2010 IEEE Sensor Array and Multichannel Signal Processing Workshop

(SAM 2010)

Jerusalem, Israel
4 – 7 October 2010
Technical Program

Time Session

Monday, October 4

12:00 REG: Registration
14:00 OP: Opening remarks
14:15 Plenary 1: Plenary 1: An Information Theoretic View of Robust Cooperation/Relaying in Wireless Networks
15:15 Coffee: Coffee break (Mon PM)
15:30 PS1: Poster session I
18:00 Plenary 2: Plenary 2: Parallel Magnetic Resonance Imaging: a Multi-Channel Signal Processing Perspective
19:30 REC: Welcome Reception

Tuesday, October 5

08:30 Plenary 3: Plenary 3: A Data Processing Pipeline for the Cosmic Microwave Background
09:30 SS1: MIMO Radar
 SS2a: Underwater acoustic communications I
10:30 Coffee: Coffee break (Tue AM)
 SS2b: Underwater acoustic communications II
 SS3a: Performance bounds I
12:00 Lunch: Lunch (Tue)
13:30 Plenary 4: Plenary 4: Calibration Challenges for Large Radio Telescope Arrays
14:30 SS3b: Performance bounds II
15:50 Coffee: Coffee break (Tue PM)
16:00 PS2: Poster session II
19:30 JT: Jerusalem tour

Wednesday, October 6

08:30 Plenary 5: Plenary 5: Performance-Driven Information Fusion
 SS4: High dimensional covariance estimation
 SS5: Low rank matrix approximation
10:45 Coffee: Coffee break (Wed AM)
11:00 SS6: Multichannel DSL communication systems
12:00 Lunch: Lunch (Wed)
13:30 PS3: Poster session III
15:30 Plenary 6: Plenary 6: Direct Position Determination and Sparsity in Localization Problems
19:30 BANQ: Banquet

Thursday, October 7
Monday, October 4

12:00 - 14:00
REG: Registration

14:00 - 14:15
OP: Opening remarks

14:15 - 15:15

Plenary 1: An Information Theoretic View of Robust Cooperation/Relaying in Wireless Networks

Shlomo Shamai, Technion-Israel Institute of Technology, Israel

In many wireless networks, cooperation, in the form of relaying, takes place over out-of-band spectral resources. Examples are ad hoc networks in which multiple radio interfaces are available for communications or cellular systems with (wireless or wired) backhaul links. In an overview from an information-theoretic standpoint, we put emphasis on robust processing and cooperation via out-of-band links for both ad hoc and cellular networks. Specifically, we focus on robust approaches and practical aspects such as imperfect information regarding the channel state and the codebooks (modulation, coding) shared by transmitters and receivers. First, we address cooperation scenarios with perfect channel state information and investigate the impact of lack of information regarding the codebooks (oblivious processing) on basic relay channels and cellular systems with cooperation among base stations. Then, similar models are examined in the absence of perfect channel state information. Robust coding strategies are designed based on 'variable-to-fixed' channel coding concepts (the broadcast coding approach, or unequal error protection codes). The effectiveness of such strategies are discussed for multirelay channels and cellular systems overlaid with femtocell hotspots.

15:15 - 15:30

Coffee: Coffee break (Mon PM)

15:30 - 18:00

PS1: Poster session I

Student competition papers

Robust Focusing for Wideband MVDR Beamforming
Yaakov Bucris (Technion, Israel institute of technology, Israel); Israel Cohen (Technion - Israel Institue of Technology, Israel); Miriam Doron (RAFAEL, Advanced Defense Systems LTD, Israel) pp. 1-4

Estimating the Performance of a Superdirective Microphone Array with a Frequency-Invariant Response
Federico Traverso (University of Genoa, Italy); Marco Crocco (University of Genoa, Italy); Andrea Trucco (University of Genoa, Italy) pp. 5-8

