Technical Program

Experimental Devices

FPL-3: JT-60SA Construction and Research Directions 1
William Spears, Fusion for Energy

ThPO-1: NSTX-U Vacuum Vessel Design Modification 9
Neway Atnafu, PPPL

ThPO-2: THE INVESTIGATION PROGRAMME OF PLASMA DISCHARGE ON HL-2A TOKAMAK 13
Xiao SONG, Southwestern Institute of Physics(SWIP)

ThPO-3: Physics of Cfetr 17
Baonian Wan, Institute of Plasma Physics, Chinese Academy of Sciences

ThPO-4: Investigation of Field Null for HL-2M Tokamak Start Up 23
Jian Liu, Southwestern Institute of Physics

ThPO-5: The ST25 Tokamak for Rapid Technological Development 27
Alan Sykes, Tokamak Solutions UK

FO1-3: Real Time Control of Plasma Performance on ASDEX Upgrade and Its Implications for ITER 31
Wolfgang Treutterer, Max-Planck Institute for Plasma Physics, Garching, Germany

TO1-4: East Accomplishments/Plans in Support of Fusion Next-Steps 38
yuntao song, institute of plasma phycics,Chinese academy of sciences

TO1-2: MAST Accomplishments/Plans in Support of Fusion Next-Steps 44
William Morris, EURATOM/CCFE Fusion Association

FO1-1: LHD Accomplishments/plans in Support of Fusion Next-Steps 52
Shinsaku Imagawa, National Institute for Fusion Science

ThPO-8: Equilibrium Features of Bean-Shaped Spherical Tokamak Plasmas with an Ergodic Limiter 60
Celso Ribeiro, Instituto Tecnológico de Costa Rica

TO1-3: MAST UPGRADE - PROGRESS AND ENGINEERING CHALLENGES 63
Joseph Milnes, CCFE

ThPO-9: Engineering Issues to the Stellarator of Costa Rica 1 (SCR-1) 69
Ivan Vargas, Costa Rica Institute of Technology

TO1-5: Preparation of the Wendelstein 7-X Commissioning 75
Hans-Stephan Bosch, Max-Planck-Institut für Plasmaphysik, Greifswald, Germany

ThPO-11: FLUCTUATION MITIGATION AND AZIMUTHAL VELOCITY PROFILE REGULATION BY EXTREME SEEKING IN HELCAT 79
Zeki Ilhan, Lehigh University
WO1-5: DIII-D Accomplishments and Plans in Support of Fusion Next-Steps 85
Richard Butterly, GA

ThO1-3: Acousticaly Driven Magnetized Target Fusion 93
Michel Laberge, General Fusion

ThPO-12: Plasma Centre-Post for Spherical Tokamaks 100
Celso Ribeiro, Instituto Tecnológico de Costa Rica

ThPO-13: A Method of Increasing the Rate of Nuclear Fusion Inside an Iec Device 103
Jose Lopez, FusorTek, Sunnyvale, CA

ThPO-14: Proto-CIRCUS Tilted-Coil Tokamak-Stellarator Hybrid: Construction and Field Line Mapping 108
Francesco Volpe, Columbia University in the City of New York

Fusion Development: R&D facilities, Next Steps and Power Plants

WO1-1: EU DEMO Design and R&D Studies 114
Gianfranco Federici, F4E, Barcelona

FO1-5: Power Production and Environmental Aspects of a Fusion-Hybrid Reactor 122
Terry Kammash, University Of Michigan

TPO-8: Progress in Developing the K-Demo Device Configuration 128
Keeman Kim, National Fusion Research Center

TPO-1: TBR and Shielding Analyses in Support of ST-FNSF Study 133
Laila El-Guebaly, University of Wisconsin

ThO1-1: IFMIF: Steps Toward Realization 139
Juan Knaster, IFMIF

TPO-9: Balance of Plant Challenges for a Near-Term EU Demonstration Power Plant 147
Michael Porton, Culham Centre for Fusion Energy

TPO-2: Progress in Developing the St-FNSF Configuration 153
Thomas Brown, PPPL

TPO-10: Facilities for Quasi-Axisymmetric Stellarator Research 159
Hutch Neilson, PPPL

ThO1-4: The Spherical Tokamak Path to Fusion Power, Revisited 165
Alan Sykes, Tokamak Solutions UK

TPO-11: Concept Design of CFETR Tokamak Machine 171
yuntao song, institute of plasma phyics,Chinese academy of sciences

TPO-4: Design Description of the Coaxial Helicity Injection System on NSTX-U 177
Roger Raman, University of Washington

TPO-13: Engineering Design and Steady State Thermomechanical Analysis of the Ifmif European Lithium Target System 181
Plasma-Material Interactions, First Wall, and Divertors

TPO-15: Assessment of Copper Based Materials for the Water-Cooled Divertor Concept of the Demo European Fusion Reactor 236
Lorelei Commin, KIT

TPO-16: Energy and Particle Impact on W Surface for the Case of Repetitive Elms and Re Electrons in Demo Plasmas 240
Yuri Igitkhanov, Karlsruhe Institute of Technology

