2013 Forum on Specification & Design Languages

(FDL 2013)

Paris, France
24-26 September 2013
Welcome
General Chairs
Keynote Speakers
Invited Speaker
Industrial Special Session Chair
Technical Area Chairs
Program Committee
Technical Area Overview
Conference Papers

AFM: Application of Formal Methods for Design Space Exploration and Refinement

1. *Optimal Component Selection for Energy-Efficient Systems*
 Matthias Sauppe, Thomas Horn, Erik Markert, Ulrich Heinkel, Hans-Werner Sahm, and Klaus-Holger Otto
2. *Assisting Refinement in System-on-Chip Design*
 Mokrani Hocine, Ameur-Boulifa Rabéa, and Emmanuelle Encrenaz
3. *Design Space Exploration for Cyber Physical System Design using Constraint Solving*
 Benny Höckner, Petra Hofstedt, Sascha Kaltschmidt, Peter Sauer, and Thilo Voertler

AFM/EAMS: Verification of Heterogeneous Systems: Theory and Industrial Experiences

1. *A New Assertion Property Language for Analog/Mixed-Signal Circuits*
 Dhanashree Kulkarni, Andrew Fisher, and Chris Myers
2. *Integrating Circuit Analyses for Assertion-based Verification of Programmable AMS Circuits*
 Dogan Ulus, Alper Sen, and Faik Baskaya
3. *How to Survive the Verification of the Latest Generation of Automotive System on Chip*
 Arnaud Laroche and Jerome Kirscher
4. *A Novel Approach for Assertion Based Verification of DDR Memory Protocols*
 Moustafa Kassem, Mohamed Abdelsalam, Marianne Michel, and Ashraf Salem
Table of Contents

EAMS 1: Modeling Communication and Circuit’s Behavior 48

Hybrid Dynamical Systems for Memristor Modelling 49
 Joachim Haase and André Lange

Event-Driven (RN) Modeling for AMS Circuits 55
 Serge Garcia Sabiro

Modeling of Signal Integrity in Bus Communications with Timed Data Flow SystemC-AMS 63
 Ruomin Wang, Julien Denoulet, Sylvain Feruglio, Farouk Vallette, and Patrick Garda

EAMS 2: Model Generation for Embedded Analog/Mixed-Signal Systems 69

Multi-Paradigm Semantics for Simulating SysML Models using SystemC-AMS 70
 Daniel Chaves Café, Filipe Vinci Dos Santos, Cécile Hardebolle, Christophe Jacquet, and Frédéric Boulanger

Code Generation Alternatives to Reduce Heterogeneous Embedded Systems to Homogeneity 78
 Franco Fummi, Michele Lora, Francesco Stefanni, and Sara Vinco

Modeling the Analog Circuit Design Feature Variety 82
 Cristian Ferent and Alex Doboli

MDE 1: Modeling Languages Extensions and Best Practices 89

Fine-grain Adaptation for Real Time Embedded Systems using UML/MARTE Profile 90
 Mouna Ben Said, Yessine Hadj Kacem, Nader Ben Amor, and Mickaël Kerboeuf

 Konstantinos Triantafyllidis, Egor Bondarev, and Peter H. De With

Split of Composite Components for Distributed Applications 106
 Ansgar Radermacher, Arnaud Cuccuru, Sebastien Gerard, and Brahim Hamid

MDE 2: Model Driven Engineering at Work 112

A Formal Verification Framework for BlueSpec System Verilog 113
 Samir Ouchani, Otmane Aït Mohamed, and Mourad Debbabi

A Function Approach for Simple Wireless Sensor Node Energy Consumption Modeling 120
 Aina Andriamampianina Randrianarisaina, Olivier Pasquier and Pascal Chargé

Model-Driven Design for the Development of Multi-Platform Smartphone Applications 128
 Giulio Botturi, Emad Samuel Malki Ebeid, Franco Fummi, and Davide Quaglia
Table of Contents