Multiantenna Spectrum Sensing: The Case of Wideband Rank-One Primary Signals
Blind Extraction Algorithm with Direct Desired Signal Selection
 Brian Bloemendal (Eindhoven University of Technology, The Netherlands); Jakob van de Laar (Philips Research Laboratories, The Netherlands); Piet Sommen (Eindhoven University of Technology, The Netherlands)
 pp. 9-12

Likelihood-ratio and Channel Based Access for Energy-Efficient Detection in Wireless Sensor Networks
 Kobi Cohen (Bar-Ilan University, Ramat-Gan, 52900, Israel); Amir Leshem (Bar-Ilan University, Israel)
 pp. 13-16

Subspace-based Direction-Of-Arrival Estimation for More Sources Than Sensors Using Planar Arrays
 Michael Rübsamen (Darmstadt University of Technology, Germany); Alex Gershman (Darmstadt University of Technology, Germany)
 pp. 21-24

Optimal Subsampling of Multichannel Damped Sinusoids
 Gilles Chardon (UPMC Univ Paris 06, France); Laurent Daudet (Université Paris Diderot, France)
 pp. 25-28

UWB Localization Via Multipath Distortion
 Moshe Uziel (The Hebrew University, Israel); Dana Porrat (The Hebrew University, Israel)
 pp. 29-32

Space-time Compressive Sampling Array
 Ying Wang (Philips Research, Eindhoven, The Netherlands); Geert Leus (Delft University of Technology, The Netherlands)
 pp. 33-36

3D Electromagnetic Imaging Using Compressive Sensing
 Marija Nikolic (Washington University in Saint Louis, USA); Gongguo Tang (Washington University in St. Louis, USA); Arye Nehorai (Washington University in St. Louis, USA)
 pp. 37-40

Modeling Neuron Firing Pattern Using a Two State Markov Chain
 Nir Nossenson (Tel-Aviv University, Israel); Hagit Messer (Tel-Aviv University, Israel)
 pp. 41-44

Consensus for Distributed EM-based Clustering in WSNs
 Silvana Silva Pereira (Universitat Politécnica de Catalunya - Barcelona Tech, Spain); Sergio Barbarossa (University of Rome, Italy); Alba Pagès-Zamora (Technical University of Catalonia, Spain)
 pp. 45-48

A Rayleigh Fading Interference Game with Incomplete Information
 Yair Noam (Tel-Aviv University, Israel); Amir Leshem (Bar-Ilan University, Israel); Hagit Messer (Tel-Aviv University, Israel)
 pp. 49-52

Optimal Bayesian Parameter Estimation with Periodic Criteria
 Tirza Routtenberg (Ben-Gurion University of the Negev, Israel); Joseph Tabrikian (Ben-Gurion University of the Negev, Israel)
 pp. 53-56

18:00 - 19:00

Plenary 2: Parallel Magnetic Resonance Imaging: a Multi-Channel Signal Processing Perspective

Yoram Bresler, University of Illinois, Urbana-Champaign, USA
Magnetic resonance imaging (MRI) is one of the leading diagnostic imaging modalities. While
providing excellent spatial resolution and exquisite soft tissue contrast, MRI suffers from slow acquisition. One of the highly effective approaches developed to address this limitation, is parallel imaging with phased-array coils. However, the freedom in acquisition, modeling, coil calibration, and reconstruction is often dealt with in a heuristic way. In this talk we provide a signal processing perspective on these problems, emphasizing the multichannel structure. We show that this perspective provides some interesting variations with improved performance.

