Some format issues inherent in the e-media version may also appear in this print version.
Table of Contents

PAPER SESSION 1: SOUND FIELD CONTROL THEORY AND APPLICATIONS—PART 1

1-1 [Invited] Source-Width Extension Technique for Sound Field Reproduction Systems—Jung-Woo Choi, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea

1-2 [Invited] Design of a Source Array for the Rendering of a Desired Sound Field Using the Equivalent Source Method—Wan-Ho Cho,1 Jeong-Guon Ih2
1Korea Research Institute of Standards and Science (KRISS), Korea
2Korea Advanced Institute of Science and Technology (KAIST), Korea

1-3 [Invited] Is Sound Field Control Determined at All Frequencies? How Is it Related to Numerical Acoustics?—Franz Zotter1, Sascha Spors2
1University of Music and Performing Arts Graz, Graz, Austria
2University of Rostock, Rostock, Germany

PAPER SESSION 2: SOUND FIELD CONTROL THEORY AND APPLICATIONS—PART 2

2-1 [Invited] Sound Field Reproduction of Real Flight Recordings in Cabin Mock-up—Philippe-Aubert Gauthier, Cédric Camier, Olivier Gauthier, Yann Pasco, Alain Berry, Université de Sherbrooke, Sherbrooke, Ontario, Canada, and CIRMMT, McGill University, Montreal, Quebec, Canada

2-2 On the Potential for Scene Analysis from Compact Microphone Arrays—Glenn Dickens1, David Gunawan,2 Dong Shi3
1Dolby Laboratories, Sydney, NSW, Australia
2Dolby Laboratories, Beijing, China
3University of Surrey, Guildford, Surrey, UK

2-3 Acoustic Element and Array Design Approaches—Graeme Huon, HuonLabs Pty. Ltd., Melbourne, Australia

POSTERS

P-1 GPU-Based WFS Systems with Mobile Virtual Sound Sources and Room Compensation—Jose A. Belloch, Miguel Ferrer, Alberto Gonzalez, Antonio M. Vidal, Universitat Politecnica de Valencia, Valencia, Spain

P-2 Alternate Sound Reproduction Formats—Graeme Huon, Stephen Huon, HuonLabs Pty. Ltd., Melbourne, Australia

P-3 Real-Time Sound Field Transmission System by Using Wave Field Reconstruction Filter and Its Subjective Listening Test—Shoichi Koguma1, Ken‘ichi Furuta2, Hisashi Uematsu1, Yusuke Hiasa2, Yoichi Harada6
1Nippon Telegraph and Telephone Corporation, Tokyo, Japan
2The University of Electro-Communications, Tokyo, Japan

PAPER SESSION 3: PSYCHOACOUSTICS—PART 1

3-1 Apparent Source Width and Listener Envelopment in Relation to Source-Listener Distance—Hyunkook Lee, University of Huddersfield, West Yorkshire, UK

3-2 The Prediction of the Acceptability of Auditory Interference Based on Audibility—Khan Baykaner1, Christopher Hummersone1, Russell Mason1, Soren Bech4
1University of Surrey, Guildford, Surrey, UK
2Bang & Olufsen, Struer, Denmark
PAPER SESSION 4: PSYCHOACOUSTICS—PART 2

4-1 Perceptually Optimized Loudspeaker Selection for the Creation of Personal Sound Zones—Jon Francombe, Philip Coleman, Marek Olik, Khan Baykaner, Philip Jackson, Russell Mason, Martin Dowhirst, Soren Bech, Jan Abildgaard Pedersen

- University of Surrey, Guildford, Surrey, UK
- Bang & Olufsen, Struer, Denmark

4-2 Cognitive Maps in Spatial Sound—Peter Lennox, University of Derby, Derby, UK

4-3 Perception of Reconstructed Sound-Fields: The Dirty Little Secret—Anthony Tucker, William Martens, Glenn Dickins, Michael P. Hollier