TPO-17: Development Activities for the Target Elements of the Wendelstein 7-X Divertor 262
Jean Boscary, Max Planck Institute for Plasma Physics

TPO-18: Thermal Management Using a Hypervapotron; Part III: Summary of Controlling Parameters 268
Ronald Boyd, Prairie View A&M University
ThPO-20: Investigation into Irradiation Effects in ODS-Alloys Using Ion Implantation and Micromechanical Testing 273
Eleanor Grieveson, Department of Materials, University of Oxford

ThPO-22: PSI Studies at DIII-D 277
Clement Wong, GA

ThPO-23: Thermo-Mechanical Investigation of the New Solid Tungsten Divertor Tile for Special-Purposes at ASDEX Upgrade 283
Nikola Jaksic, Max-Planck-Institute for Plasma Physics

ThO2-2: Wendelstein 7-X High Heat-Flux Divertor Scraper Element 289
Arnold Lumsdaine, ORNL

ThO2-1: Wendelstein 7-X High Heat Flux Components 296
Alan Peacock, IPP Garching Germany

ThPO-32: Impact of High Transient Plasma Loads on Beryllium Damage 304
Igor Kupriyanov, A.A. Bochvar Research Institute of Inorganic Materials

ThPO-33: Fault Analysis of Plasma Facing Component Mounts Using Multiphysics Simulation 309
Dennis Youchison, SNL

ThPO-34: Upward Facing Lithium Flash Evaporator for NSTX_U 315
Lane Roquemore, PPPL

ThPO-35: Results of the Qualification Test for ITER Blanket First Wall Small-Scale Mockups in Korea 320
Suk-Kwon Kim, Korea Atomic Energy Research Institute

ThPO-36: Evaluation of Thermal Conductivity of Unidirectional SiC Composite Enhanced with Carbon Fibers 324
SungHun KIM, Institute of Advanced Energy, Kyoto University

TO4-5: Assessment of an ITER-like Water-Cooled Divertor for DEMO 329
Eliseo Visca, ENEA

ThPO-37: Optimization of Functionally Graded Materials for Plasma Facing Components by Finite Element Methods 335
Deepu Krishnan, IPR

ThPO-38: Anisotropic Heat Transfer Characteristics of Composite Material Enhanced with High Thermal Conductivity Fiber 340
Hyoseong Gwon, Institute of Advanced Energy, Kyoto University, Kyoto, Japan

ThPO-39: He-Cooled Divertor: Study on Low-Temperature Design Using Ta Alloy as Thimble Material 344
Prachai Norajitra, Karlsruhe Institute of Technology (KIT)

ThPO-44: Physics and Engineering Design of the Divertor Scraper Element for the W7-X Stellarator 349
Jeremy Lore, ORNL
ThPO-45: Numerical Analysis and Optimization of Divertor Cooling System 354
Andrei Khodak, PPPL

ThO2-4: Design of the C-Mod Advanced Outer Divertor 360
Rui Vieira, MIT

ThPO-46: Modeling Technique to Predict Fields, Currents and Loads for C-Mod’s Advanced Outer Divertor During a Disruption with a 2ma Plasma Current and 9t Toroidal Field 366
Jeffrey Doody, PSFC-MIT

ThO4-3: Heat Transfer Simulation of C-Mod Advanced Outer Divertor 372
Lihua Zhou, MIT

ThPO-47: Modification of NSTX-U Row 1 Outboard and Inboard Divertor Tiles for the Protection of the PF-1C Coils 378
Kelsey Tresemer, PPPL

ThPO-49: Evaluation of Material Erosion from Plasma-Facing Surfaces in Hard Disruptions via Simulated Ablation Due to Heat Flux in Electrothermal Discharges 381
Leigh Winfrey, Virginia Polytechnic Institute and State University

ThPO-51: First Results from the Liquid Lithium Film Experiment (LiLiFEx). 386
Martin Nieto-Perez, CICATA-IPN Unidad Queretaro

ThO4-4: Deuterium Retention in Tungsten at Fuego Nuevo II 391
Gonzalo Ramos, Instituto Politecnico Nacional

ThPO-55: Hardening Parameters for Modelling CuCrZr and OFHC Copper under Cyclic Loadings 395
Mauro Dalla Palma, Consorzio RFX

Chambers, Blankets, and Shields

TPO-21: A Global Mechanical Analysis and Optimization of Vacuum Vessel and Attached Structure of KTX Device 400
Shanshuang Shi, Institute of Plasma Physics, Chinese Academy of Sciences

TPO-22: A Preliminary Concept Design Study of Blanket for Korean Demo Reactor (K-DEMO) 405
Young-Seok LEE, National Fusion Research Institute

TPO-23: Design and Manufacture of the ITER Cryostat 409
Bharatkumar Doshi, ITER Organization

TPO-24: Benchmark Calculations for the Starter Fendl-3.0 General Purpose Neutron Library with Impact on Iter Analysis 415
Mohamed Sawan, University of Wisconsin-Madison

TPO-25: Numerical Analysis Two-Phase Flow and Heat Transfer of Fuel Particles and Liquid Metal for Waste Transmutation Blanket 420
Weihua Wang, New Star Institute of Applied Technology

TPO-27: Numerical Analysis of Coupling MHD Rectangular Duct Flows 425
Xiujie Zhang, SWIP
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPO-28</td>
<td>A Multi-Layer Breeding Blanket Concept for CFETR Based on PWR Water Condition</td>
<td>Changle Liu, Institute for Plasma Physics, Chinese Academy of Sciences</td>
</tr>
<tr>
<td>FO2-4</td>
<td>Transient Electromagnetic Analysis of Selected Blanket Modules of the Iter Blanket System Due to Plasma Disruption</td>
<td>Joseph Kotulsiki, SNL</td>
</tr>
<tr>
<td>TPO-31</td>
<td>Flow Distribution Systems for Liquid Metal Cooled Blankets</td>
<td>Christina Koehly, Karlsruhe Institute of Technology (KIT)</td>
</tr>
<tr>
<td>FO2-1</td>
<td>ITER Blanket Engineering Challenges and Solutions</td>
<td>Rene Raffray, ITER Organization</td>
</tr>
<tr>
<td>TPO-32</td>
<td>Structural Analysis of the Iter Thermal Shield</td>
<td>Chang Hyun Noh, National Fusion Research Institute</td>
</tr>
<tr>
<td>TPO-33</td>
<td>Functional Components Design and Analysis of a Korean HCCR TBM in ITER</td>
<td>Dong Won Lee, Korea Atomic Energy Research Institute</td>
</tr>
<tr>
<td>TPO-36</td>
<td>Structural Analysis Work on ITER Vacuum Vessel</td>
<td>Chang Jun, ITER International Organization</td>
</tr>
<tr>
<td>TPO-37</td>
<td>APPLICATIONS OF MCCAD FOR THE AUTOMATIC GENERATION OF MCNP 3D MODELS IN FUSION NEUTRONICS</td>
<td>Fabio Moro, Association EURATOM-ENEA</td>
</tr>
<tr>
<td>TPO-38</td>
<td>THE ITER EC-H&CD Upper Launcher: FEM Analyses of the Blanket Shield Module with Respect to Surface and Nuclear Heat Loads</td>
<td>Alessandro Vaccaro, Karlsruhe Institute of Technology</td>
</tr>
<tr>
<td>FO2-3</td>
<td>In-Service Inspection and Instrumentation for ITER Vacuum Vessel</td>
<td>Kimihiro IOKI, ITER Organization</td>
</tr>
<tr>
<td>TPO-39</td>
<td>Considerations of Transient Electromagnetic Forces in Structural Behaviors for Iter Shield Blanket Components</td>
<td>Alice Ying, UCLA</td>
</tr>
<tr>
<td>TPO-40</td>
<td>Structural Design Analysis Considering Contact Stress between KO HCCR TBM Sub-Modules for ITER</td>
<td>Kyu In Shin, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea</td>
</tr>
<tr>
<td>TPO-43</td>
<td>Further Experimental Validation of Continuum FEM Simulation for Ceramic Breeder Pebble Bed Units</td>
<td>Justin Tucker, UCLA</td>
</tr>
<tr>
<td>TPO-46</td>
<td>Error Evaluation in Hydrogen Isotope Permeability Measurement of Silicon-Carbide and the Required Degree of Vacuum</td>
<td>Yasushi Yamamoto, Kansai University, Faculty of Engineering Science</td>
</tr>
<tr>
<td>TPO-47</td>
<td>Final Design and Start of Manufacture of the ITER Vacuum Vessel Ports</td>
<td>Yury Utin, ITER Organization</td>
</tr>
<tr>
<td>TPO-48</td>
<td>Impact of Pulsed Operation on Lifetime of Demo Blanket</td>
<td></td>
</tr>
</tbody>
</table>
Jarir Aktaa, Karlsruhe Institute of Technology

TPO-49: Parametric Analysis of EM Loads Acting on Demo Vertical Segments with Respect to Module's Dimension 513
Ivan Maione, Karlsruhe Institute of Technology

TPO-50: Resonance of the Iter Diagnostic Upper Port Plug with Em Loads During a Plasma Disruption 519
Sunil PAK, National Fusion Research Institute

TPO-51: Influence of Uninsulated Gaps Between Flow Channel Inserts in Ducts of DCLL Blankets 525
Leo Bühler, Karlsruhe Institute of Technology

TPO-52: Influence of Variable Heat Source on Magneto Convective Flows in HCLL Blankets 531
Chiara Mistrangelo, Karlsruhe Institute of Technology

Magnets

TPO-53: Novel Use of Water Soluble Aquapour as Temporary Spacer During Coil Winding for the NSTX-U Centerstack 537
Michael Mardenfeld, PPPL

TPO-54: Mechanical Analysis for ITER Upper ELM Coil 541
Shanwen Zhang, Institute of Plasma Physics Chinese Academy of Sciences

TPO-56: Conceptual Design and Analysis of CFETR Magnets 546
Xufeng Liu, Institute of Plasma Physics, Chinese Academy of Sciences

