Coal Combustion

J. Maier, B. Dhungel, P. Mönckert, R. Kull, and G. Scheffknecht, Institute of Process Engineering and Power Plant Technology (IVD), University of Stuttgart, GERMANY.............33

Progress towards the Demonstration of OTM Integration with Coal Combustion

Juan Li, Jamie Wilson, Nick Degenstein, Minish Shah, Bart A. van Hassel and Maxwell Christie, Praxair, Inc., and V. Venkateswaran, ENrG Inc., USA...45

Oxy-Fuel Technology II: Optimal System Designs and Novel Ideas

Dr. Ligang Zheng

CANMET Natural Resources, Canada

Development of Integrated Flexi-Burn Dual-Oxidant CFB Power Plant

Horst Hack, Zhen Fan and Andrew Seltzer, Foster Wheeler North America Corp., USA and Timo Eriksson, Ossi Sippu and Arto Hotta, Foster Wheeler Energia Oy, FINLAND.........................55

Oxyfuel Combustion Retrofits for Existing Power Stations – Bringing “Capture Ready” to Reality

Dr. K.-D. Töges, Dr. F. Klauke, C. Bergins, K. Busekrus, J. Niesbach, M. Ehmann, B. Volmer and T. Buddenberg, Hitachi Power Europe GmbH, GERMANY; and Song Wu, Orest Walchuk, and Allan Kukoski, Hitachi Power Systems America, Ltd., USA...65
CFD Modeling of Single Burner Oxy-Coal Combustion Retrofit Concepts
Andrew Fry, Kevin Davis, and Dave Wang, Reaction Engineering International, USA 81

Flexi-Burn Dual-Oxidant Pulverized Coal Power Plant with Carbon Capture
Andrew Seltzer, Zhen Fan, and Horst Hack, Foster Wheeler North America Corp., R&D, USA ... 93

A Novel Air Separation Sorbent for Oxy-Combustion Process
Gökhan Alpiekin, Ambalavanar Jayaraman, Margarita Dubovik, and Lauren Brickner, TDA Research Inc., USA .. 105

Effect of O₂ and High CO₂ Concentrations on PC Char Burning Rates During Oxy-Fuel Combustion
Christopher R. Shaddix, Combustion Research Facility, Sandia National Laboratories, USA; and Alejandro Molina, Escuela de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, COLOMBIA .. 113

Oxy-Fuel Technology III: Combustion Characteristics and Burner Design
Dr. Ligang Zheng, CANMET Natural Resources, Canada and
Dr. Joerg Maier, University of Stuttgart

Controlled Staging with Non-Stoichiometric Burners for Oxyfuel Processes – Numerical Validation
Dipl.-Ing. Adrian Goanta, Dipl.-Ing. Valentin Becher, Dipl.-Ing. Jan-Peter Bohn, Dr.-Ing. Stephan Gleis, and Prof. Dr.-Ing. Hartmut Spliethoff, Institute of Energy Systems, Technische Universität München, GERMANY ... 123

The Effect of Radiative Heat Transfer on the Accurate Prediction of a Coal Fired Boiler Operating Under Oxy-Fuel Conditions
S. A. L. Perera, Fluent Europe Ltd, UNITED KINGDOM; and G. Krishnamoorthy, S. Orsino, and M. Sami, Ansys Inc., USA ... 133

NOₓ Destruction Experiments and Modeling in Oxy-Fuel Combustion
Andrew J. Mackrory, and Dale R. Tree, Professor Brigham Young University, USA 143

CFD Aided Design of an Oxycoal Test Burner with High Recirculation Rates
Lorenz Griendl, and Jürgen Karl, Institute of Thermal Engineering, Graz University of Technology, Ulrich Hohenwarter Austrian Energy & Environment AG, AUSTRIA .. 155

Combustion of Two Lignite Coals in O₂-N₂ & O₂-CO₂
Yiannis A. Levendis and Kulbhushan Joshi, Department of Mechanical and Industrial Engineering, Northeastern University, USA ... 165

Comparison of Char Burnout and CO Emissions from Oxy-Coal Combustion with Combustion in Air: An Experimental and Numerical Study
Prabhat Naredi and Sarma V Pisupati, Department of Energy and Mineral Engineering, The Pennsylvania State University, USA .. 177
Oxy-Fuel Technology IV: Flue Gas Treatment and Chemical Looping
Dr. Ligang Zheng, CANMET Natural Resources, Canada and
Dr. Yiannis Levendis, Distinguished Professor of Mechanical and Industrial Engineering,
Northeastern University

Combustion of a German Lignite Using Chemical-Looping with Oxygen Uncoupling (CLOU)
Tobias Mattisson, Anders Lyngfelt, Department of Energy and Environment, Division of Energy Technology and Henrik Leion, Department of Environmental Inorganic Chemistry, Chalmers University of Technology, SWEDEN...189

Sulfur Capture with Limestone in an Oxy-Fuel Fired Mini-CFB
Yewen Tan, Lupei Jia and Edward J. Anthony, CANMET Energy Technology Centre, Natural Resources Canada, CANADA...201

