Technical Paper Program

MONDAY, 10 JULY

SESSION 1

Session 1 Track 1: Systems Sciences

1.1.1 START Analysis for ESAS Capability Needs Prioritization

1.1.2 Defining the “Trade Space” for CAIV Optimization Using a Cost Model Derived from Linear Regression of NASA Project Data
J. F. Krupa, Westinghouse Savannah River Company; P. Componation, University of Alabama at Huntsville

1.1.3 Part Count and Design of Robust Systems
D. Frey, Massachusetts Institute of Technology; J. Palladino, General Electric Aircraft Engines; J. Sullivan, Pratt & Whitney; M. Atherton, Rolls-Royce International Limited

1.1.4 Joint Cognitive Systems: Considering the User and Technology as One System
B. P. McKenna, J. Gualtieri, W. Eim, ManTech – CSEC

Session 1 Track 2: SE Management Process

1.2.1 A Requirements Guide for All (REGAL)
J. Dick, INTEGRATE Systems Engineering; G. Fanmuy, PSA Peugeot Citroën; L-H. Thevenet, Universite Paris 1

1.2.2 Enhancing SE Deployment in Large Organisations by Proactively Managing Service Quality of SE Training and Support Services
M. F. Kossmann, AIRBUS

1.2.3 Role of Flow-Down Approach and Orthogonal Arrays in System Design and Testing
R. Jugulum, J. Singh, Massachusetts Institute of Technology

1.2.4 How Do We Win This Game When the Rules Keep Changing? A Case for the Increased Application of Design for Six Sigma in Systems Engineering
N. A. Mackertich, Raytheon Integrated Defense Systems; D. Cleotelis, Raytheon Network Centric Systems
Technical Paper Program

Session 1 Track 3: SE Support Process

1.3.1 Quantifying the Benefit of Introducing Systems Engineering Processes - Myth or Reality? 104
E. Knippel, BMW Group; A. Schulz, 3D Systems Engineering GmbH

1.3.2 Context Based Measurement of Requirements Instability 119
M. A. Biddle, S. Moritz, SAIC

1.3.3 On the Alignment between System Architectures and Organizational Structures 133
T. Strandberg, Stevens Institute of Technology; H. Burton, Madera Consulting; D. Verma, Stevens Institute of Technology

Session 1 Track 4: Modeling & Tools

1.4.1 Using the Knowledge Pyramid to Characterize Systems 148
J. N. Martin, The Aerospace Corporation

1.4.2 An Approach to Simulation Effectiveness 167
D. P. Goncalves, CSIR

1.4.3 Cross Cutting Concerns and Ergonomic Profiling Using UML/SysML 179
M. C. Hause, Artisan Software Tools, Ltd

1.4.4 Introducing Structured Information Handling in Automotive EE Development 193
D. Malvius, O. Redell, S. Ritzén, Royal Institute of Technology, KTH

Session 1 Track 5: Panel

1.5.0 Are Natural Disasters Similar or Dissimilar to Terrorist Attacks? 205
W. Mackey, CSC and University of Maryland Univ College; J. W. Carl, Mosaic Renaissance International; S. Sutton, Northrop Grumman TASC; J. Long, Vitech Corporation; S. Jackson, The Boeing Company; J-P. Lerat, SODIUS; C. Tulodieski, Northrop Grumman Corporation
Technical Paper Program

Session 1 Track 6: Panel

1.6.0 Different Approaches to Realising Net-Centric Solutions 221
J. C. Hsu, The Boeing Company; F. P. Stein, The MITRE Corporation; D. H. Kemp, UK Ministry of Defence; K. Geist, US Naval Air System Command; J. D. Stanley, Cisco Systems, Inc.; S. Stroembaeck, Swedish Defence Material Agency, FMV; C. H. Dagli, University of Missouri-Rolla

SESSION 2

Session 2 Track 1: Systems Sciences

2.1.1 Feelings and Physics: Emotional, Psychological, and Other Soft Human Requirements, by Model-Based Systems Engineering 222
W. D. Schindel, ICTT, Inc. and System Sciences, LLC

2.1.2 Designing Systems for Adaptability by Means of Architecture Options 237
A. Engel, Israel Aircraft Industries; T. Browning, MJ Neeley School of Business, Texas Christian University

Session 2 Track 2: SE Technical Process

2.2.1 Test Time Reduction by Optimal Test Sequencing 259
R. Boumen, Technische Universiteit Eindhoven; I. S. M.. de Jong, ASML and Technische Universiteit Eindhoven; J. M. van de Mortel-Fronczak, J. E. Rooda, Technische Universiteit Eindhoven

2.2.2 Integration and Test Strategies for Semiconductor Manufacturing Equipment 270
I. S. M.. de Jong, ASML and Technische Universiteit Eindhoven; R. Boumen, J. M. van de Mortel-Fronczak, J. E. Rooda, Technische Universiteit Eindhoven

2.2.3 Directed Energy Weapon System Architecture to Meet Network Centric Operations Requirements 285
P. R. Marbach, The Boeing Company
Technical Paper Program

Session 2 Track 3: SE Management Process

2.3.1 A Practical Program of Research to Measure Systems Engineering Return on Investment (SE-ROI) 299
E. C. Honour, Systems Engineering and Evaluation Centre, University of South Australia

2.3.2 Towards a Work Breakdown Structure for Net Centric System of Systems Engineering and Management 309
G. Wang, BAE Systems; J. Lane, University of Southern California; R. Valerdi, Massachusetts Institute of Technology; B. Boehm, University of Southern California/Center for Software Engineering

2.3.3 Uniting Three Families of Risk Management--Complexity of Implementation x 3 324
T. H. Holzer, National Geospatial-Intelligence Agency

Session 2 Track 4: SE Support Process

2.4.1 Evolution of a Standard - EIA-632 From 1994 to 2006 337
R. M. Harwell, SYSTEM Perspectives

2.4.2 A Proposed Paper Template for Improving the Quality of Practitioner Written Papers at Conferences and Symposia 349
J. E. Kasser, Systems Engineering and Evaluation Centre, University of South Australia

SESSION 3

Session 3 Track 1: Modeling & Tools

3.1.1 COCOMO-SCORM Interactive Courseware Project Cost Modeling 359
R. Smith, L. Edwards, SPARTA Inc.

3.1.2 Human Performance Modeling for Enterprise Transformation 370
G. Lintern, General Dynamics AIS
Technical Paper Program

3.1.3 Strategy For the Composition and Development of the Authoritative System Representation
 Booz Allen Hamilton

Session 3 Track 2: Specialty Engineering

3.2.1 Corporate Social Responsibility(CSR)-the System Perspective & the Systems Engineering Role
 A. Zonnenshain, RAFAEL

3.2.2 Cost as an Independent Variable Balancing Performance with Affordability
 E. J. Casey, D. Allen, Raytheon Missile Systems

Session 3 Track 3: Systems Sciences

3.3.1 Network Centric Operation Implementations in Several Domains
 C. Adler, The Boeing Company; C. H. Dagli, University of Missouri-Rolla

3.3.2 How Should We Use the Term “System of Systems” and Why Should We Care?
 D. T. Cocks, Lockheed Martin - MS2

3.3.3 A Novel Modeling Approach Enhancing Classic Scenario Generation Techniques
 S. J. Eelman, Institute of Aeronautical Engineering; S. Föller, Technical University of Munich

Session 3 Track 4: SE Technical Process

3.4.1 Technology and Obsolescence Sustainment for Integrated Systems
 T. E. Herald, D. Genaw, Lockheed Martin

3.4.2 Capability Engineering for Strategic Decision Making
 M. Lizotte, C. Nécaïlle, C. Lalancette, Defence R&D Canada-Valcartier

3.4.3 Systems Engineering Net-Centric Solutions: An Analysis of Different Perspectives
 D. H. Kemp, G. Crosby, D. Snell, UK Ministry of Defence
SESSION 4

Session 4 Track 1: SE Management Process

4.1.1 Ten Design Principles: Some Implications for Multidimensional Quantification of Design Impacts on Requirements 501
T. S. Gilb, Result Planning Limited

4.1.2 Project-driven Adaptation of Software Life Cycle Model 509
E. M. Barnard, IFS

4.1.3 i-pub: Status, Insights and Visions 523
E. Herzog, A. Pandikow, Syntell AB

Session 4 Track 2: SE Management Process

4.2.1 A Diagnostic Approach to Risk Driver Definition 535
E. Stump, Galorath Incorporated

4.2.2 How Planning for Success Can Lead to Catastrophic Failure 541
W. W. Schoening, The Boeing Company

Session 4 Track 2: SE Support Process

4.2.3 Systems Engineering Professional Development and Certification 553
G. H. Fisher, The Aerospace Corporation

Session 4 Track 3: Modeling & Tools

4.3.1 Meeting the Challenge of Knowledge-Creating Systems 562
J. N. Martin, The Aerospace Corporation
4.3.2 Platform Identification Using Design Structure 579
Massachusetts Institute of Technology; A. Luckins, BP Exploration and Production

4.3.3 Applying Systems Modeling Language to A Simple Hardware System 595
J. C. Hsu, The Boeing Company

Session 4 Track 4: SE Technical Process

4.4.1 Fine-grained Method and Tool Integration for Better Automotive Software 606
F. Altheide, University of Paderborn; K. Buhr, Technische Universitaet Berlin; H. Doerr, DaimlerChrysler AG

4.4.2 Lessons Learned from Synchronizing Complex Systems Development within Automotive Industry 621
H. Negele, BMW Group; S. Finkel, 3D Systems Engineering GmbH; R. Schmidt, BMW Group; S. Wenzel, 3D Systems Engineering GmbH

4.4.3 Extending Platforming to the Sequential Development of System Families 636
R. C. Boas, E. Crawley, Massachusetts Institute of Technology

Session 4 Track 5: Panel

4.5.0 The Integration Process - An Unresolved Issue for Systems Engineers 652
A. Zonnenshain, RAFAEL; E. C. Honour, Systems Engineering and Evaluation Centre, University of South Australia; J. Z. Ben-Asher, Technion; J. Grady, JOG System Engineering, Inc.; U. Orion, El-Op; J-P. Lerat, SODIUS; J. E. Kasser, Systems Engineering and Evaluation Centre, University of South Australia

Session 4 Track 6: Panel

4.6.0 Is Systems Engineering for “Systems of Systems” Really Any Different? 669
S. Sheard, Third Millennium Systems LLC; L. Pohlmann, Strategies Consulting; J. Long, Vitech Corporation; T. L. Ferris, University of South Australia; R. Abbott, Aerospace Corporation / Cal State U, LA; B. Boehm, University of Southern California/Center for Software Engineering
Technical Paper Program

SESSION 5

Session 5 Track 1: Systems Sciences

5.1.1 Enterprise Opportunity and Risk 688
 B. E. White, The MITRE Corporation

5.1.2 Cross-Cultural Issues Associated with the Application of ISO/IEC 15288 Standard 703
 T. L. Ferris, University of South Australia

5.1.3 Systems Engineering an INCOSE Chapter 716
 P. R. Davies, Thales UK Ltd., Aerospace Division

Session 5 Track 2: SE Management Process

5.2.1 A National Approach to Systems Integration Skills Base Development in Australia 732

5.2.2 Optimizing Quality Assurance for Better Results 748
 N. Malotaux, N R Malotaux - Consultancy

5.2.3 Capitalizing On Systems Engineering 762
 J. J. Sherey, ICTT, Inc

Session 5 Track 3: SE Technical Process

5.3.1 Lessons Learnt From the Applications of QFD to the Definition of Complex Systems 775
 A. Hari, J. E. Kasser, Systems Engineering and Evaluation Centre, University of South Australia; M. Weiss, Technion

5.3.2 On the Systematic Use of Budget-Based Design 788
 H. J. Freriks, Océ-Technologies B.V.; W. P. M. H. Heemels, G. Muller, Embedded Systems Institute; H. Sandee, Technische Universität Eindhoven
Technical Paper Program

5.3.3SysML-Based Systems Engineering Using a Model-Driven Development Approach 804
H. Hoffmann, Telelogic

Session 5 Track 4: Working Group Presentation

5.4.0Working Group Presentation N/A
J. Martin, Aerospace Corporation

SESSION 6

Session 6 Track 1: Specialty Engineering

6.1.1The Application of Architecture Frameworks to Modelling Exploration Operations Costs 815
R. Shishko, Caltech Jet Propulsion Laboratory

6.1.2Using Cognitive Engineering to Improve Systems Engineering 825
C. A. Bonaceto, K. Burns, The MITRE Corporation

Session 6 Track 1: SE Support Process

6.1.3A Value-Based Theory of Systems Engineering 840
B. Boehm, University of Southern California/Center for Software Engineering; A. Jain, University of Southern California

Session 6 Track 2: Systems Sciences

6.2.1Tradeoff Studies and Cognitive Biases 855
E. D. Smith, T. Bahill, University of Arizona

6.2.2Systems Engineering Model for Integrability (SEMI): A Three Step Process for the Continuous Development of Highly Integrated Enterprise Applications 870
J. W. Lewis, L3 Communications Titan
Technical Paper Program

Session 6 Track 3: SE Technical Process

<table>
<thead>
<tr>
<th>6.2.3</th>
<th>Conflict in Systems Engineering Product Data Exchange</th>
<th>882</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EADS Germany GmbH</td>
<td></td>
</tr>
</tbody>
</table>

Session 7 Track 1: Special Session

<table>
<thead>
<tr>
<th>7.1.0</th>
<th>Complex Systems</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. Sheard, Third Millennium Systems LLC</td>
<td></td>
</tr>
</tbody>
</table>
Technical Paper Program

Session 7 Track 2: Modeling & Tools

7.2.1 The FAR Approach: Functional Analysis/Allocation and Requirements Flowdown Using Use Case Realizations
M. Eriksson, BAE Systems Hägglunds AB; J. Börstler, Umeå University; K. Borg, BAE Systems Hägglunds AB

7.2.2 Performing Functional Analysis/Allocation and Requirements Flowdown Using Use Case Realizations: An Empirical Evaluation
M. Eriksson, BAE Systems Hägglunds AB; J. Börstler, Umeå University; K. Borg, BAE Systems Hägglunds AB

7.2.3 Tying Requirements to Design Artifacts
H. C. Briggs, California Institute of Technology; M. Sampson, UGS Corporation

Session 7 Track 3: Working Group Presentation

7.3.0 Working Group Presentation
D. Walden, General Dynamics

Session 7 Track 4: Working Group Presentation

7.4.0 Working Group Presentation
G. Wang, BAE Systems

Session 7 Track 5: Panel

7.5.0 Myriad Multiplying Risk Management Standards: “Converging Toward Best Practice” or “A Confusing Maze of Docs to Trap Us?” – What’s Up INCOSE?
J. Stein, Terumo Cardiovascular Systems Corp.; R. Charrette, ITABHI Corp.; R. Williams, Carnegie Mellon Univ Software Engineering Inst; M. Powell, Attwater Consulting; Stevens Institute; A. Dolan, University of Toronto; Virginia Polytechnic Institute; R. Kitterman, Northrop Grumman Corporation; G. Roedler, Lockheed Martin
Technical Paper Program

Session 7 Track 6: Panel

7.6.0 Graduate Education and Research Considerations for “Systems of Systems” Engineering - The Georgia Tech Air Force Long Range Strike Capability Project as an Example 1092
D. Schrage, D. Mavris, P. Biltgen, Georgia Institute of Technology; C. Weiss, Pratt & Whitney

SESSION 8

Session 8 Track 1: Systems Sciences

8.1.1 Application of Systems Engineering to Industrial Supply Chains 1093
C. Haskins, NTNU

8.1.2 A Study of Applying Game Theoretic Concepts on Distributed Engineering System Design 1110
H. Wang, D. Frey, Massachusetts Institute of Technology

8.1.3 Identification of Real Options “in” Projects 1124
T. Wang, Morgan Stanley; R. de Neufville, Massachusetts Institute of Technology

Session 8 Track 2: SE Management Process

8.2.1 Establishing a Verification and Validation Process in Automotive Development: Increasing Product Quality while Reducing Costs 1134
M. de la Cruz, A. Vollerthun, 3D Systems Engineering GmbH; J. Meisenzahl, BMW Group

8.2.2 Applying System Engineering to Naval Shipbuilding 1149
B. H. Wells, Raytheon Integrated Defense Systems

8.2.3 Giving the Integrator Role a Sporting Chance 1163
J. R. Armstrong, Systems and Software Consortium
Session 8 Track 3: SE Support Process

8.3.1 Quantitative Analysis: Clawing your Way to the Top of the Maturity Pinnacle 1169
 P. J. Frenz, A. Gurvin, General Dynamics AIS

 W. E. Neff, Los Alamos National Laboratory; C. H. Dagli, University of Missouri-Rolla

8.3.3 Use of Architecture for Engineering Systems; The Good, The Bad, and The Ugly 1197
 G. Osvalds, Wells Landers Inc.

Session 8 Track 4: Working Group Presentation

8.4.0 Working Group Presentation N/A
 R. Hettwer, Raytheon Company

SESSION 9

Session 9 Track 1: Specialty Engineering

9.1.1 Trade Study Cost Analysis Model 1206
 E. J. Casey, D. Davis, Raytheon Missile Systems

9.1.2 A Basic Primer in Life Cycle Cost Analysis 1229
 F. Q. Redman, A. Crepea, Raytheon Missile Systems

9.1.3 Screening for Real Options "In" an Engineering System: A Step Towards Flexible System Development PART 1: The Use of Coupled Design Matrices to Create an End-to-End Representation of a Complex Socio-Technical System 1241
 J. E. Bartolomei, D. Hastings, D. Rhodes, R. de Neufville, Massachusetts Institute of Technology
Technical Paper Program

Session 9 Track 2: Systems Sciences

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.1</td>
<td>A Merlin Perspective Shines Light on Tough Issues</td>
<td>J. W. Carl, Mosaic Renaissance International</td>
</tr>
<tr>
<td>9.2.2</td>
<td>A Framework for a National Undergraduate Systems Engineering Stream of Studies in Discipline-centric Degrees: Proposal Analysis</td>
<td>T. L. Ferris, University of South Australia; Y. Peng, Overseas Chinese Institute of Technology</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Architecting Synthetic Environments to Support the Systems Engineering of Capability</td>
<td>D. J. Battersby, BAE Systems (SEIC)</td>
</tr>
</tbody>
</table>

Session 9 Track 3: SE Technical Process

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.1</td>
<td>Trade Studies with Uncertain Information</td>
<td>D. G. Ullman, Robust Decisions; B. Spiegel, Honeywell</td>
</tr>
</tbody>
</table>

Session 9 Track 3: SE Management Process

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.2</td>
<td>Real Options and Value Driven Design in Spiral Development</td>
<td>J. W. Dahlgren, The MITRE Corporation</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Defining, Finding, and Hiring REAL Systems Engineers</td>
<td>E. P. Arnold, BAE Systems L.P.</td>
</tr>
</tbody>
</table>

Session 9 Track 4: Working Group Presentation

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4.0</td>
<td>Working Group Presentation</td>
<td>R. Rood, BAE Systems</td>
</tr>
</tbody>
</table>
Technical Paper Program

THURSDAY, 13 JULY

SESSION 10

Session 10 Track 1: SE Management Process

10.1.1 **An Index to Measure and Monitor a System of Systems' Performance Risk** 1334
P. R. Garvey, C. Cho, *The MITRE Corporation*

10.1.2 **Using Earned Value to Track Requirement Progress** 1347
P. Solomon, *Northrup Grumman Integrated Systems*

10.1.3 **Reaching CMMI Level 5 is More Than Just Having Adequate Metrics** 1356
R. O. Lewis, J. Duckworth, *The Boeing Company*

Session 10 Track 2: SE Support Process

10.2.1 **The Dual Vee - Illuminating the Management of Complexity** 1368
H. A. Mooz, K. Forsberg, *Center for Systems Management*

10.2.2 **IDEF0 Lessons Learned** 1382
D. K. Smith, *UGS Corporation*

10.2.3 **On the Use of Semantic Web Technology for Requirements Satisfaction, or How Do I Find a Good Bike?** 1396
D. Price, R. Bodington, *Eurostep Limited*

Session 10 Track 3: Modeling & Tools

10.3.1 **The “Big Navy” Meta-model as a Framework for Major Defense Development Projects** 1407
C. M. Ryder, *Johns Hopkins University APL*

10.3.2 **An Enterprise Systems Engineering Model** 1423
R. S. Swarz, J. DeRosa, G. Rebovich, Jr., *The MITRE Corporation*
Technical Paper Program

Session 10 Track 4: Specialty Engineering

10.4.1 Certification & Accreditation: The Role of Security Engineering in the Systems Development Life Cycle 1435
 J. S. Tysenn, Harris Corporation–GCSO