19:30 - 21:00

REC: Welcome Reception

Tuesday, October 5

08:30 - 09:30

Plenary 3: Plenary 3: A Data Processing Pipeline for the Cosmic Microwave Background

Jean-François Cardoso, LTCI, TELECOM Paris, France
At the Sun-Earth Lagrange point L2, 1.5e6 km away from Earth, an array of 63 sensors aboard the Planck satellite is scanning the sky, patiently measuring to unprecedented resolution and sensitivity the micro-Kelvin fluctuations of the Cosmic Microwave Background temperature and polarization. Getting from there to building multi-million-pixel spherical maps of the microwave sky in 9 frequency channels, to reconstructing the history of our Universe is a story in technology, cosmology and challenging signal processing. This talk will highlight some of the key steps of the data processing pipeline being developed for the Planck space mission of ESA.

09:30 - 10:30

SS1: MIMO Radar

Estimating the Parameters of a Moving Target in MIMO Radar with Widely Separated Antennas
Abdulnasr Hassanein (University of Alberta, Canada); Sergiy A. Vorobyov (University of Alberta, Canada); Alex Gershman (Darmstadt University of Technology, Germany); Michael Rübsamen (Darmstadt University of Technology, Germany)
pp. 57-60
Waveform Design for Sequential MIMO Detection
Emanuele Grossi (University of Cassino, Italy); Marco Lops (University of Cassino, Italy)
pp. 61-64
MIMO GMTI Radar with Multipath Clutter Suppression
Jeffrey Krolik (Duke University, USA); Granger Hickman (Duke University, USA)
pp. 65-68
Fundamental Limitations of Pixel Based Image Deconvolution in Radio Astronomy
Sarod Yatawatta (Kapteyn Institute/ASTRON, The Netherlands)
pp. 69-72

SS2a: Underwater acoustic communications I

Efficient Channel Equalization for MIMO Underwater Acoustic Communications
Ling Jun (University of Florida, USA); Xing Tan (University of Florida, USA); Jian Li (University of Florida, USA); Magnus Lundberg Nordenvaad (Luleå University of Technology, Sweden)
pp. 73-76
Adaptive Linear Turbo Equalization of Large Delay Spread Time-Varying Channel Responses
Jun Won Choi (University of Illinois at Urbana-Champaign, USA); Thomas Riedl (University of Illinois at Urbana Champaign, USA); Erica L Daly (University of Illinois at Urbana Champaign,
USA); Kyeongyeon Kim (University of Illinois at Urbana-Champaign, USA); Andrew C. Singer (University of Illinois at Urbana Champaign, USA); James Preisig (Woods Hole Oceanographic Institution, USA)

pp. 77-80

Joint Channel Estimation and Markov Chain Monte Carlo Detection for Frequency-Selective Channels
Hong Wan (University of Utah, USA); Rong-Rong Chen (University of Utah, USA); Jun Won Choi (University of Illinois at Urbana-Champaign, USA); Andrew C. Singer (University of Illinois at Urbana Champaign, USA); James Preisig (Woods Hole Oceanographic Institution, USA); Behrouz Farhang-Boroujeny (Univ of Utah, USA)

pp. 81-84

10:30 - 11:00

Coffee: Coffee break (Tue AM)

11:00 - 12:00

SS2b: Underwater acoustic communications II

A Method for Differentially Coherent Detection of OFDM Signals on Doppler-Distorted Channels
Milica Stojanovic (Northeastern University, USA)

pp. 85-88

Isotropic Filter Design for MIMO Filter Bank Multicarrier Communications
Pooyan Amini (University of Utah, USA); Chung Him (George) Yuen (University of Utah, USA); Rong-Rong Chen (University of Utah, USA); Behrouz Farhang-Boroujeny (Univ of Utah, USA)

pp. 89-92

Reduced Bandwidth Frequency Domain Equalization for Underwater Acoustic Communications
James Preisig (Woods Hole Oceanographic Institution, USA); Andrew C. Singer (University of Illinois at Urbana Champaign, USA); Gregory Wornell (Massachusetts Institute of Technology, USA)

pp. 93-96

SS3a: Performance bounds I

Performance Bounds for the Estimation of Finite Rate of Innovation Signals From Noisy Measurements
Zvika Ben-Haim (Technion - Israel Institute of Technology, Israel); Tomer Michaeli (Technion - Israel Institute of Technology, Israel); Yonina C. Eldar (Technion—Israel Institute of Technology, Israel)