- The University of Sydney, Sydney, NSW, Australia
- Dolby Laboratories Australia, Sydney, Australia
- Dolby Laboratories, San Francisco, CA, USA

PAPER SESSION 5: SOUND ZONES

5-1 Optimizing the Planarity of Sound Zones—Philip Coleman, Philip Jackson, Marek Olik, Jan Abildgaard Pedersen

- University of Surrey, Guildford, Surrey, UK
- Bang & Olufsen, Struer, Denmark

5-2 A Comparative Performance Study of Sound Zoning Methods in a Reflective Environment—Marek Olik, Philip Coleman, Philip J. B. Jackson, Martin Olson, Martin Møller, Russell Mason, Soren Bech

- University of Surrey, Guildford, Surrey, UK
- Bang & Olufsen, Struer, Denmark

5-3 Sound Zones: Scattering Study with Head and Torso Simulator—Martin Olsen, Martin Bo Møller, Bang & Olufsen A/S, Struer, Denmark

5-4 A Comparison of Control Strategies for a Car Cabin Personal Audio System—Jordan Cheer, Stephen J. Elliott, University of Southampton, Southampton, UK

5-5 The Design of a Personal Audio Superdirective Array in a Room—Marcos Simon Galvez, Stephen J. Elliott, University of Southampton, Southampton, UK

PAPER SESSION 6: TRANSDUCERS, ARRAY DESIGN, BEAM FORMING

6-1 [Invited] Design of a Prototype Variable Directivity Loudspeaker for Improved Surround Sound Reproduction in Rooms—Mark Poletti, Terence Betlehem, Callaghan Innovation Research, Lower Hutt, New Zealand

6-2 [Invited] Arrangements of a Pair of Loudspeakers for Sound Field Control with Double-Layer Arrays—Jiho Chang, Finn Agerskov, Martin Olsen

- Technical University of Denmark, Lyngby, Denmark
- Bang & Olufsen, Struer, Denmark

PAPER SESSION 7: SOUND FIELD CONTROL FOR MULTICHANNEL AUDIO

7-1 [Invited] Control of Velocity for Sound Field Reproduction—Mincheol Shin, Filippo Fazi, Philip Nelson, Jeongil Seo

- University of Southampton, Southampton, UK
- Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea

7-2 [Invited] Spatial PCM Sampling: A New Method for Sound Recording and Playback—Angelo Farina, Alberto Amendola, Lorenzo Chiesi, Andrea Capra, Simone Campanini, University of Parma, Parma, Italy

PAPER SESSION 8: ROOM ACOUSTICS CONTROL

8-1 Sound Field Control for a Low-Frequency Test Facility—Christian Sojær Pedersen, Henrik Moller, Aalborg University, Aalborg, Denmark

8-2 [Invited] Active Acoustic Absorbers Revisited—John Vanderkooy, Martial Rousseau

- University of Waterloo, Waterloo, Ontario, Canada
- B &W Group Ltd., Steyning, West Sussex, UK

8-3 [Invited] Sound-Field Control in Enclosures by Spherical Arrays—Hai Morgenstern, Noam Shabtai, Boaz Rafaely, Ben-Gurion University of the Negev, Beer-Sheva, Israel

PAPER SESSION 9: WAVE FIELD SYNTHESIS

- Fraunhofer Institute for Digital Media Technology IDMT, Ilmenau, Germany
- Ilmenau University of Technology, Ilmenau, Germany
- University Erlangen-Nuremberg, Erlangen, Germany

9-2 [Invited] Quasi Wave Field Synthesis: Efficient Driving Functions for Improved 2.5D Sound Field Reproduction—Dylan Menzies, De Montfort University, Leicester, UK

9-3 A Vector Quantization-Based Compression Scheme for Wave Field Synthesis Source Signals—Georgias N. Llis, Technical University of Crete, Kounoupidiana, Chania, Greece

9-4 Multichannel-to-Wave Field Synthesis Upmixing Technique Based on Sound Source Separation—Keunwoo Choi, Tae Jin Park, Jeongil Seo, Kyeongok Kang, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea