2011 Symposium on Sensorless Control for Electrical Drives

(SLED 2011)

Birmingham, United Kingdom
1-2 September 2011
Message from the Chairmen

Dear Authors and Dear Participants,

It is with pleasure that we invite you to the 2nd IEEE International Symposium on Sensorless Control for Electrical Drives (SLED 2011), to be held on September 1st and 2nd 2011 at Austin Court, Birmingham, UK. An international event on Sensorless Control of Electrical Drives (SLED) dates back to 2007 and for 3 years was held as Workshops in Msida (Malta), Varsow (Poland) and Barcelona (Spain). Due to popular demand, it was expanded into a Symposium, the first being held in Padova in 2010.

SLED 2011 comprises 5 technical sessions of keynotes, industrial and regular papers covering the latest issues in the fascinating topic of shaft sensorless control of electrical drives. Particular attention is paid to induction machines, synchronous PM and reluctance machines with the papers spanning numerous topics including:

- Advanced theoretical topics (stability, accuracy, parameter, sensitivity, reliability)
- Sensorless-oriented design of electrical motors and drives
- Industrial, commercial and home applications: case studies
- Implementation issues of sensorless control (FPGAs)
- Non-linear issues (iron losses, cross saturation, eddy currents)
- Standstill and low speed sensorless drives
- High speed sensorless drives
- Algorithms based on machine model
- Algorithms based on signal injection and other more.

The Symposium also provides a great opportunity for networking among colleagues, whilst leading experts will be on hand to discuss the key issues, the present trends and the future opportunities in this exciting technology field.

All registrants are invited to the SLED formal dinner, to be held at Austin Court at 7.30 on Thursday 1st September.

We would like to acknowledge the IEEE Power Electronics Society for the sponsorship of this event. We would also like to thank all the technical co-sponsors and all those who have contributed to the Symposium: the authors, the reviewers, the co-chairs and the organising and administration staff at the University of Nottingham.

Prof. Greg Asher
Prof. Ralph M. Kennel
Prof Alfio Consoli
SLED 2011 organisation

General Chairman

Prof. Greg Asher, University of Nottingham, UK
Prof. Ralph M. Kennel Technical University of Munich, Germany
Prof. Alfio Consoli (chairman) University of Catania, Italy

International Steering Committee

Prof. Alfio Consoli (chairman) University of Catania, Italy
Prof. Silverio Bolognani University of Padova, Italy
Prof. Fernando Briz University of Oviedo, Spain
Prof. Marian Kazmierkowski University of Warsaw, Poland
Prof. Bob Lorenz University of Wisconsin, USA
Prof. Manfred Schroedl Vienna University of Technology, Austria
Prof. Cyril Spiteri Staines University of Malta, Malta
Prof. Seung-Ki Sul Seoul National University, Republic of South Korea

Local Organising Committee

Prof. Greg Asher, University of Nottingham, UK
Mrs Bekki Burns, University of Nottingham, UK
Mrs Lesley Gray, University of Nottingham, UK
Mr David Hind, University of Nottingham, UK
Table of Contents

Session 1: PM Machine Drives with hf Injection I

Autonomous position estimation for PM synchronous motors
Roberto Leidhold
Technische Universität Darmstadt, Germany
8

FPGA-based implementation of sensorless AC drive controllers for embedded electrical systems
I. Bahri, A. Maalouf, L. Idkhajine, E. Monmasson
SATIE-IUP GEII and Thales-AES, France
13

Sensorless direct torque and flux controlled IPM synchronous machine fed by matrix converter over a wide speed range
D. Xiao and M. F. Rahman, Energy Systems Research Group
University of New South Wales, Australia
19

Sensorless estimation in PMSMs under open-phase fault
Alberto Gaeta, Giacomo Scelba, Alfio Consoli, Giuseppe Scarcella
University of Catania, Italy
27

Session 2: Saliency-based Sensorless Methods (not hf injection)