pp. 97-100

Numerically Efficient Mean Squared Error Threshold SNR Prediction for Adaptive Arrays
Christ D. Richmond (MIT Lincoln Laboratory, USA)

pp. 101-104

Outage Error Probability Lower Bounds in Vector Parameter Estimation
Tirza Routtenberg (Ben Gurion university of the Negev, Israel); Joseph Tabrikian (Ben-Gurion University of the Negev, Israel)

pp. 105-108

Information Theoretic Bounds on Mobile Source Localization in a Dense Urban Environment
Igal Bilik (University of Massachusetts, USA); Kaushalya Adhikari (University of Massachusetts Dartmouth, USA); John Buck (University of Massachusetts Dartmouth, USA)

pp. 109-112

12:00 - 13:30
Lunch: Lunch (Tue)

13:30 - 14:30

Plenary 4: Calibrated Challenges for Large Radio Telescope Arrays

Alle-Jan van der Veen, TU Delft, The Netherlands

Radio astronomy is known for its very large telescope dishes, but currently there is a transition towards the use of large numbers of small elements. E.g., the recently commissioned LOFAR low frequency array uses 50 stations each with some 200 antennas, and the numbers will be even larger for the Square Kilometer Array, planned for 2020. Meanwhile some of the existing telescope dishes are being retrofitted with focal plane arrays. These instruments pose interesting challenges for array signal processing. One aspect, which we cover in this talk, is the calibration of such large numbers of antennas, especially if they are distributed over a wide area. Apart from the unknown element gains and phases (which may be directionally dependent), there is the unknown propagation through the ionosphere, which at low frequencies may be diffractive and different over the extent of the array. The talk will discuss several of the challenges, present the underlying data models, and propose some of the answers. We will also touch upon a recent initiative to develop a low-frequency telescope array in space, on a distributed platform formed by a swarm of nanosatellites.

14:30 - 15:30

SS3b: Performance bounds II

Constrained Hypothesis Testing and the Cramér-Rao Bound
Brian Sadler (Army Research Laboratory, USA); Terrence Moore (Army Research Laboratory, USA)
pp. 113-116

Achievable MSE Lower Bounds in Non-Bayesian Biased Estimation
Koby Todros (Ben Gurion University of the Negev, Israel); Joseph Tabrikian (Ben-Gurion University of the Negev, Israel)
pp. 117-120

New Trends in Deterministic Lower Bounds and SNR Threshold Estimation
Eric Chaumette (ONERA, France)
p. 121-124

Closed-form Expression of the Weiss-Weinstein Bound for 3D Source Localization: The Conditional Case
Dinh Thang VU (University Paris Sud XI, France); Alexandre Renaux (Universite Paris 11, France); Rémy Boyer (CNRS, Université Paris-Sud (UPS), Supelec, France); Sylvie Marcos (Laboratoire des Signaux et Systems, Supélec, CNRS UMR8506, France)
pp. 125-128

15:50 - 16:00

Coffee: Coffee break (Tue PM)

16:00 - 18:00

PS2: Poster session II

Multichannel Blind Compressed Sensing
Sivan Gleichman (Technion, Israel Institute of Technology, Israel); Yonina C. Eldar (Technion—Israel Institute of Technology, Israel)
pp. 129-132
Sampling of Pulse Streams: Achieving the Rate of Innovation
Kfir Gedalyahu (Technion - Israel Institute of Technology, Israel); Ronen Tur (Technion - Israel Institute of Technology, Israel); Yonina C. Eldar (Technion—Israel Institute of Technology, Israel)
pp. 133-136