TPO-58: SOLDER DEVELOPMENT AND FABRICATION TECHNIQUES FOR COOLANT TUBE BONDING IN TOROIDAL FIELD CONDUCTORS FOR THE NATIONAL SPHERICAL TOURUS EXPERIMENT CENTER STACK UPGRADE 550
Stephan Jurczynski, PPPL

TPO-59: Electromagnetic Loads Prediction and Structural Analysis of HL-2M Toroidal Field Coils 556
Lijun Cai, Southwestern Institute of Physics

TO2-4: The Current Leads of the Wendelstein 7-X Superconducting Magnet System 561
Thomas Rummel, Max-Planck-Institut für Plasmaphysik

TPO-60: Mechanical Design of the Central Solenoid Assembly for the JT-60SA Tokamak 567
Katsuhiro Tsuchiya, Japan Atomic Energy Agency

TPO-61: The Tolerance Analysis for Iter Feeder Ctb&ssb Components 572
Sumei LIU, Institute of Plasma Physics, Chinese Academy of Sciences

TPO-62: Concept Design of Hybrid Superconducting Magnet for CFETR Tokamak Reactor 576
Jinxing Zheng, Institute of Plasma Physics, Chinese Academy of Sciences

TPO-63: Development of a Process to Build Polyimide Insulated Magnets for Operation at 350 C 582
Irving Zatz, PPPL
TPO-64: Experiences from the Installation of the Superconducting Bus Bar System of Wendelstein 7-X 587
Kerstin Rummel, Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteininstr. 1, 17491 Greifswald

TPO-65: Electromagnetic and Structural Analyses of the Iter Central Solenoid Feeder Structures 592
Ali Zolfaghi, PPPL

TPO-66: Thermal Analysis of the Iter Tf Feeder Cryogenic Components 597
Zhong Wang, Institute of Plasma Physics, Chinese Academy of Science

TO2-1: Design and Manufacturing Studies for Iter in-Vessel Coils 602
Michael Kalish, PPPL

TPO-67: Design and Analysis of the Iter Tf Feeder Dry Box 608
Guang Shen, Institute of Plasma Physics, Chinese Academy of Sciences

ThO3-2: Radial Cooling of a Spherical Torus (st) Tf Centerpost 612
Robert Woolley, PPPL

TPO-68: Axisymmetric Simulations of the Iter Vertical Stability Coil 618
Peter Titus, PPPL

TPO-69: A Preliminary Conceptual Design Study for Korean Fusion Demo Reactor Magnets 624
Sangjun Oh, National Fusion Research Institute

TPO-71: Reduction of Eddy Currents Induced by Resonant Magnetic Perturbation Coils by Inserting High Permeability Materials 630
Yonghua Ding, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan, 430074, China

TPO-72: W7-X Trim Coils - Component Safety Aspects and Commissioning Strategy 634
Konrad Risse, Max-Planck-Institut für Plasmaphysik

TPO-73: Manufacturing of the First Toroidal Field Coil for the Jt-60sa Magnet System 638
Antonio Cucchiaro, ENEA

TPO-74: Identifying the Cause of the NSTX TF Coil Bundle Failure 644
Lawrence Dudek, PPPL

TO2-3: ITER Central Solenoid Module Fabrication 648
John Smith, GA

TPO-76: THERMAL AND STRUCTURAL ANALYSIS OF THE ITER ELM COILS 652
Arthur Brooks, PPPL

TO2-2: ITER Central Solenoid Design 658
David Everitt, ORNL

MFE Plasma Heating and Current Drive

ThPO-56: Filament Power Supplies (Ac-Ac Converters) and Their Design for Long Pulse
Neutral Beam Injector of SST-1 666
Dipalkumar Thakkar, IPR

ThPO-57: The ITER ECH&CD Upper Launcher: Steps Towards Final Structural Design of the First Confinement System 670
Peter Spaeh, KIT

ThPO-58: Effect of Magnetic Field on Voltage Holding in the Mitica Electrostatic Accelerator 676
Nicola Pilan, Consorzio RFX

ThPO-59: Simulational Studies of the Wire-Array Z-Pinch Implosions 682
Ning Ding, Institute of Applied Physics and Computational Mathematics (IAPCM)

ThPO-60: Theoretical and Experimental Investigations on the Interaction of Wire-Array Z-Pinch with Low Density Foam 688
Delong Xiao, Institute of Applied Physics and Computational Mathematics

ThPO-61: Study of Protection Strategies Against Breakdown Effects in the SPIDER Experiment 693
Alberto Pesce, Consorzio RFX, Associazione Euratom-ENEA sulla Fusione

ThPO-62: An Alternative Design Concept for the DNB Calorimeter Motion Mechanism 699
Irfan Ahmed, IPR-ITER-India

TO5-5: Realization and Testing of Grid Prototypes for the Iter Neutral Beam Injectors 705
Piero Agostinetti, Consorzio RFX

ThPO-63: Attachment of Ferrite Material Used in an Active Matching Network for LHCD on Alcator C-Mod 711
Richard Murray, MIT Plasma Science and Fusion Center Alcator CMOD

ThPO-64: Optimization of Beam Optics and Strategies for Focusing the Multi-Beamlet Accelerator of the MITICA Injector 715
Pierluigi Veltri, Consorzio RFX

ThPO-65: Operation of a Double Stub Tuner for Alcator C-Mod Lower Hybrid Current Drive System 721
Peter Koert, Plasma Science and Fusion Center - M.I.T.