Conceptual Design and Experimental Study Overview: Flue Gas Treatment and CO₂ Recovery
Experimental System for High Pressure Oxygen Fired Coal Combustion

CO₂ Capture from Direct Combustion of Solid Fuels with Chemical-Looping Combustion
Henrik Leion, Department of Environmental Inorganic Chemistry, and Tobias Mattisson, and Andreas Lyngfelt, Department of Energy and Environment, Chalmers University of Technology, SWEDEN...221

Development of an Integrated CO₂ Capture and Compression Unit (CO₂CCU) for Oxy-Fuel Power Plants
Kourosh Zanganeh, Carlos Salvador, and Ahmed Shafeen, Zero-Emission Technologies Group, CANMET Energy Technology Center, Natural Resources Canada, CANADA...233

Modeling & Simulations I
Dr. Edmundo R. Vasquez, Combustion Components Associates

Fireside Performance Assessment of Bituminous Coals
Kevin Galbreath and Christopher Zygarlicke, Energy & Environmental Research Center, University of North Dakota; and Robert Patton, National Energy Technology Laboratory, U.S. Department of Energy, USA...235

COMO: A Computational Fluid Dynamics Model For Predicting Boiler Flow and Combustion
Scott A. Dudek, Zumo Chen, and Alan N. Sayre, Babcock & Wilcox Power Generation Group, Inc., USA...247

Fuel NOₓ Predictions in PC-Fired Combustion: A Validation Study on Fuel Variation and Stoichiometry
Padmabhusana R. Desam and Alan N. Sayre, Babcock & Wilcox Power Generation Group, Inc., USA...259
Evaluation of Large Particle Ash Screen Designs for SCRs Using CFD
S. Pal and V. Zarnescu, Riley Power Inc., a Babcock Power Inc. Company, USA..................271

Large Eddy Simulations of Near Burner Oxy-Coal Combustion
Philip J. Smith and Jeremy Thornock, PhD, The Institute for Clean and Secure Energy, The University of Utah, USA...281

Testing and Model Based Optimization of SO₂ Removal With Trona in Coal Fired Utility Boilers
Marc Cremer, Huafeng Wang and Constance Senior, Reaction Engineering International, USA...291

Modeling & Simulations II
Douglas McCorkle, Iowa State University

Validation of a CFD Based Modelling Approach to Predict Coal Combustion Using Detailed Measurements Within a Pulverized Coal Boiler
Dr. Stefano Piffaretti, Dr. Andreas Abdon, and Dr. E. Geoffrey Engelbrecht, CPS Creative Power Solutions AG, SWITZERLAND; Mark Orth, Creative Power Solutions USA, USA; and Dr. Majed Toqan, CPS Creative Power Solutions ME, UNITED ARAB EMIRATES...........293

Comparisons of a CFD Based Submodel for Coal Ash Wall Deposition with Measurements
Ryan P. Blanchard, Larry L. Baxter and Dale R. Tree, Brigham Young University, USA..........305

Optimizing the Boiler Combustion Process in a Coal-Fired Power Plant Utilizing Fuzzy Neural Model Technology
Harry R. Winn, Emerson Process Management Power and Water Solutions; and George Bolos, Tampa Electric Company, USA...313

Integration of APECS and VE-Suite for Data Overlay
Doug McCorkle, Gerrick Bivins, and Mark Bryden, Iowa State University; Stephen E. Zitney, Terry Jordan, and Maxwell Osawe, National Energy Technology Laboratory, U.S. Department of Energy; and Jens Madsen, ANSYS, USA...325

Josh Koch, Douglas McCorkle, and Kenneth Bryden, Iowa State University, Department of Mechanical Engineering, USA...335

Low NOₓ Technology
Alan Paschedag, Advanced Burner Technologies Corp. and J.J. Letcavits, American Electric Power

Pyrolysis and Volatile Combustion of Pulverized Coal at Low Oxygen Concentrations
S. Loehr, Prof. Dr.-Ing. V. Scherer, Dr.-Ing. S. Wirz, and V. Twiehaus, University of Bochum, Institute of Energy Plant Technology, GERMANY...345
NOx Reductions Achieved Through Air Staging in Cyclone Fired Boilers
Santosh Nareddy, David Moyeda, Wei Zhou, Antonio Marquez and Larry Swanson, GE
Environmental Services, USA; and Sebastien Duval, Solvay Carbonate France, FRANCE.....357

CFD Modeling of ALTA in a 180 MW, Pulverized Coal Furnace for NOx Control
Andrew Fry, Kevin Davis, and Marc Cremer, Reaction Engineering International, USA.......367

Selective Use of Oxygen and In-Furnace Combustion Techniques for NOx Reduction in Coal Burning
Cyclone Boilers
Hamid Sarv, Alan N. Sayre and Gerald J. Maringo, Babcock & Wilcox Power Generation
Group, Inc.; and Rajani Varagani, and Susie Levesque, American Air Liquide, USA........377

Achieving Over 50% NOx Reduction on a Utility Boiler Originally Equipped with Circular Burners and
NOx Ports Using CCV® DAZ Burners and Advanced OFA
Bonnie Courtemanche, Darrell Dorman, Richard D. Fanto, Jr., and Dr. Vlad Zarnescu, Babcock
Power Co., USA...389

Development and Field Testing of a Universal Fuel Injector That Achieves Up to 71% NOx Reduction
and 4:1 Turndown in 2x350MW Coal Fired Boilers
Jiefeng Shan, PhD, Tarkel Larson and Joel Vatsky, Advanced Burner Technologies, A
SIEMENS Company, USA..401

Gasification Technology I
Jacqueline F. Bird, Worley/Parsons Group, Inc.