Sparse Component Analysis for Linear Mixed Models
Martin Hurtado (National University of La Plata, Argentina); Nicolas von Ellenreider (National University of La Plata, Argentina); Carlos Muravchik (Universidad Nacional de La Plata, Argentina); Arye Nehorai (Washington University in St. Louis, USA)
pp. 137-140

Band-Diagonal Regularization of Gaussian Interference Covariance Matrices ML Estimates
David Lekhovytskiy (Kharkov National University of Radio Electronics, Ukraine); Yuri Abramovich (Defence Science and Technology Organisation (DSTO), Australia); Oleksandr Dokhov (Kharkov National University of Radio Electronics, Ukraine); Valerii Zarytskyi (Kharkov National University of Radio Electronics, Ukraine); Gennadiy Zhuga (Kharkov National University of Radio Electronics, Ukraine); Dmytro Rachkov (Kharkov National University of Radio Electronics, Ukraine)
pp. 141-144

Independent Component Analysis of Quaternion Gaussian Vectors
Javier Via (University of Cantabria, Spain); Luis Vielva (University of Cantabria, Spain); Ignacio Santamaria (University of Cantabria, Spain); Daniel P Palomar (Hong Kong University of Science and Technology, Hong Kong)
pp. 145-148

Combining Multiband Joint Position-Pitch Algorithm and Particle Filters for Speaker Localization
TANIA Habib (Graz University of Technology, Austria); Harald Romsdorfer (Graz University of Technology, Austria)
pp. 149-152

Target Tracking in Mixed LOS/NLOS Environments Based on Individual TOA Measurement Detection
Lili Yi (NTU, Singapore); Sirajudeen Gulam Razul (Nanyang Technological University, Singapore); Zhiping Lin (NTU, Singapore); Chong Meng Samson See (DSO National Laboratories, Singapore)
pp. 153-156

A Reference-Free Time Difference of Arrival Source Localization Using a Passive Sensor Array
Alon Amar (Delft University of Technology, The Netherlands); Geert Leus (Delft University of Technology, The Netherlands)
pp. 157-160

A Hierarchical Approach to Noise-Adaptive Estimation
Magnus Lundberg Nordenvaad (Luleå University of Technology, Sweden)
pp. 161-164

Fuzzy Triangle Contour Characterization by Subspace Based Methods of Array Processing
Haiping Jiang (Ecole Centrale Marseille, France); Julien Marot (Institut Fresnel, France); Caroline Fossati (Ecole Centrale Marseille, France); Salah Bourennane (Ecole Centrale Marseille, France)
pp. 165-168

Adaptive Identification of Nonlinear MIMO Systems Based on Volterra Models with Additive Coupling
Angel Fernández-Herrero (Universidad Politécnica de Madrid, Spain); Carlos Carreras (Universidad Politécnica de Madrid, Spain); Javier Casajús (Universidad Politécnica de Madrid, Spain)
pp. 169-172

Prequential Bayes Mixture Approach for Gaussian Mixture Order Selection
Keith Gilbert (University of Massachusetts Dartmouth, USA); Igal Bilik (University of Massachusetts, USA); John Buck (University of Massachusetts Dartmouth, USA); Karen Payton (University of Massachusetts Dartmouth, USA)
pp. 173-176

19:30 - 23:00
JT: Jerusalem tour

Wednesday, October 6

08:30 - 09:30

Plenary 5: Performance-Driven Information Fusion

Alfred Hero, University of Michigan, Ann Arbor, USA

Information fusion involves combining different information sources using models for the joint source distributions. It is a key component of multichannel sensor processing when there are multiple sensing modalities. Practical information fusion algorithms must approximate information theoretic quantities such as entropy and mutual information from finite number of samples from the sensors. Recently we have developed a framework, called performance-driven information fusion, that specifically accounts for the effect of finite sample estimation errors and bias on the information fusion task. The cornerstone for this framework is a large sample analysis of bias, variance, and probability distribution that applies to a general class of information divergence measures including Csiszár's / f-divergence, Shannon's mutual information, and Rényi's entropy. Under this framework information fusion algorithms can be implemented that incorporate error control, and for which one can optimize feature selection and specify optimal tuning parameters such as kernel bandwidth. This talk will introduce this framework and apply it to several applications in multichannel sensor processing.