ThPO-66: Radio Frequency Additional Heating Systems Issues for the Tore-Supra West Project 724
Dominique GUILHEM, CEA cadarache / IRFM

ThPO-67: The ITER Neutral Beam Vacuum Vessel Design 729
Etienne Delmas, ITER Organization

ThPO-68: Upgrades and Performance of the Electron Cyclotron Heating System on DIII-D 735
Mirela Cengher, GA

ThPO-69: Molybdenum Armour Layer on Copper Plates: Manufacturing Technologies and Tests of Prototypes 741
Mauro Pavei, Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti 4, I-35127 Padova, Italy

ThPO-70: A New High-Efficiency Stepper Motor Driver for Old Technology Stepper Motors 747
Nevell Greenough, PPPL
ThPO-71: Beam Transport and Interactions with Beam-Line Components in MITICA Injector 751
Emanuele Sartori, Consorzio RFX - Padova

ThPO-72: Two-Stage Heating Mechanism for Plasma Fusion at 10 MK 757
Tianxi Zhang, Alabama A & M University

ThPO-74: Electrical Fault Protection System for Fusion Devices 763
GE LI, Institute of Plasma physics, Chinese Academy of Sciences

ThPO-75: A Study of Mode Conversion and Output Beam Profile in Long Distance Corrugated Waveguide Transmission Line 767
Yasuhisa Oda, Japan Atomic Energy Agency

ThPO-77: Design Status of ITER IC H&CD Plant System Control 771
Bharatkumar Arambhadiya, ITER Organization

ThPO-78: 3.7 GHz 500kW CW Klystron Operation at Full Power for SST1 LHCD System 777
Promod Sharma, Institute for Plasma Research

ThPO-79: Control of the Magnetic Field Configuration in the MITICA Neutral Beam Injector 783
Giuseppe Chitarin, University of Padova - Consorzio RFX

ThPO-80: Design of Beam Dump for Spider Facility 789
Chandramouli Rotti, IPR-ITER

ThPO-81: Development of Steady-State Mirrors for the KSTAR ECH Launchers 795
Robert Ellis, PPPL

TO5-3: Development of a Large RF Ion Source for the ITER Neutral Beam Injector: Project Overview and First Results of Elise 800
Riccardo Nocentini, Max-Planck-Institut für Plasmaphysik Garching

ThPO-82: Dynamic Rf Power Control for Diii-D Ich/fast Wave Operation 806
Chun Kung, PPPL

TO5-4: Progress of Two Rf Driver Based Negative Ion Source Experiment 810
Mainak Bandyopadhyay, IPR-ITER

ThPO-85: Commissioning of 42GHz/500kW ECRH System on Tokamak SST-1 815
Braj Shukla, Institute for Plasma Research

IFE Drivers

TOPO-77: EFFICIENT IGNITION of FUSION USING PW-ps LASER PULSES for ULTRAHIGH ACCELERATION of PLASMA BLOCKS 819
Henrich Hora, University of New South Wales, Sydney

TOPO-79: Petawatt Laser Driven Cluster Foils for an Intense Pulsed Neutron Source 825
George Miley, University of Illinois, UC

MFE Plasma Fueling

ThPO-86: A Method to Produce Lithium Pellets for Fueling and ELM Pacing in NSTX-U 829
Daniel Andruczyk, University of Illinois

ThPO-88: Optimization of Capillary Source Geometry for Maximum Pellet Exit Velocity in Electrothermal Plasma Launchers 834
Micah Esmond, Virginia Polytechnic Institute and State University

TO3-6: The Effects of Pellet Volume and Aspect Ratio on Fuel Pellet Exit Velocities in a Capillary Discharge Mass Accelerator 839
Leigh Winfrey, Virginia Polytechnic Institute and State University

IFE Target Fabrication and Injection

WO2-6: Bulk Modulus for Solid Molecular Tritium: Ab Initio Approximation 845
Carlo Guerrero Contreras, Instituto de Fusión Nuclear, Universidad Politécnica de Madrid

WO2-7: Accelerated Evaporative Drying of RF Foam for Target Fabrication 849
Sarah-Jane Scott, Laboratory for Laser Energetics, University of Rochester

Exhaust and Vacuum Systems

TPO-80: Design Progress of Plasma and Outer Vessel Exhaust Gas System Based on LOCA Safety Analysis of W7-X Stellarator 854
Didier Chauvin, CEA, DSM/IRFM, F-13108 Saint-Paul-lez-Durance, France

TO3-4: The THESEUS Facility - A Test Environment for the Torus Exhaust Vacuum Pumping System of a Fusion Power Plant 859
Thomas Giegerich, Institute for Technical Physics, Karlsruhe Institute for Technology (KIT), Karlsruhe, GERMANY

TO3-2: Exhaust Pumping of DT Fusion Devices: Current state-of-the-art and a potential roadmap to a power plant 865
Christian Day, Karlsruhe Institute of Technology (KIT)

