2012 Forum on Specification and Design Languages

(FDL 2012)

Vienna, Austria
18-20 September 2012
Table of Contents

Welcome ... 6
Keynote Speakers .. 7
Technical Area Chairs ... 8
Special Session Chairs .. 9
Program Committee ... 11
Technical Area Overview ... 12
Conference Papers ... 12
ABD 1: Property-based Verification 13
 Formal Plausibility Checks for Environment Constraints 14
 Binghao Bao, Markus Wedler, Dominik Stoffel and Wolfgang Kunz (University of Kaiserslautern)
 Assertion Based Verification of Signal Processing Systems with Affine Arithmetic 20
 Carina Radojicic, Florian Schupfer, Michael Rathmair and Christoph Grimm
 (Institute of Computer Technology, Vienna University of Technology)
 An Efficient Refinement Strategy Exploiting Component Properties in a Cegar Process 27
 Syed Hussein Syed Alwi, Cécile Braunstein and Emmanuelle Encrenaz (LIP6 - CNRS UMR 7606)
ABD 2: Languages & Tools for Probabilistic & Temporal Specifications 35
 Reliability Annotations to Formal Specifications of Context Sensitive Properties in Embedded Systems 36
 Aritra Hazra, Priyankar Ghosh and Pallab Dasgupta (Indian Institute of Technology Kharagpur)
 MODEST – A Unified Language for Quantitative Models (Invited presentation) 44
 Arnd Hartmanns (Saarland University)
ABD Keynote .. 52
 Formal Specification Level: Towards Verification-driven Design Based on Natural Language Processing 53
 Rolf Drechsler, University of Bremen
EAMS 1: Simulation & Design of Cyber-physical Systems ... 59
 QoC-Oriented Efficient Schedule Synthesis for Mixed-Criticality Cyber-Physical Systems 60
 Reinhard Schneider, Dip Goswami, Alejandro Masrur and Samarjit Chakraborty
 (Technical University of Munich)
 Unified and Comprehensive Electronic System Level, Network and Physics Simulation for Wirelessly Networked Cyber Physical Systems 68
 Javier Moreno, Markus Damm, Jan Haase (Vienna University of Technology), Christoph Grimm (TU Kaiserslautern) and Edgar Holleis (Tridonic)
 A Unified Platform for Design and Verification of Mixed-Signal Systems Based on SystemC AMS 75
 Yao Li, Ramy Iskander, Farakh Javid and Marie-Minerve Louerat (UMPC LIP6)
EAMS 2: Verification of Mixed-Signal Systems ...83

Configurable Load Emulation using FPGA and Power Amplifiers for Automotive Power ICs ..84
Manuel Harrant, Fabrizio Dona, Georg Pelz (Infineon Technologies),
and Christoph Grimm (TU Kaiserslautern)

A SystemC AMS extension for controlled modules and dynamic step sizes ..90
Christiane Reuther and Karsten Einwich (Fraunhofer IIS/EAS Dresden)

Analog Assertion-Based Verification on Partial State Space Representations using ASL ...98
Sebastian Steinhorst (TUM CREATE Centre for Electromobility Singapore)
and Lars Hedrich (Goethe-Universitaet Frankfurt am Main)

LBSD 1: SystemC Analysis ...105

TLM POWER3: Power Estimation Methodology for SystemC TLM 2.0 ..106
David Greaves (University of Cambridge)
and Muhammad Mehboob Yasin (King Faisal University, Al-Ahsa)

Scandal: SystemC Analysis for NonDeterminism AnomaLies ...112
Christoph Schumacher, Jan Henrik Weinstock, Rainer Leupers and Gerd Ascheid
(RWTH Aachen University, ICE)

Localizing Features of ESL Models for Design Understanding ..120
Marc Michael, Daniel Grosse and Rolf Drechsler (University of Bremen)

LBSD 2: Architectural Aspects in Models and Languages ..126

Minimal MPI as Programming Interface for Multicore System-on-Chips ..127
Adan Kohler, Juan Manuel Castillo-Sanchez, Joachim Groß and Martin Radetzki
(University of Stuttgart)

A Functional Language for Describing Reversible Logic ..135
Michael Kirkedal Thomsen (University of Copenhagen)

Integrating Virtual Platforms into a Heterogeneous MoC-Based Modeling Framework ...143
Gilmar Silva Beserra (University of Brasilia),
Seyed Hosein Attarzadeh Niaki and Ingo Sander (KTH - Royal Institute of Technology)

LBSD 3: System-level Behavioral Modeling and Simulation ..151

Transformation of Event-Driven HDL Blocks for Native Integration into Time-Driven System Models ..152
Ralph Görgen (OFFIS), Jan-Hendrik Oetjens (Robert Bosch GmbH),
and Wolfgang Nebel (Carl von Ossietzky University Oldenburg)

Formal Heterogeneous System Modeling with SystemC ..160
Seyed Hosein Attarzadeh Niaki and Ingo Sander (KTH Royal Institute of Technology),
Mikkel Koefoed Jakobsen (Technical University of Denmark), and Tero Sulonen (DA-Design Oy)

Extended Framework for System Simulation with Affine Arithmetic ..168
Michael Rathmair, Florian Schupfer, Carna Radojicic (Vienna University of Technology)
and Christoph Grimm (TU Kaiserslautern)
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMES: Effective Exploitation of the UML Profile for MARTE</td>
<td>176</td>
</tr>
<tr>
<td>A Model-Driven Methodology for the Development of SystemC Executable Environments</td>
<td>177</td>
</tr>
<tr>
<td>Modeling and Simulation of Secure Wireless Sensor Network</td>
<td>185</td>
</tr>
<tr>
<td>Special Session: Energy Harvesting and Ultra-low Power Design</td>
<td>193</td>
</tr>
<tr>
<td>Example-Driven Interconnect Synthesis for Heterogeneous Coarse-Grain Reconfigurable Logic</td>
<td>194</td>
</tr>
<tr>
<td>Minimum Energy Point of Sub-threshold Operated Pass-transistor Circuits</td>
<td>202</td>
</tr>
<tr>
<td>Special Session: Invasive Programming of Heterogeneous Multi-core Systems</td>
<td>208</td>
</tr>
<tr>
<td>An Integrated Simulation Framework for Invasive Computing</td>
<td>209</td>
</tr>
<tr>
<td>Invasive Computing - Concepts and Overheads</td>
<td>217</td>
</tr>
<tr>
<td>Invasive Computing with iOMP</td>
<td>225</td>
</tr>
<tr>
<td>Special Session: Model Based Design of Electronic Systems in Systems</td>
<td>232</td>
</tr>
<tr>
<td>Polynomial-Metamodeling Assisted Fast Power Optimization of Nano-CMOS PLL Components</td>
<td>233</td>
</tr>
<tr>
<td>Model-Based Progressive Design and Verification of an Integrated CMOS Magnetic Sensor for Automotive Applications</td>
<td>239</td>
</tr>
<tr>
<td>Fast Optimization of Analog Amplifier Architecture Using Simulated Annealing</td>
<td>246</td>
</tr>
</tbody>
</table>