09:30 - 10:45

SS4: High dimensional covariance estimation

The Breakdown Point of Signal Subspace Estimation
Raj Rao Nadakuditi (University of Michigan, USA); Florent Benaych-Georges (University of Paris, France)
pp. 177-180

Hypothesis Testing in High-Dimensional Space with the Sparse Matrix Transform
Leonardo Bachega (Purdue University, USA); Charles Bouman (Purdue University, USA); James Theiler (Los Alamos National Laboratory Space and Remote Sensing Group, USA)
pp. 181-184

On Toeplitz and Kronecker Structured Covariance Matrix Estimation
Petter Wirfalt (Royal Institute of Technology (KTH), Sweden); Magnus Jansson (KTH, Sweden)
pp. 185-188

Robust Shrinkage Estimation of High-dimensional Covariance Matrices
Yilun Chen (University of Michigan, USA); Ami Wiesel (Hebrew University in Jerusalem, Israel); Alfred Hero iii (University of Michigan, USA)
pp. 189-192

Distributed Covariance Estimation in Gaussian Graphical Models
Ami Wiesel (Hebrew University in Jerusalem, Israel); Alfred Hero (University of Michigan, USA)
pp. 193-196

SS5: Low rank matrix approximation

On Positioning Via Distributed Matrix Completion
Andrea Montanari (Stanford University, USA); Sewoong Oh (Stanford University, USA)
pp. 197-200

Robust Principal Component Analysis?
Emmanuel Candés (Caltech, USA); Xiaodong Li (Stanford University, USA); Yi Ma (University of Illinois at Urbana-Champaign, USA); John Wright (Microsoft Research Asia, P.R. China)
10:45 - 11:00

Coffee: Coffee break (Wed AM)

11:00 - 12:00

SS6: Multichannel DSL communication systems

Convergence Analysis of Adaptive Partial FEXT Cancellation Precoder for Multichannel Downstream VDSL
 Ido Binyamini (Bar-Ilan University, Israel); Itsik Bergel (Bar Ilan University, Israel); Amir Leshem (Bar-Ilan University, Israel)
 pp. 217-220

Frequency Domain Crosstalk Canceling Between VDSL2 Systems with Different Symbol Rates
 Sigurd Schelstraete (Ikanos Communications, USA)
 pp. 221-224

Vectored VDSL From a Practical Perspective
 Ronen Yizhaq Gilad (Bar Ilan - Israel, Israel); Amit Priebatch (Bar Ilan, Israel); Elad Domanovitz (Bar Ilan, Israel); Ilan Sharfer (Bar Ilan, Israel); Avi. Matza (Bar Ilan, Israel); Eitan Tsur (Bar Ilan, Israel)
 pp. 225-228

12:00 - 13:30

Lunch: Lunch (Wed)

13:30 - 15:30

PS3: Poster session III

A Recursive Model for Partially Correlated Chi^2 Targets
 Abner Ephrath (Rafael Inc., Israel)
 pp. 229-232

The Polynomial Predictive Gaussian Mixture MeMBer Filter
 Yin (Fudan University, P.R. China); Jian-qiu Zhang (Fudan University, P.R. China); Bo Hu (EE Dept., Fudan University, Shanghai, P.R.China, P.R. China); Qiyong Lu (Fudan University, Shanghai, PRC, P.R. China)
 pp. 233-236

Expected Likelihood Support for Deterministic Maximum Likelihood DOA Estimation
 Yuri Abramovich (Defence Science and Technology Organisation (DSTO), Australia); Ben A. Johnson (JORN Technical Director, Australia)
Covariance-informed Detection in compound-Gaussian Clutter Without Secondary Data
Francesco Bandiera (University of Salento, Italy); Olivier Besson (ISAE, France); Giuseppe Ricci (University of Salento, Lecce, Italy)
pp. 237-240