Using switching transients to exploit sensorless control for electric machines
Peter Nussbaumer and Thomas M. Wolbank
Department of Energy Systems and Electrical Drives
Vienna University of Technology, Austria
35

Sensorless field-oriented control for permanent magnet synchronous machines with an arbitrary injection scheme and direct angle calculation
Dirk Paulus, Peter Landsmann, Ralph Kennel
Institute of Electrical Drive Systems and Power Electronics, Technical University of Munich, Munich, Germany
41

Sensorless AC motor drives for the very low/zero speed operation: Challenges of disturbance signal compensation
University of Malta, Malta & University of Nottingham, UK
47
Modelling the impact of the stator currents on inductance-based sensorless control of brushless DC-Machines
Fabien GABRIEL, Frederik De Belie and Peter Sergeant, and Xavier Neyt
RMA - Royal Military Academy, Brussels, Belgium
Ghent University, Belgium

Sensorless control for IPMSM using PWM excitation: analytical developments, implementation issues
Silverio Bolognani, Sandro Calligaro, Roberto Petrella, Michele Sterpellone
University of Padova & University of Udine, Italy

Session 3: PM Machine Drives with hf Injection II

Three years of industrial experience with sensorless IPMSM drive based on high frequency injection method
Sadayuki Sato, Hideaki Iura, Kozo Ide, and Seung-Ki Sul
Yaskawa Europe GmbH, Yaskawa Electric Corporation, Japan, Seoul National University, Korea

Online identification of load angle compensation for anisotropy based sensorless control
Peter Landsmann, Dirk Paulus and Ralph M. Kennel
Technical University of Munich, Germany

Model based design for system-on-chip sensorless control of synchronous machine
Zhixun Ma, Tim Friederich, Jianbo Gao, Ralph Kennel
Technische Universitaet Muenchen, Germany & MACCON GmbH, Germany

On the use of high frequency inductance vs. high frequency resistance for sensorless control of AC machines
Pablo García, David Reigosa, Fernando Briz, Christian Blanco and Juan M. Guerrero
University of Oviedo, Spain

Outer–rotor ringed–pole SPM starter–alternator suited for sensorless drives
Mattia Morandin, Silverio Bolognani and Adriano Faggion
Department of Electrical Engineering, University of Padova, Italy
Session 4 Model-based Sensorless Methods I

An experimental assessment of a stator current MRAS based on neural networks for sensorless control of induction machines
Shady M. Gadoue, Damian Giaouris and J.W. Finch
Newcastle University, Newcastle, UK

Field-oriented control of a speed-sensorless induction motor for the complete speed range using a nonlinear observer
Jean-Francois Stumper, Ralph Kennel
Institute of Electrical Drive Systems and Power Electronics, Technical University of Munich, Munich, Germany

Sensorless model predictive torque control for induction machine by using the sliding mode full order observer
Fengxiang Wang, S. Alireza Davari, Davood A. Khaburi, Ralph Kennel
Technical University of Munich, Germany and Iran University of Science and Technology, Iran

A comparison of a full-order observer and a reduced-order observer for synchronous reluctance motor drives
Toni Tuovinen, Marko Hinkkanen, and Jorma Luomi
Aalto University School of Electrical Engineering, Aalto, Finland

Session 5: Model-based Sensorless Methods II

Sensorless-predictive torque control of the PMSM using a reduced order extended Kalman filter
Esteban Fuentes and Ralph Kennel
Technische Universitaet Muenchen, Munich, Germany

Analysis of phase-detection algorithms for back-EMF-based sensorless strategies through real-time simulations
M. Tursini, C. Olivieri, L. Di Leonardo
University Of L'Aquila, Italy

Design issues and estimation errors analysis of back-EMF based position and speed observer for SPM synchronous motors
Silverio Bolognani, Sandro Calligaro, Roberto Petrella
University of Padova & University of Udine, Italy