DES 1: SystemC Infrastructure and Extensions 136

SystemC Transaction Level Modeling with Transaction Events 137
Bastian Haetzer and Martin Radetzki

SystemC-Clang: An Open-source Framework for Analyzing Mixed-abstraction SystemC Models 143
Anirudh Kaushik and Hiren D. Patel

Advanced Features for Industry-Level Logging and Tracing of C-based Designs 151
Wei Hong, Jyoti Joshi, and Alexander Viehl, Nico Bannow, Angela Kramer, Hendrik Post, Oliver Bringmann, and Wolfgang Rosenstiel

DES 2: Platform Based Design 157

Rapid Virtual Prototyping of Real-Time Systems using Predictable Platform Characterizations 158
Seyed Hosein Attarzadeh Niaki, Marcus Mikulca, and Ingo Sander

Graph-based Approach for Software Allocation in Automotive Networked Embedded Systems: a Partition-and-Map Algorithm 166
Yasser Shoukry, Ajay Kumar, M. Watheq El-Kharashi, Ghada Bahig, and Sherif Hammad

Representing Mapping and Scheduling Decisions within Dataflow Graphs 172
Christian Zebelein and Christian Haubelt, Joachim Falk, Tobias Schwarz, and Jürgen Teich

DES 3: Simulation, Analysis and Validation 180

Fine Grained Adaptive Simulation with Application to NoCs 181
Marcus Eggenberger and Martin Radetzki

Combining Analytical and Simulation-based Design Space Exploration for Time-Critical Systems 189
Fernando Herrera and Ingo Sander

Bridging Algorithm and ESL Design: Matlab/Simulink Model Transformation and Validation 197
Liyuan Zhang, Michael Glass, Jürgen Teich, and Nils Ballmann

SystemVerilog: the New Standard 205

Why SystemVerilog? 206
Peter Flake

The Unique Challenges of Debugging Design and Verification Code Jointly in SystemVerilog 212
Dave Rich

If SystemVerilog Is So Good, Why Do We Need the UVM? 219
Jonathan Bromley
Welcome
General Chairs
Keynote Speakers
Invited Speaker
Industrial Special Session Chair
Technical Area Chairs
Program Committee
Technical Area Overview
Conference Papers

AFM: Application of Formal Methods for Design Space Exploration and Refinement 1

Optimal Component Selection for Energy-Efficient Systems 2
Matthias Sauppe, Thomas Horn, Erik Markert, Ulrich Heinkel, Hans-Werner Sahm, and Klaus-Holger Otto

Assisting Refinement in System-on-Chip Design 10
Mokrani Hocine, Ameur-Boulifa Rabéa, and Emmanuelle Encrenaz

Design Space Exploration for Cyber Physical System Design using Constraint Solving 16
Benny Höckner, Petra Hofstedt, Sascha Kaltschmidt, Peter Sauer, and Thilo Voertler

AFM/EAMS: Verification of Heterogeneous Systems: Theory and Industrial Experiences 20

A New Assertion Property Language for Analog/Mixed-Signal Circuits 21
Dhanashree Kulkarni, Andrew Fisher, and Chris Myers

Integrating Circuit Analyses for Assertion-based Verification of Programmable AMS Circuits 29
Dogan Ulus, Alper Sen, and Faik Baskaya

How to Survive the Verification of the Latest Generation of Automotive System on Chip 37
Arnaud Laroche and Jerome Kirscher

A Novel Approach for Assertion Based Verification of DDR Memory Protocols 44
Moustafa Kassem, Mohamed Abdelsalam, Marianne Michel, and Ashraf Salem
Table of Contents

EAMS 1: Modeling Communication and Circuit’s Behavior 48

Hybrid Dynamical Systems for Memristor Modelling 49
Joachim Haase and André Lange

Event-Driven (RN) Modeling for AMS Circuits 55
Serge Garcia Sabiro

Modeling of Signal Integrity in Bus Communications with Timed Data Flow SystemC-AMS 63
Ruomin Wang, Julien Denoulet, Sylvain Feruglio, Farouk Vallette, and Patrick Garda

EAMS 2: Model Generation for Embedded Analog/Mixed-Signal Systems 69

Multi-Paradigm Semantics for Simulating SysML Models using SystemC-AMS 70
Daniel Chaves Café, Filipê Vinci Dos Santos, Cécile Hardebolle, Christophe Jacquet, and Frédéric Boulanger

Code Generation Alternatives to Reduce Heterogeneous Embedded Systems to Homogeneity 78
Franco Fummi, Michele Lora, Francesco Stefanni, and Sara Vinco

Modeling the Analog Circuit Design Feature Variety 82
Cristian Ferent and Alex Doboli

MDE 1: Modeling Languages Extensions and Best Practices 89

Fine-grain Adaptation for Real Time Embedded Systems using UML/MARTE Profile 90
Mouna Ben Said, Yessine Hadj Kacem, Nader Ben Amor, and Mickaël Kerboeuf

Konstantinos Triantafyllidis, Egor Bondarev, and Peter H. De With

Split of Composite Components for Distributed Applications 106
Ansgar Radermacher, Arnaud Cuccuru, Sebastian Gerard, and Brahim Hamid

MDE 2: Model Driven Engineering at Work 112

A Formal Verification Framework for BlueSpec System Verilog 113
Samir Ouchani, Otmane Alt Mohamed, and Mourad Debbabi

A Function Approach for Simple Wireless Sensor Node Energy Consumption Modeling 120
Aina Andriamampianina Randrianarisaina, Olivier Pasquier and Pascal Chargé

Model-Driven Design for the Development of Multi-Platform Smartphone Applications 128
Giulio Botturi, Emad Samuel Malki Ebeid, Franco Fummi, and Davide Quaglia
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES 1: SystemC Infrastructure and Extensions</td>
<td>SystemC Transaction Level Modeling with Transaction Events</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Bastian Haetzer and Martin Radetzki</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SystemC-Clang: An Open-source Framework for Analyzing Mixed-abstraction SystemC Models</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Anirudh Kaushik and Hiren D. Patel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Features for Industry-Level Logging and Tracing of C-based Designs</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Wei Hong, Jyoti Joshi, and Alexander Viehl, Nico Bannow, Angela Kramer, Hendrik Post, Oliver Bringmann, and Wolfgang Rosenstiel</td>
<td></td>
</tr>
<tr>
<td>DES 2: Platform Based Design</td>
<td>Rapid Virtual Prototyping of Real-Time Systems using Predictable Platform Characterizations</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Seyed Hosein Attarzadeh Niaki, Marcus Mikulca, and Ingo Sander</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graph-based Approach for Software Allocation in Automotive Networked Embedded Systems: a Partition-and-Map Algorithm</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Yasser Shoukry, Ajay Kumar, M. Watheq El-Kharashi, Ghada Bahig, and Sherif Hammad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Representing Mapping and Scheduling Decisions within Dataflow Graphs</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Christian Zebelein and Christian Haubelt, Joachim Falk, Tobias Schwarz, and Jürgen Teich</td>
<td></td>
</tr>
<tr>
<td>DES 3: Simulation, Analysis and Validation</td>
<td>Fine Grained Adaptive Simulation with Application to NoCs</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Marcus Eggenberger and Martin Radetzki</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Combining Analytical and Simulation-based Design Space Exploration for Time-Critical Systems</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Fernando Herrera and Ingo Sander</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bridging Algorithm and ESL Design: Matlab/Simulink Model Transformation and Validation</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Liyuan Zhang, Michael Glass, Jürgen Teich, and Nils Ballmann</td>
<td></td>
</tr>
<tr>
<td>SystemVerilog: the New Standard</td>
<td>Why SystemVerilog?</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>Peter Flake</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Unique Challenges of Debugging Design and Verification Code Jointly in SystemVerilog</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Dave Rich</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If SystemVerilog Is So Good, Why Do We Need the UVM?</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Jonathan Bromley</td>
<td></td>
</tr>
</tbody>
</table>