Can Coal and Other Feedstocks Replace Natural Gas as an Industrial Fuel Source?
Ralph Braccio, Gary Leatherman and Michael Miller, Booz Allen Hamilton, USA..............419

A Flexible Coal-Stabilized Hybrid Biomass Gasification Unit for Testing Biomass Gasification on a Wide
Range of BioFeedstocks
Matt C. Smith, Ph.D., P.E., U.S. Dept. of Agriculture, Agricultural Research Service, Donald L.
Bonk, National Energy Technology Laboratory, U.S. Department of Energy; and Satish Gadde
and Richard E. Weinstein, P.E., Worley-Parsons Group, Inc., USA.................................431

Evaluation of Biomass Gasification to Produce Reburn Fuel for Coal-fired Boilers
Chun Wai Lee, Nick Hutson, and Robert E. Hall, U.S. Environmental Protection Agency, Office
of Research and Development, National Risk Management Research Laboratory, Air Pollution
Prevention and Control Division; and F. Michael Lewis, Ultra-Superheated Steam Inventor;
USA...441

CFD Modeling of Hydrogen Production from Coal via Ultra Superheated Steam (USS) Fluidized Bed
Gasification
Ryan Z. Knutson, Dr. Michael D. Mann, and Taskin Karim, Department of Chemical
Engineering, University of North Dakota; Dr. David Bayless, Robe Leadership Institute; Ohio
Coal Research Center, Department of Mechanical Engineering, Ohio University, USA.......447
Co-gasification of Coal and Biomass in Slurry Fed Entrained Flow Reactors
Marco J. Castaldi and Heide Buttermann, Earth & Environmental Engineering Department (HKSM), Columbia University; and John P. Dooler, Adelphi University/Dooher Institute of Physics and Energy, USA .. 459

Gasification Technology II, III & IV
Dr. Ronald W. Breault
National Energy Technology Laboratory, U.S. Department of Energy

HydroMax — Advanced Coal Gasification Technology
Phillip Brown, Jeff Hassannia, Jerry Stephenson, and Dr. Ken Rachocki, Diversified Energy Corporation, USA ... 471

Modeling Refractory Wear Due to Chemical Corrosion in Slagging Gasifiers
Bing Liu, and Humberto E. Garcia, Idaho National Laboratory; and Larry L. Baxter, Department of Chemical Engineering, Brigham Young University, USA 479

Dakota Gasification Company, An International Energy Venture
Claudia Miller and Steve Poultit, Dakota Gasification Company, USA ... 491

Mesaba Energy Project Update
Richard Stone and Robert Evans, Excelsior Energy, USA .. 503

An Overview of DOE’s Gasification Program
Dr. Ronald W. Breault, National Energy Technology Laboratory, U.S. Department of Energy, USA .. 505

Conceptual Study of Highly Efficient Coal Gasification Combined Cycle Power Generation System with CO2 Capture Combined with Oxygen-CO2 Blown Coal Gasifier
Dr. Hiromi Shirai, Saburo Hara, Eiichi Kouda, Hiroaki Watanabe, June Inumaru, and Dr. Toshio Abe, Central Research Institute of Electric Power Industry, JAPAN .. 509

Operation Optimization System for an Entrained Flow Coal Gasifier
Hiroaki Watanabe and Saburo Hara, Energy Engineering Research Laboratory, and Kenichi Tokoro and Isamu Watanabe, System Engineering Research Laboratory, Central Research Institute of Electric Power Industry, JAPAN .. 521

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG), Biofuel and Electricity From West Coal
Raymond Hobbs, Xiaolei Sun and Bob Page, Arizona Public Service; and Chris Guenther and Elaine Everitt, National Energy Technology Laboratory, U.S. Department of Energy, USA ... 529

Update on Gasification Testing at the Power Systems Development Facility
Johnny Dorminey, Pannalal Vimalchand, Roxann Leonard, and Robert C. Lambrecht, Southern Company Services, Power Systems Development Facility, USA .. 539
Detailed Modeling of Entrained Flow Coal Gasifiers
Mike Bockelie, Martin Denison, Dave Swensen, Connie Senior, and Adel Sarofim, Reaction Engineering International, USA..551