10.4.2 Managing Compatibility Throughout the Product Life Cycle of Embedded Systems: Definition and Application of an Effective Process to Control Compatibility 1451
 F. H. Bornemann, S. Wenzel, 3D Systems Engineering GmbH

Session 10 Track 5: Special Session

10.5.0 Systems Engineer Quiz Game N/A
 V. Densler, Northrop Grumman Corporation

Session 10 Track 6: Special Session

10.6.0 Using Design of Experiments with Modeling and Simulation to Enhance the Practice of Systems Engineering N/A
 M. Kiemele, Air Academy Associates

SESSION 11

Session 11 Track 1: SE Technical Process

11.1.1 Technical Performance Measures 1466
 J. Oakes, R. Botta, BAE Systems; T. Bahill, University of Arizona

11.1.2 Innovative Systems Engineering: A Creative System Development Approach 1475

11.1.3 An Introduction to Network Centric Warfare 1486
 A. Gastelum, The Boeing Company; C. H. Dagli, A. Miller, University of Missouri-Rolla
Session 11 Track 2: SE Management Process

11.2.1 Challenges in the Application of Systems Engineering Principles to the Design of Appealing Consumer Products
V. Agouridas, University of Leeds, UK; J. Longstaff, T. Childs, A. McKay, University of Leeds

11.2.2 The Systems Project: Life Cycle Development/Management of as Many as Four Interrelated Systems
A. S. Paul, C. Owunwanne, Howard University

11.2.3 Integration Challenges of Complex Systems
B. R. Haskins, J. Striegel, The Boeing Company

Session 11 Track 3: SE Support Process

11.3.1 How Good Is A Process? Evaluating Engineering Processes' Efficiency
T. S. Gilb, Result Planning Limited

11.3.2 Using Fuzzy Decision Support to Compare Systems Modelling Tools
E. Rajabally, S. Whittle, Systems Engineering Innovation Centre

11.3.3 Enabling Measurement-Driven System Development by Analyzing Testing Strategy Tradeoffs
R. W. Selby, Northrop Grumman Space Technology

Session 11 Track 4: Modeling & Tools

11.4.1 Generating Predictive Models Using Decision Trees and Neural Networks for Large-Scale Systems Engineering
R. W. Selby, Northrop Grumman Space Technology

11.4.2 Top 40 Systems Engineering Work Products from Phrase Lists and Self-Organizing Maps
D. G. Beshore, The Aerospace Corporation

11.4.3 Advancing the Canadian Capability Engineering Approach
Additional Papers:

A Prioritization Process 1626
Rick Botta, Terry Bahill

Development Program Risk Assessment Based on Utility Theory 1634
Joseph Z. Ben-Asher

The Architecture of Enterprise Architecture 1647
Terence Blevins

Improving the Structure and Content of the Requirement Statement 1666
William Scott, Joseph E. Kasser, Xuan-Linh Tran

Foundational Systems Engineering (SE) Patterns for SE Pattern Language 1675
Joseph J. Simpson, Mary J. Simpson

Kevin Orr, Sreeram Ramakrishnan, Cihan H. Dagli

Cost Models with Explicit Uncertainties for Electronic Architecture Trade-off and Risk Analysis 1700
Jakob Axelsson

Preparing SEBoK for Korean Defense Systems Acquisition Process 1715
Myeong-Deok Han

Process in Enterprise Systems Engineering 1721
Joseph K. DeRosa, Keith McCaughin

Integrated project Control Loop Concept – Surviving in the Jungle of Complex Projects With an Advanced Project Management Decision Basis 1733
Timo Laudan, Axel Mauritz

Capturing Total Systems of Systems Costs Using SEER-H with Total System Vision (TSV) and SEER-SEM: An Example Application 1749
Joseph P. Falque

Enterprise Analysis and Assessment 1765
John J. Roberts

Process for ABET Accreditation in a Systems Engineering Undergraduate Program 1780
Peggy Brouse, Hakan Yurt

Heuristics and Genetic Algorithms 1793
Michael D. Mobley, Cihan H. Dagli

Balancing Cost and Performance During Design – New Techniques and Processes to Enable Design Trades 1800
David M. Cronin, Kenneth S. Ash

Universal Electronic Health Record: Just What the Doctor Ordered 1815
Rajiv Shahi