TPO-81: Preliminary Results of Glow Discharge Cleaning Test on SWIP Test Bench 873
Yingqiao Wang, Southwestern Institute of Physics

TPO-86: Upgrades to the Alcator C-Mod Gas System 878
Roza Tesfaye, MIT PSFC

TPO-87: Experimental Validation of a Molecular Flow Code with the ARIANNA Setup 882
Emanuele Sartori, Consorzio RFX - Padova

Tritium Processing, Breeding and Containment

FO3-4: Tritium Permeation Issues for Helium-Cooled Breeding Blankets 888
Fabrizio Franzia, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, D-76344

TPO-89: Development of a Flange Type Hydrogen Permeation Sensor for Liquid Breeders 894
Eo Hwak Lee, Korea Atomic Energy Research Institute

TPO-91: Liquid Lithium for the Purpose of Attenuating Tritium Inventory Levels in Fusion Energy Reactors 897
Charles Gentile, PPPL
<table>
<thead>
<tr>
<th>TPO-93: Impact of Tritium Solubility in Liquid Pb-Li on Tritium Migration in Hcll and Wcll Blankets</th>
<th>899</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alessia Santucci, Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, 00044 Frascati (RM), I</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TPO-94: Operation Scenario of Dt Fusion Plant Without External Initial Tritium</th>
<th>903</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saerom Kwon, Kyoto University</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TPO-95: Hydrogen Solubility and Electrical Resistivity Measurements of Hydrogenated Pb-Li</th>
<th>908</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silvano Tosti, ENEA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TPO-90: Hydrogen Isotopes and Helium Diffusion Challenges on Future Nuclear Fusion Reactors</th>
<th>911</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moral, Nuria</td>
<td></td>
</tr>
</tbody>
</table>

Power Supply Systems

<table>
<thead>
<tr>
<th>TPO-97: Research of the Soft Start Circuit for the High Voltage Power Supply Based on Psm Technology</th>
<th>917</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linglong Xia, Huazhong University of Science and Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TPO-98: HARDWIRED CONTROL SYSTEM CHANGES FOR NSTX DC POWER FEEDS</th>
<th>921</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subrahmanya Ramakrishnan, PPPL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TPO-99: Power Supply Changes for NSTX Resistive Wall Mode Coils</th>
<th>925</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subrahmanya Ramakrishnan, PPPL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ThO3-1: ITER Power Supply Innovations and Advancements</th>
<th>930</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles Neumeyer, PPPL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TPO-100: Initial Integration of “Regulated High Voltage Power Supply” (RHVPS) with LHCD System of SST-1</th>
<th>938</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pareshkumar Patel, IPR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TPO-101: Development and Aging Tests of High Current Busbar Contacts for the ITER Coil Power Supply System</th>
<th>942</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elena Koktsinskaya, D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TPO-102: ITER Electrical Distribution System</th>
<th>948</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joel Hourtoule, Iter Organization</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TPO-103: A Pulse Step Modulator Cathode Power Supply for Ecrh System on Hl-2a Tokamak</th>
<th>953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiaohui Mao, Southwestern Institute of Physics, Chengdu, China</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TPO-104: High-Voltage Power Supply for ECRH System on J-TEXT Tokamak</th>
<th>958</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShaoXiang Ma, Huazhong University of Science and Technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TPO-107: Generation of High Power Pulse Series Based on Resistive Loads</th>
<th>963</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oleg Egorov, TRINITI</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ThO3-3: Critical Revision of the RFX-mod ac/dc Conversion System Design and Possible Improvements</th>
<th>967</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>TPO-108: Pulsed-Inductive-Plasma Thruster</td>
<td>972</td>
</tr>
<tr>
<td>Frank Wessel, Tri Alpha Energy, Inc.</td>
<td></td>
</tr>
</tbody>
</table>