A Low Complexity STAP for Reverberation Cancellation in Active Sonar Detection
Neethu M Sasi (NIT Calicut, India); Pradeepa R (NPOL, India); Sarath Gopi (NPOL, India); Sathidevi Ps (National Institute of Technology Calicut, India)
pp. 241-244

A Migrating Target Indicator for Wideband Radar
François Deudon (University of Toulouse, France); François Le Chevalier (Thales Aerospace Division, France); Stéphanie Bidon (ISAE, France); Olivier Besson (ISAE, France); Laurent Savy (ONERA, France)
pp. 249-252

A Computationally Efficient Blind Estimator of Polynomial Phase Signals Observed by a Sensor Array
Alon Amar (Delft University of Technology, The Netherlands); Amir Leshem (Bar-Ilan University, Israel); Alle Jan van der Veen (Delft University, The Netherlands)
pp. 245-248

Passive Radar Imaging of Moving Targets with Sparsely Distributed Receivers
Ling Wang (Nanjing University of Aeronautics and Astronautics, P.R. China); Birsen Yazici (Rensselaer Polytechnic Institute, USA)
pp. 253-256

Two-Dimensional Direction-of-Arrival Estimation of Coherent Signals with L-Sharped Array
Wang Guangmin (Xi'an Jiaotong University, P.R. China); Jingmin Xin (Xi'an Jiaotong University, P.R. China); Nanning Zheng (Xi'an Jiaotong University, P.R. China)
pp. 257-260

Steering Vector Modeling for Polarimetric Arrays of Arbitrary Geometry
Mario Costa (Helsinki University of Technology, Finland); Andreas Richter (Aalto University, Finland); Visa Koivunen (Helsinki University of Technology, Finland)
pp. 261-264

Parametric Joint Detection-Estimation of the Number of Sources in Array Processing
Noam Arkind (Weizmann Institute of Science, Israel); Boaz Nadler (Weizmann Institute of Science, Israel)
pp. 265-268

Parametric Joint Detection-Estimation of the Number of Sources in Array Processing
Noam Arkind (Weizmann Institute of Science, Israel); Boaz Nadler (Weizmann Institute of Science, Israel)
pp. 269-272

15:30 - 16:30

Plenary 6: Direct Position Determination and Sparsity in Localization Problems

Anthony J. Weiss, Tel Aviv University, Israel
The most common methods for location of communications/radar transmitters are based on measuring a specified parameter such as signal Angle of Arrival (AOA), Time of Arrival (TOA), Received Signal Strength (RSS) or Differential Doppler (DD). The measured parameters are then used to estimate the transmitter location. Since the AOA/TOA/RSS/DD measurements are done independently, without using the constraint that all measurements must correspond to the same transmitter, the location estimate is suboptimal. Optimal localization is obtained by a single step which uses all the observations together in order to estimate the emitter position. We refer to single-step localization as Direct Position Determination (DPD). Although this principle is known for long time the signal processing community overlooked its potential benefits for long time. In this talk we will compare the DPD with two-step algorithms. We will show and explain why under ideal conditions as high SNR the DPD is equivalent to two-step algorithms. However, under low SNR, jamming and other interferences the DPD provide better results. Further, we will show that DPD can overcome well known limitations on the number of sources associated with AOA. In the second part of the talk we will show how we can harness recent developments in sparsity theory to handle outliers in localization measurements. Surprisingly, under known limitations on the number of outliers, we can obtain the exact emitter location. Further, sparsity can also be used to find the location of sources by
efficient linear programming or Second Order Cone programming.

19:30 - 23:00

BANQ: Banquet

Thursday, October 7

08:00 - 16:00

VISIT: Hi-Tech Industry Visit