Alstom's Chemical Looping Coal-Fired Power Plant Development
Herb E. Andrus, Jr., John H. Chiu and Paul R. Thibeault, Alstom Power; and Dr. Ronald W. Breault, National Energy Technology Laboratory, U.S. Department of Energy, USA..............557

Gasification of Cardboard and Paper with CO₂
I. Ahmed and A. K. Gupta, University of Maryland, Department of Mechanical Engineering, USA...569

Steam Gasification of Cardboard Biomass Wastes
I. Ahmed, N. Noosai and A. K. Gupta, University of Maryland, Department of Mechanical Engineering, USA...581

Fluidized Bed Gasification of High Alkali and Chlorine Biomass: Effect of Pre-Treatments on the Agglomeration Behaviour
Dr. S. Arvelakis and Prof. E. G. Koukios, Laboratory of Organic and Environmental Technologies, National Technical University of Athens, GREECE; Dr. J. Hurley and Dr. B. Folkedahl, Energy & Environmental Research Center, University of North Dakota, USA; and Prof. H. Sphiehoffs, Department of Mechanical Engineers, Technical University of Munich, GERMANY...591

Biomass Gasification for Electricity and Heat Production
Tadeas Ochoket, Jan Najser, and Karel Borovec, Energy Research Centre, VŠB – Technical University of Ostrava, CZECH REPUBLIC...603

Comparison of Gasification Results for PRB and PRB–Biomass Cofiring in a Transport Reactor
Michael Swanson, Doug Hajicek, Michael Collings, and Ann Henderson, University of North Dakota Energy & Environmental Research Center; and Dr. Ronald W. Breault, and Jenny Tennant, U.S. Department of Energy, National Energy Technology Laboratory, USA........613

CO₂ Enhanced Steam Gasification of Biomass Fuels
Heidi C. Buterman and Marco J. Castaldi, Earth & Environmental Engineering Department (HKSM), Columbia University, USA..615

Pre-Utilization Beneficiation of Coal
Joseph Hirschi, Illinois Clean Coal Institute

Effect of Flotation on Preparation of Coal-Water Slurries
K. Ding and J.S. Laskowski, Department of Mining Engineering, The University of British Columbia, CANADA...617
Beneficiation of Coal for Slurry Fuel Preparation
O. Trass, Department of Chemical Engineering & Applied Chemistry, University of Toronto and E.R. Vasquez, Combustion Components Associates, CANADA..629

On-Site Coal Beneficiation for Off-Site Use
Mark Ness and Charles Bullinger, Great River Energy, Coal Creek Station; and Nenad Sarunic, Energy Research Center, Lehigh University, USA...643

Burning Unprepared “Run of Mine” Coal to Efficiently Fire a Stoker Boiler
George D. Dumbaugh, P.E, Kinergy Corporation, USA...651

Air/Nitrogen Lignite Dryer as an Alternative to a Steam Dryer in a Power Plant Using Oxyfuel Technique for CO₂ Capture
Karin Ifwery, Dr. Jens Wolf, and Dr. Marie Anheden, Vattenfall Research & Development AB, SWEDEN; Dr. Nenad Sarunic, Energy Research Center, Lehigh University; and Charlie Bullinger and Mark Ness, Great River Energy (GRE), Coal Creek Station, USA; and Olaf Höhne, Vattenfall Generation, GERMANY...663

Performance Optimization of a Compound Spiral for Cleaning High Sulfur Coal
Baoji Zhang, Fan Yang, Xinxi Zhang, Pramod Sahoo and Manoj K. Mohanty, Southern Illinois University Carbondale, USA...677
VOLUME II

Advanced Energy Conversion Systems
Massood Ramezan
Science Applications International Corp.

Technical Assessment of the Sargas Cycle
Eric Grol, U.S. Department of Energy, National Energy Technology Laboratory; and Wen-Ching Yang, Science Applications International Corp., USA.................................689

800 MWe Circulating Fluidized Bed Boiler With 1300°F Supercritical Steam
Zhen Fan, Steve Goidich and Archie S. Robertson, Foster Wheeler North America Corp., USA...691

Assessing the Potential of Power and Hydrogen Technologies with CO₂ Capture to Optimize Future Energy Production in the Canadian Oil Sands Industry
Guillermo Ordorica-Garcia, Ph.D., Carbon & Energy Management, Alberta Research Council; and Profs. Ali Elkame, Peter Douglas, and Eric Croiset, Dept. of Chemical Engineering, University of Waterloo, CANADA...703

Investigation of Coal Combustion Indicators by an Experimental Method
A. Kazagic and I. Smajelic, Department of Process, Energy and Environment Engineering, University of Sarajevo, Mechanical Engineering Faculty Sarajevo and JP Elektroprivreda BiH d.d., BOSNIA AND HERZEGOVINA...713

On the Electrolysis of Coal for Hydrogen Production
Xin Jin and Gerardine G. Botte, Department of Chemical Engineering, Russ College of Engineering and Technology, Ohio University, USA...725

Accelerated Demonstration and Deployment of CCS through Industrial Gasification
David Denton and Perry Murdaugh, Eastman Chemical Company, USA...727

Integrated Energy Strategy -- A Case for Sustainability
Raymond Hobbs, Arizona Public Service, USA...731a

Mercury Emissions Control
Giselle Sherman, Corning, Inc.