Diagnostics, Data Acquisition, Control and Protection

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ThPO-90: The Application of Mid-Range Control to Improve Thermal Disturbance Rejection for Cryogenic Th/dt Layering at the National Ignition Facility</td>
<td>978</td>
</tr>
<tr>
<td>Matthew Dayton, Control Systems Engineering, National Ignition Facility, Laser Science Engineering and Operations, Law</td>
<td></td>
</tr>
<tr>
<td>ThPO-91: VME BASED DATA ACQUISITION AND CONTROL SYSTEM FOR GYROTRON BASED ECRH SYSTEM ON SST-1</td>
<td>983</td>
</tr>
<tr>
<td>Jatinkumar Patel, IPR</td>
<td></td>
</tr>
<tr>
<td>ThPO-93: The Preliminary Design of Global Interlock System in J-Text</td>
<td>987</td>
</tr>
<tr>
<td>Guozhen Zheng, J-TEXT Lab, Huazhong University of Science & Technology</td>
<td></td>
</tr>
<tr>
<td>ThPO-94: Eddy Current and Potential Gap Voltage at Electrical Contacts of ITER Diagnostic First Walls and Shield Modules During Plasma Disruption</td>
<td>991</td>
</tr>
<tr>
<td>Yuhu Zhai, PPPL</td>
<td></td>
</tr>
<tr>
<td>ThPO-95: Design and R&D for MITICA Thermal Sensors</td>
<td>997</td>
</tr>
<tr>
<td>Mauro Dalla Palma, Consorzio RFX</td>
<td></td>
</tr>
<tr>
<td>ThPO-96: Signal Conditioning & Data Acquisition System for Neutral Beam Calorimeter for NBI SST-1</td>
<td>1003</td>
</tr>
<tr>
<td>Laxmi Kant Bansal, IPR</td>
<td></td>
</tr>
<tr>
<td>ThPO-97: Assembly and Installation of ITER in-Vessel Electrical Looms</td>
<td>1007</td>
</tr>
<tr>
<td>Anna Encheva, ITER IO</td>
<td></td>
</tr>
<tr>
<td>ThPO-98: A Remote Control System for Tokamak Based on Web Service</td>
<td>1013</td>
</tr>
<tr>
<td>Wei Zheng, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, HUST</td>
<td></td>
</tr>
<tr>
<td>ThPO-100: The Charge Exchange Recombination Spectroscopy Diagnostic on HI-2a Tokamak</td>
<td>1017</td>
</tr>
<tr>
<td>Lieming Yao, University of Electronic Science and Technology of China</td>
<td></td>
</tr>
<tr>
<td>ThPO-101: Design and Test of a Thermal Measurement System Prototype for Spider Experiment</td>
<td>1022</td>
</tr>
<tr>
<td>Mauro Dalla Palma, Consorzio RFX</td>
<td></td>
</tr>
<tr>
<td>ThPO-102: THE DIGITAL CONTROL SYSTEM FOR THE TCV TOKAMAK</td>
<td>1028</td>
</tr>
<tr>
<td>Hoang Bao Le, Ecole Polytechnique Fédérale de Lausanne, Center for Research in Plasma Physics (CRPP-EPFL)</td>
<td></td>
</tr>
<tr>
<td>ThPO-104: Iter Disruption Mitigation System Development and Port Plug Integration</td>
<td>1032</td>
</tr>
<tr>
<td>Gabor Kiss, ITER Organization, Route de Vinon sur Verdon 13115 St Paul Lez Durance – France</td>
<td></td>
</tr>
<tr>
<td>ThPO-108: Optical Layout and Alignment Methods for Visible Tomography and Emission Spectroscopy Diagnostics in Spider</td>
<td>1037</td>
</tr>
<tr>
<td>Rita Delogu, Consorzio RFX, Euratom-ENEA association</td>
<td></td>
</tr>
<tr>
<td>Paper Number</td>
<td>Title</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>ThPO-110</td>
<td>A Magnet Current Monitor for Gyrotron Magnet Power Supplies</td>
</tr>
<tr>
<td>WO3-4</td>
<td>Diagnostic Integration Issues in the Tore Supra Upgrade Project WEST</td>
</tr>
<tr>
<td>ThPO-112</td>
<td>Effect of the Measurement Vs. the Counting Errors in Neutron Tomography Analysis</td>
</tr>
<tr>
<td>ThPO-113</td>
<td>Digital Coil Protection System I/O and Data Subsystem for NSTX-U</td>
</tr>
<tr>
<td>ThPO-114</td>
<td>Reconfigurable Timing Unit for NSTX-U</td>
</tr>
<tr>
<td>TO4-1</td>
<td>Cutting Edge Concepts for Control and Data Acquisition for Wendelstein 7-X</td>
</tr>
<tr>
<td>ThPO-116</td>
<td>Electromagnetic Behavior on ITER Radial Soft X-Ray Camera</td>
</tr>
<tr>
<td>ThPO-117</td>
<td>Diverter Erosion Monitoring in ITER Using 2-Wavelength Speckle</td>
</tr>
<tr>
<td>ThPO-119</td>
<td>Hardware Requirements for Digital Nuclear Radiation Spectroscopy</td>
</tr>
<tr>
<td>ThPO-120</td>
<td>Status of the Design Refinement and the Characterisation of the in Vessel Viewing System for Iter</td>
</tr>
<tr>
<td>ThPO-122</td>
<td>Design and Preliminary Measurements of a Diagnostic Calorimeter for BATMAN</td>
</tr>
<tr>
<td>ThPO-124</td>
<td>Development of Talbot-Lau Phase-Contrast Method for High Energy Density Diagnostics</td>
</tr>
<tr>
<td>ThPO-125</td>
<td>OPTIMAL CLOSED-LOOP CONTROL OF THE AZIMUTHAL VELOCITY PROFILE BY ExB ACTUATION IN HELCAT</td>
</tr>
<tr>
<td>ThPO-126</td>
<td>Digital Coil Protection System for the National Spherical Torus Experiment Upgrade</td>
</tr>
<tr>
<td>ThPO-127</td>
<td>A Fast RF Power Diagnostics for the DIII-D Fast Wave Current Drive System Using Commercial FPGA-Based Systems</td>
</tr>
<tr>
<td>ThPO-128</td>
<td>Neutronics Instrumentation for the European Iter Tbm</td>
</tr>
<tr>
<td>ThPO-129</td>
<td>Latest Advancements in the DIII-D Plasma Control System</td>
</tr>
</tbody>
</table>
Benjamin Penaflor, GA

