Welcome to the CDROM of the Proceedings of Wind Turbine Noise
Held in Lyon, 20/21 September 2007
The Conference was organized by Dr Geoff Leventhall On behalf of INCE/Europe

The Organising Committee was
Mark Bastasch USA
Frits van den Berg Netherlands
Rene Gamba France
Malcolm Hayes UK
Stefan Oerlemans Netherlands
Kerstin Persson-Waye Sweden
Bo Sondergard Denmark
Renzon Tonin Australia
Jean Tourret France, INCE/Europe, President
Michel Vallet France, INCE/Europe, Local Organiser

For further information on INCE/Europe visit www.inceurope.org
Organised in cooperation with the European Acoustics Association

Authors’ Abstracts
Second International Meeting on Wind Turbine Noise
Lyon - France - 20th and 21th September 2007

Theoretical analysis of wind turbine used to power a stand-alone solar desalination unit in selected coastal areas of Egypt

Zeinab Sayed Abdel-Rehim
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long range sound transmission over the sea with application to wind</td>
<td>Mats Åbom and Mathieu Boué</td>
<td>18</td>
</tr>
<tr>
<td>turbine noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-Home Wind Turbine Noise Is Conducive to Vibroacoustic Disease</td>
<td>Mariana Alves-Pereira</td>
<td>32</td>
</tr>
<tr>
<td>Masking of wind turbine sound by sea waves</td>
<td>Paul Appelqvist</td>
<td>43</td>
</tr>
<tr>
<td>A Variety of Wind Turbine Noise Regulations in the United States -</td>
<td>James D. Barnes</td>
<td>54</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigating the audibility of wind turbines in the presence of</td>
<td>Karl Bolin</td>
<td>64</td>
</tr>
<tr>
<td>vegetation noises</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What is the real background noise?</td>
<td>Dick Bowdler</td>
<td>77</td>
</tr>
<tr>
<td>Wind Farms Noise Predictions and the Risks of Conservatism</td>
<td>Andrew Bullmore</td>
<td>95</td>
</tr>
<tr>
<td>Living with aerodynamic modulation, low frequency vibration and</td>
<td>Julian.T.Davis</td>
<td>113</td>
</tr>
<tr>
<td>sleep deprivation - how wind turbines inappropriately placed can act</td>
<td></td>
<td></td>
</tr>
<tr>
<td>collectively and destroy rural quietitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review of post-construction compliance assessment conditions in</td>
<td>Christophe Delaire</td>
<td>125</td>
</tr>
<tr>
<td>various wind farm planning permits from New Zealand and Victoria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Australia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicability of TLM to Wind Turbine Noise Prediction</td>
<td>Guillaume Dutilleux</td>
<td>141</td>
</tr>
<tr>
<td>Recommendations for an improved quality of the acoustics of wind</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>farm projects</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pierre Dutilleux, Joachim Gabriel

Domestic Wind Turbines
Gwyn Mapp

Low Frequency Noise from Wind Turbines
Malcolm Hayes

Assessment of Sound and Infrasound at the Pubnico Point Wind Farm
Brian Howe

Malcolm Hunt

Passive and Active Dynamic Vibration Absorbers for Gear Box Noise Reduction in Wind Turbines
Ilgen, A.; Drossel, W.- G.; Wittstock, V.; Neugebauer, R.

An Approach to RANS Based Prediction of Airfoil Trailing Edge Far-Field Noise
M. Kamruzzaman, Th. Lutz and E. Krämer

A new mechanism in vawt
Prof.R.V.Sharma, Ravi Kumar Singh, Nitin Kumar

Advanced methods for online vibration monitoring of wind turbines
Patrick Labeyrie

Aerodynamic noise from micro wind turbines : Current situation and future perspectives
Damien Leclercq, Con Doolan

Auralization and assessments of annoyance from wind turbines
Søren V. Legarth

Evaluating the potential health impacts of wind turbine noise for environmental assessments
Dr. D.S. Michaud, Dr. S.E. Keith