Production of Powdered Activated Carbon for Mercury Capture Using Hot Oxygen
Lawrence E. Bool III, Praxair, Inc., USA...731
The Effect of Chlorine and Oxygen Concentrations on the Removal of Mercury at an FGD-Batch Reactor
M.Sc. Carolina Acuña-Caro, Dipl. Ing. Kevin Brechtel, Prof. Dr. Techn. Guenter Scheffknecht, Institute of Process Engineering and Power Plant Technology (IVD), University of Stuttgart; and Dr. Ing. Georg Wilhelm von Wedel, Lentjes GmbH, GERMANY..741

A Novel Pathway for Mercury Removal by Thermal Treatment of Coal
Alan E. Bland, Collin Greenwell and Jesse Newcomer, Western Research Institute; Kumar M. Sellakumar, Etaa Energy, Inc.; and Barbara A. Carney, U.S. Department of Energy, National Energy Technology Laboratory, USA...751

Modeling of Thermal Desorption of Hg from Activated Carbons
Constance Senior, Martin Denison, Michael Bockelie and Adel Sarofim, Reaction Engineering International; and Joseph Siperstein and Quiao He, Ohio Lumex Co Inc., USA..761

Control of Mercury, Arsenic and Selenium in Warm Syngas with Treated Carbon Monoliths
Michael Swanson, Grant Dunham, and Mark Musich, University of North Dakota Energy & Environmental Research Center; Patty Kuang, Corning, Inc.; and Jenny Tennant, U.S. Department of Energy, National Energy Technology Laboratory, USA..773

Next Generation Wet Electrostatic Precipitators
Hardik Shah and John Caine, Southern Environmental, Inc., USA..775

Improving Power Plant Efficiency and Reducing Emissions I & II
Dr. Nenad Sarunac
Energy Research Center, Lehigh University

Opportunities for Improving Efficiency and Reducing Emissions from Existing Fossil-Fired Power Plants – An Update
Nenad Sarunac, Energy Research Center, Lehigh University, USA..787

Separation of Water and Acid Vapors from Boiler Flue Gas in a Condensing Heat Exchanger
Edward Levy, Harun Bilirgen, Christopher Samuelson, Kwangkook Jeong, Michael Kessen and Christopher Whitcomb, Energy Research Center, Lehigh University, USA..789

Combustion Improvements via Burner Line Balancing – The Impact of H-VARB Technology at Nanticoke Generating Station
Les Marshall, Ontario Power Generation, CANADA; Prof. Abdelwahab Aroussi, Dept. of Engineering, University of Leicester, and Dr. Jacob Roberts, GAIM, UNITED KINGDOM; and Steve McCaffrey, Greenbank Energy Solutions, USA..801

Evaluation of Oil Shale for Multi-Pollutant Emission Control from Coal Combustion
Dr. Khalid Omar, Dr. Philip Martin, and Dr. Vijay Sethi, Western Research Institute; Dr. Robert Carrington, RAC Consulting Services; Dr. Richard Boardman, Idaho National Laboratory; and Dr. Brian Higgins and Dr. Guisu Liu, Nalco Mobotec, USA..803

xii
Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Pollutant Control
Richard D. Boardman and Robert A. Carrington, Idaho National Laboratory; and Dr. William C. Hecker, Reed Clayson Synthetic Energy Development, Brigham Young University, USA.................................817

Preliminary Results of the US Geological Survey’s Power Plant Cradle to Grave studies: Goals for Future Planning

Evaluation of the LoTOx™ Process for Multi-pollutant Emission Control from Coal Combustion
Dr. Khalid Omar, Dr. Philip Martin, and Dr. Vijay Sethi, Western Research Institute; and Dr. Krish Krishnamurthy, Linde North America, Inc., USA.................................831

Research on Characteristics of Fly Ash in the Flue Gas and Its Application on Mercury Measurement and Controls
Jiang Wu, Weiguo Pan, Jianxing Ren, Mingjiang Shen, Qifen Li, Fangqin Li, and Zhangbo Ye, School of Energy and Environmental Engineering, Shanghai Univ. of Electric Power, PEOPLE’S REPUBLIC OF CHINA; and Yan Cao, and Wei-Ping Pan, Institute for Combustion Science and Environmental Technology, Western Kentucky University, USA.................................845

Effect of CO₂ on the Reactivity of CaO for NH₃ Oxidation at 650 – 850 °C
Tianjin Li, Yuqun Zhuo, Changhe Chen, and Xuchang Xu, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, PEOPLE’S REPUBLIC OF CHINA.................................853

Conceptual Design and Demonstration of Chemical Injection for Edgewater Generating Station Unit 4
Felicia Iman, Yunliang Wang, Kendall McFarland, John Strain and Zhanhua Ma, SmartBurn®, RMT, Inc., USA...861