ThPO-130: Designing, Constructing and Using Plasma Control System Algorithms on DIII-D 1125
Tucker, GA

Th03-4: Nstx-U Digital Coil Protection System Software Design 1131
Keith Erickson, PPPL

ThPO-132: Shape Reconstruction of RF-Driven Divertor Plasma on QUEST 1137
Kazuo Nakamura, Research Institute for Applied Mechanics, Kyushu University

ThPO-134: ASSESSMENT AND OPTIMIZATION OF THE INTERSPACE DOSE RATE OF THE DIAGNOSTICS EQUATORIAL PORT PLUG #3 IN ITER WITH ATTLA 1143
Mahmoud Youssef, UCLA

Fabrication, Assembly, Maintenance, and Availability

TPO-109: EBW technology applied on the ICRF Antenna Component 1149
Qingxi Yang, Institute of Plasma Physics, Chinese Academy of Science

TPO-110: THE DESIGN AND R&D WORK OF EAST TUNGSTEN DIVERTOR 1153
Zibo Zhou, Institute of Plasma Physics, CAS

TPO-114: DEMO: Heating and Current Drive System Integration with Blanket System 1157
Giovanni Grossetti, Karlsruher Institut für Technologie

TO6-4: Manufacturing of ITER Vacuum Vessel In-Wall Shielding 1163
Hareshbhai Pathak, IPR-ITER-India

WO3-6: The Development of a Methodology to Allocate Reliability, Availability, Maintainability and Inspectability Requirements to DEMO 1169
Richard Brown, The Culham Centre for Fusion Energy

TPO-115: New Design of the Support Leg for the ITER Transfer Cask System 1175
Shaoqing LI, Anhui University of Architecture, Hefei China, 230022

TPO-118: Early Design Verification of Iter Remote Handling Systems Using Digital Mock-Ups 1179
Romain Sibois, VTT Technical Research Centre of Finland

TO6-5: Preliminary Design of Iter Component Cooling Water System and Heat Rejection System 1185
Ajith AG, ITER India

Th06-1: W7-X Precision Metrology 1190
Torsten Braeuer, Max-Planck-Institut fuer Plasmaphysik Greifswald

TPO-119: Design, Manufacturing and Testing of a Fast Disconnecting System for the European Target Assembly Concept of Ifmif 1198
Gioacchino Miccichè, ENEA

TPO-120: Qualification Process and Quality Control Planning for Jt-60-Sa Toroidal Field Coils Construction 1203
Valter Cocilovo, ENEA FNP FUSTEC
TO6-1: Design and Manufacture of the ITER Vacuum Vessel 1210
Carlo Sborchi, ITER

TPO-121: DEMO - Initiation of Remote Maintenance Requirements 1218
Martin Mittwollen, Karlsruhe Institute of Technology; Institute for Materials Handling and Logistics

Safety & Environmental Engineering

ThO5-2: Korean Activities on Fusion Safety 1224
Gyunyoung Heo, Kyung Hee University

TPO-123: Comparison with Simulations Using the PHITS code and Activated Materials Analysis toward JT-60SA Radiation Safety Assessment 1231
Atsuhiko Sukegawa, Japan Atomic Energy Agency

ThO5-5: Failure Rate Adjustment Factors for High Technology Components 1236
Lee Cadwallader, Idaho National Laboratory

TPO-124: Sensitivity Study on in-Vessel Loca of a Korean Tbs in Iter 1239
Hyung Gon Jin, KAERI

ThO5-4: Feasibility Study of Validating Activation Corrosion Products Calculations in Cooling Water Loops at Jet 1243
Luigi Di Pace, EURATOM/ENEA Fusion Association

TPO-126: Tritium Extraction System Pipe Break Environmental Impact by Atmospheric Modelling of Tritium Forms Transport 1249
CASTRO PALOMA, CEMAT

Systems Engineering & Project Management

WO3-1: Numerical Modeling in the Construction of Wendelstein 7-X 1256
Victor Bykov, Max-Planck-Institut für Plasmaphysik

WO3-2: Approaches to Numerical Modeling in the Development Process of Complex Structures for Fusion Devices 1264
Olaf Neubauer, Forschungszentrum Jülich GmbH

Hansoo CHANG, National Fusion Research Institute

TPO-128: Configuration Space Control of In-Vessel Components for Wendelstein 7-X 1274
Jörg Tretter, Max-Planck-Institute for Plasmaphysics, 85748 Garching, Germany

TPO-129: Do we need a quality management system in fusion research? - Experience from W7-X 1280
Reinhard Vilbrandt, Max Planck Institute for Plasma Physics, Greifswald, Germany

TPO-130: Design and Integration of the Ground Level Platform for W7-X 1285
Sébastien Renard, CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France

WO3-3: The Application of Systems Engineering Principles to the EU Demo Design and R&D
Studies 1289
Jonathan Harman, EFDA

WO3-5: Management of the ITER Configuration Towards Construction Phase 1295
Ingo Kuehn, ITER