Residual loudness of wind turbine sound in the presence of ambient sound
David A. Nelson

Prediction of wind turbine noise and comparison to experiment
Stefan Oerlemans and Gerard Schepers

Uncloaking the Nature of Wind Turbines - Using the Science of Meteorology
William K. G. Palmer

Wind farm perception – a study on acoustic and visual impact of wind turbines on residents in the Netherlands
Eja Pedersen, Jelte Bouma, Roel Bakker, Frits van den Berg

SIROCCO: Silent Rotors by Acoustic Optimisation
G. Schepers, T. Curvers S. riemans K. Braun, T. Lutz, A. Herrig, W. Wuerz A. Matesanz, A. Gonzalez

Calculate noise of wind-farms
Sénat, Claude; Garrigues, Sébastien; Gamba, René

Noise prediction of a new 34 MW wind farm
Antonio Iannotti, Fabio Serpilli

Low frequency Noise from Large Wind Turbines
Bo Sondergaard

Wind Farm Noise and Regulations in the Eastern United States
Hilkat Soysal, Oguz Soysal

Wind profiles over complex terrain
Frits van den Berg

Taking into account of atmospheric conditions for a spatio-time
localization of the aerodynamic sources on a moving blade by the method of acoustic imagery

Dominique VINCENT, Vincent BENOIT

Theoretical analysis of wind turbine used to power a stand-alone solar desalination unit in selected coastal areas of Egypt

Zeinab Sayed Abdel-Rehim
Mechanical Engineering Department, National Research Center, Dokki, Giza, Egypt
e-mail: zabdelrehim@yahoo.com

Theoretical analysis of wind turbine used to power a stand-alone solar desalination unit in selected coastal areas of Egypt is presented in this work. The selected coastal areas are; Mersa Matruh and Sidi-Barrani on the Mediterranean Sea coast and Hurghada and Abu Rudies on the Red Sea coast. In these areas, the fresh water shortage is significant problem and the wind energy is usually high that used in renewable energy applications. The available wind data of the selected areas are collected from meteorological station along these coastal areas of Egypt. The wind data are analyzed in a form useful for wind turbine characteristics and wind energy computation. The annual mean wind speeds are 5.3, 5.0, 6.3 and 4.8 m/s for Mersa Matruh, Sidi-Barrani, Hurghada, and Abu Rudies, respectively. The proposed solar desalination system is considered as conventional solar still and simple system of breaking the boundary layer of the basin water surface to enhance the performance of the solar desalination system. This simple system is helical shaft that installed near to the basin water surface. The helical shaft is running with slow speed by using small motor. This motor powered by the considered wind energy. This study aimed at evaluating of the mean wind speed for the selected areas to determine the characteristics of the suitable wind turbine and compute the amount of captured wind energy to power the proposed solar desalination system. Analytical assessment is presented to determine the power available from the wind stream. The analytical assessment reveals that the coastal areas of Egypt offer sufficient wind energy for economic utilization of requirement of energy in these communities. The results show that Mersa Matruh and Hurghada have the highest amount of wind energy, power and distillate water productivity due to the climatic district.

Long range sound transmission over the sea with application to wind turbine noise

Mats Åbom and Mathieu Boué
The Marcus Wallenberg Laboratory (MWL)
KTH, SE-100 44 Stockholm, SWEDEN
matsabom@kth.se

The classical theory of spherical wave spreading is not valid at large distances from a sound source due to atmospheric refraction caused by wind and temperature gradients. For large distances (> 1 km) in the down wind direction a cylindrical type of wave spreading can be expected. Over areas with soft ground conditions, e.g., grass land, the ground damping will restore a behavior close to a free field spherical spreading. This is also the approximation used in most national recommendations for estimating noise emission from wind turbines. However in Sweden there is a special recommendation for sea based wind turbines, which use cylindrical wave spreading for distances larger than 200 m. This model is based on a few old measurements and in order to better validate the model new and better data is needed. This paper presents a measurement procedure for long-range (5-15 km) outdoor sound propagation over the sea. Using the procedure measurements have been performed.