Predicting Boiler Performance with Real Time Coal Analysis
David Swindell, Energy Technologies Inc., and Robert L. Frank, P.E., Kurz Technical, USA.................................873

Improved Limestone Utilization and SO₂ Reduction in a CFB Boiler with the Nalco Mobotec ROFA System
Guisu Liu, Li Yan, and Brian Higgins, Nalco Mobotec, USA...875

Biomass & Wastes I
Prof.-Dr. Klaus R. G. Hein, University of Stuttgart and
Dr. John Doohoo, Adelphi University

Co-Firing of Biomass and Other Wastes in Fluidized Bed Systems
Prof. I. Gulyurtlu, Dr. P. Abelha, Dr. H. Lopes, and A.T. Crujeira, Eng.DEECA – INETI,
PORTUGAL...877
Utilization of Biomass and Waste for Heat and Power Production in Poland
Halina Krucezk Ph.D., D.Sc., Wroclaw University of Technology, and Jaroslaw Zawala Ph.D., Institute for Chemical Processing of Coal, POLAND..893

Foster Wheeler Experience with Biomass and Waste in CFBs
Dr. Edgardo Coda Zabetta, Vesna Barisić, Kari Peltoila and Arto Hotta, Foster Wheeler – R&D Department, FINLAND...905

Biomass Energy in Context: Coal, Natural Gas, Other Renewables, Liquid Fuels and GHG Reduction
Evan Hughes, Ph.D., Consultant, Biomass Energy and Geothermal Energy, USA........917

A Utility Perspective on the Use of Biomass Co-Firing
Les Marshall, Chris Fralick and Bob Lyng, Ontario Power Generation, CANADA........929

Biomass Cofiring – Basic Issues and Concerns
David Tillman and Dao Duong, Foster Wheeler North America Corp., USA.................................939

Role and Development of Co-Incineration in a Sustainable Waste Management Strategy
J. Maier, G. Dumu, A. Gerhardt, and G. Scheffmecht Institute of Process Engineering and Power Plant Technology (IVD), University of Stuttgart, GERMANY.........941

Biomass & Wastes II
Prof.-Dr. Klaus R.G. Hein, University of Stuttgart

Sustainability Assessment of Co-firing of Coal with Wooden Biomass in 110 MW TPP Kakanj Unit 5
I. Smajevic, and A. Kazagic, Department of Process, Energy and Environment Engineering University of Sarajevo, Mechanical Engineering Faculty and JP Elektroprivreda BiH d.d. BOSNIA and HERZEGOVINA...953

Pyrolysis of Different Biomass Samples for Char Production
Esin Apaydin-Yarol, and Ersan Pütün, Chemical Engineering, and Ayşe E. Pütün, Department of Chemical Engineering, Anadolu University, TURKEY.........................965

Co-Firing SRF in the Fluidised Bed Boiler of REMONDIS
M.P. de Jong, KEMA Technical, THE NETHERLANDS; and W. Brunke, REMONDIS Production, and H. Brune, REMONDIS Engineering & Services, GERMANY.........................969

Why Does Biomass and Waste Cause Severe Corrosion of Super Heater Tubes?
Erik Skog, Lars-Gunnar Johansson, Jan-Erik Svensson, Jesper Pettersson, Carolina Pettersson, and Nicklas Folkeson, High Temperature Corrosion Centre (HTC), Chalmers University of Technology, SWEDEN..981

STEAMAX – A Novel Approach for Corrosion Prediction, Material Selection and Optimization of Steam Parameters for Boilers Firing Fuel and Fuel Mixtures from Biomass and Waste
S. Enestam, J. Niemi, and K. Mäkelä, Metso Power Oy, FINLAND...987
Coal to Liquids
Dr. Hans Ziock
Los Alamos National Laboratory

Static and Steam Pyrolysis of Peach Stones
Ersan Pütin and Esin Apaydin-Vard, Chemical Engineering, and Ayşe E. Pütin, Department of Chemical Engineering, Anadolu University, TURKEY.. 997

Liquid Fuel Production from Co-feeding of Coal and Biomass: Potential Research Opportunities
Mark Acktievich, Dr. C. Lowell Miller, and Guido B. DeHoratis, U.S. Department of Energy; Daniel Cicero, National Energy Technology Laboratory, U.S. Department of Energy; and Edward Schmetz, and John Winslow, Leonardo Technologies, Inc., USA............... 1,003

Coal Liquefaction Products under Mechano-Chemical Action
Dr. Edmundo R. Vásquez, Combustion Components Associates, USA; and Dr. Olev Trass, University of Toronto, Chemical Engineering and Applied Chemistry, CANADA..................... 1,015

Multi-scale Engineered Fixed Bed Reactor for Enhancement of F-T Reaction Process Performance
Wei Liu, Jianli Hu, Yong Wang, David Rector, Wayne Wilcox, and David King, Energy Conversion and Efficiency Division, Pacific Northwest National Laboratory, USA........... 1,027

Kinetics and Mass Transfer in Coal Liquefaction
Dr. Edmundo R. Vásquez, Combustion Components Associates, USA; and Dr. Olev Trass, University of Toronto, Chemical Engineering and Applied Chemistry, CANADA............... 1,037

Ambre Energy’s Hybrid Energy System, a Technical Solution for Using Low Rank Coals to Produce Synthetic Crude, Dimethyl Ether and a Cleaner, More Efficient Solid Fuel for Existing and New Power Plants
Michael van Baarle, Ambre Energy Limited, AUSTRALIA.. 1,049

A Low-Temperature Coal Drying Process Provides Dry Feed To a Coal-to-Liquids Plant, Improves Performance of a Supercritical Pulverized Lignite-Fired Power Plant, and Increases Value of Washed High-Moisture Illinois Coals
Nenad Sarunac and Edward K. Levy, Energy Research Center, Lehigh University; Charles Bullinger and Mark Ness, Great River Energy, Coal Creek Station; and Pete Ulvog, Luminant, Martin Lake Generating Station, USA.. 1,051

Post Combustion CO₂ Capture I & II
Dr. Yewen Tan
CANMET Natural Resources Canada

A Rate-Based Process Modeling Study of CO₂ Capture with Aqueous Amine Solutions Using AspenONE Process Engineering
Chet Bhat, Aspen Technology, Inc., USA............................ 1,065
Integration of a Chemical Process Model in a Power Plant Modelling Tool for the Simulation of an Amine Based CO₂ Scrubber

Simulation of Integration of Ammonia Based Carbon Dioxide Capture System with Steam Cycle in Power Plant Using Aspen Plus
Hongliang Zhang, Shujuan Wang, Changhe Chen, and Xuchang Xu, Tsinghua University, PEOPLE'S REPUBLIC OF CHINA

Post Combustion CO₂ Capture: Let the Microbes Ruminate!
Gary D. Strickler, Romeo M. Flores, and Margaret S. Ellis, U.S. Geological Survey; and Donald A. Klein, Colorado State University, USA

Novel Zeolite Adsorption Technology for CO₂ Capture
Wei Liu, Donghai Wang, Abhi Karkamkar, Richard Zheng, David King, Brad Johnson, and Jun Liu, Energy Conversion and Efficiency Division, Pacific Northwest National Laboratory, USA

Sub-Pilot Demonstration of the CCR Process: A Calcium Oxide Based CO₂ Capture Process for Coal Fired Power Plants
Bartev B. Sakadjian, Babcock & Wilcox Power Generation Group, Inc.; William K. Wang, Danny M. Wong, Mahesh V. Iyer, Shwetha Ramkumar, Songgeng Li, and Liang-Shih Fan, Department of Chemical and Biomolecular Engineering, The Ohio State University; and R.M. Statnick, Clear Skies Consulting, USA

Experimental Study on Regenerated Ammonia Method to Capture CO₂
Fang Liu, Shujuan Wang, Changhe Chen, and Xuchang Xu, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, PEOPLE'S REPUBLIC OF CHINA

Post-Combustion CO₂ Capture by Aqueous Solvent
James K. Neathery, Kunlei Liu and Mark Warren, University of Kentucky, Center for Applied Energy Research, USA

Factors in Reactor Design for Carbon Dioxide Capture with Solid, Regenerable Sorbents
James S. Hoffman, George A. Richards, and Henry W. Pennline, U.S. Department of Energy; National Energy Technology Laboratory, and Daniel Fischer, and George Keller, Mid-Atlantic Technology Research & Innovation Center, USA
In Situ Investigations of Geological Sequestration Reaction Processes under Actual Below-Ground Conditions
Andrew V.G. Chizmeshya and George Wolf, Dept. of Chemistry & Biochemistry, Hamdallah Béarat and Naoki Ito, LeRoy Eyring Center for Solid State Science; and Robert Marzke, Dept. of Physics, Arizona State University, USA...1,151

Multi Emission Controls
Bruce Clements
CANMET Natural Resources Canada

Trapping Nickel Nanoparticles in Mesostructures for Regenerable Deep Desulfurization of Warm Syngases
Liyu Li, David L King, Jun Liu, Qisheng Huo, and Yong Wang, Institute for Interfacial Catalysis, Pacific Northwest National Laboratory, USA...1,153

Investigation of Particle Emission at the Exhaust of a Gas Turbine
Dr. Domenico Cipriano, ASV Department, CESI RICERCA, ITALY...1,155

Study on SO₃ Formation in Coal-Fired Boilers by Elementary Reaction Analysis
Wakaka Shimohira, Noriyuki Imada, and Hirofumi Kikkawa Kure Research Laboratory, Babcock-Hitachi K.K., JAPAN...1,167

First-Year Operating Experience from the Greenidge Multi-Pollutant Control Project
Daniel P. Connell, CONSOL Energy Inc. Research & Development; Douglas J. Roll, P.E., AES Greenidge LLC; and Wolfe P. Huber, P.E., U.S. Department of Energy, National Energy Technology Laboratory, USA...1,179

European Methods for Implementation of QA Programs in Emission Control
Dr. Domenico Cipriano, ASV Department, CESI RICERCA, ITALY...1,191

Deep Desulfurization of Simulated Oil by Catalytic Oxidation
Jiang-hua Qiu, Guang-hui Wang, and Wen-jie Qiu, Hubei Coal Conversion and New Carbon Materials Key Laboratory, College of Chemical Engineering, and Technology, Wuhan University of Science and Technology, PEOPLE'S REPUBLIC OF CHINA...1,201

Advanced Materials
Fred Glaser
U.S. Department of Energy

Materials Technology Needed for Operating a 1400°FUltrasupercritical Fossil Steam Power Plant
Dr. R. Viswanathan, Electric Power Research Institute; Stephen Goodsite, ALSTOM Power; J. Tanzosh, The Babcock & Wilcox Company; G. Stanko, Foster Wheeler Development Corporation; J.P. Shingledecker, Oak Ridge National Laboratory; and B. Vitalis, Riley Power, USA...1,209
Fireside Corrosion Resistance of Proposed USC Superheater and Reheater Materials: Laboratory and Field Test Results
Michael Gagliano, Greg Stanko and Horst Hack, Foster Wheeler North America Corp., USA
..1,221

Investigation of Fireside Corrosion Potential in Oxy-Coal Combustion Systems
S. C. Kung and J. M. Tanzosh, The Babcock & Wilcox Company, USA
..1,233

Boiler Materials Behavior in Oxy-firing Environments
Dr. Bettina Bordenet, ALSTOM (Switzerland Ltd., SWITZERLAND; Frank Kluger, ALSTOM Power Systems GmbH, GERMANY; and Steve Goodstine, ALSTOM Power, Inc. USA
..1,245

Creep-Resistant, Alumina-Forming Austenitic Stainless Steels For Higher Temperature Use In Power Generation Systems
Y. Yamamoto (with Department of Materials Science and Engineering, University of Tennessee), M. P. Brady, M. L. Santella, B. A. Pint, P. J. Maziasz, Materials Science and Technology Division, Oak Ridge National Laboratory, USA
..1,257

Material Aspects of a 700°C Power Plant
L. Maenpaa, Dr. F. Klaue, and Dr. K.D. Tigges, Hitachi Power Europe GmbH, GERMANY; and Abdul Gaffoor, Allan Kukoski, Junichiro Matsuda, Hitachi Power Systems America, Ltd., USA
..1,267

Advanced Controls
Susan Maley
National Energy Technology Laboratory, U.S. Department of Energy
Acoustic Gas Temperature Measurement in Coal Gasifiers: Extended Field Demonstration Testing
Peter Ariessohn, Ph.D. and Noel Fitzgerald, Energetix, Inc.; Dr. Kamalendu Das, U.S. Department of Energy, National Energy Technology Laboratory, and Hans Hornung, Cal Tech, USA
..1,275

YSZ-Based Electrochemical Sensors for Coal-fired Combustion Control Applications
Eric L. Brosha, Rangachary Mukundan, and Fernando H. Garzon, Los Alamos National Laboratory, Sensors and Electrochemical Devices Group, USA
..1,287

Simulation and Advanced Controls for Alstom’s Chemical Looping Process
Xinsheng Lou, Carl Neuschaefer and Hao Lei, Alstom Power Inc., USA
..1,299

Evaluating Slagging Propensity of Pulverized Coal Using Laser-Induced Breakdown Spectroscopy
Robert De Saro, Ariel Weisberg and Joseph Craparo, Energy Research Company; and Carlos E. Romero and Ricardo Moreno, Energy Research Center, Lehigh University, USA
..1,313
Sensors and Adaptive/Feedback Controls for Gasifier Operation

Synergetic Fiber Optic Sensor Networks for Combustors and Power Plants
H. Jacobus, M. Yu, and A. K. Gupta, University of Maryland, Dept of Mechanical Engineering; and K. M. Bryden, Dept. of Mechanical Engineering, Iowa State University, USA........1,317

International Highlights

Coal Gasification in Indonesia

Power Plant Water Research Program at the National Energy Technology Laboratory (NETL)
Barbara Carney, Thomas J. Feeley III, Erik Shuster, and Andrea McNemar, National Energy Technology Laboratory, U.S. Department of Energy; and Ken Mortensen, SPX Cooling Technologies, Inc., USA..1,341

Promoting Trade and Investment in China A Case Study
William Lawton, U.S. Commercial Service, and Dilo Paul, Ph.D., Science Applications International Corporation, USA..1,349

Study on Mercury Speciation and Transformations of Coal-Combustion Flue Gases on Pilot-Scale Furnace
Weiguo Pan, Jiang Wu, Minqiang Shen, Wenhuan Wang, Ping He, Xuefeng Leng, Yingdan Zhang, Yuying Du, Zhiyuan Gao, Binlin Dou, Xiaowei Zhang, Jun Hong, and Weitao WangSchool of Energy and Environmental Engineering, Shanghai University of Electric Power, PEOPLE'S REPUBLIC OF CHINA...1,351