CONTENTS

FOREWORD 1

A Retrospective View by Eur. Ing. Ian J Cockram 3

William D Kennedy, 1942 - 2012 5

ROAD TUNNELS

Aerodynamics

Performance evaluation of jet fan deflectors for road tunnel longitudinal ventilation 9

G Clark, D Saunsbury, D Bagshaw, M Buonfiglioli, Atkins Ltd, UK

Numerical study of effects of vehicle speed and spacing on the ventilation in a highway curved tunnel 27

Feng Wang, Dalian University of Technology and Sichuan University; Mingnian Wang, Yuanye Deng, Southwest Jiaotong University; Qingyuan Wang, Sichuan University; Guohai Dong, Dalian University of Technology, China

Experimental and numerical investigations of the wind pressure coefficient at a tunnel portal 39

T Kubwimana, A Mos, Centre d'Etudes des Tunnels; E Bergamini, P Salizzoni, P Méjean, Ecole Centrale de Lyon; France; M Boffadossi, Politecnico di Milano, Italy

An evaluation of how the air-flow from ceiling-mounted-ESP outlet ducts affects moving cars 55

S Kanda, S Masukura, Central Nippon Expressway Company Limited; A Kobayashi, M Yokota, Central Nippon Highway Engineering Tokyo Company Limited, Japan

Probabilistic approach for longitudinal ventilation system design in fire situations 67

S Fernández, FFII – CEMIM; A Fraile, I Del Rey, E Alarcón, ETSII-Universidad Politécnica de Madrid, Spain

Safe escape route corridors in tunnels, a new approach for escape route ventilation design 81

S Boekelman, Royal HaskoningDHV, The Netherlands
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrade of an existing transverse ventilation system to a longitudinal system using a Saccardo nozzle</td>
<td>89</td>
</tr>
<tr>
<td>J Alston, D Kandra, R Potter, Arup, USA</td>
<td></td>
</tr>
<tr>
<td>Consideration of a Saccardo nozzle system for tunnel ventilation applications: A simple calculation method for a one dimensional approach</td>
<td>105</td>
</tr>
<tr>
<td>P Sturm, M Beyer, M Bacher, Graz University of Technology, Austria</td>
<td></td>
</tr>
<tr>
<td>Efficient 3D CFD investigation of ventilation system design of road tunnels</td>
<td>121</td>
</tr>
<tr>
<td>D K H Wu, Y F Lin, H S Zhen, Parsons Brinckerhoff (Asia) Ltd., China</td>
<td></td>
</tr>
<tr>
<td>Air curtains used for separating smoke free zones in case of fire in tunnel</td>
<td>131</td>
</tr>
<tr>
<td>G Krajewski, Building Research Institute, Poland</td>
<td></td>
</tr>
</tbody>
</table>

ROAD TUNNELS

Smoke Ventilation

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>New findings on the use of flexible curtains for smoke management in road tunnels</td>
<td>147</td>
</tr>
<tr>
<td>S Rigert, M Bettelini, Amberg Engineering Ltd, Switzerland</td>
<td></td>
</tr>
<tr>
<td>Upgrading the existing full transverse ventilation system to meet a 100 MW fire</td>
<td>161</td>
</tr>
<tr>
<td>P Kumar, J Solar, Parsons Brinckerhoff; N Harvey, Hatch Mott MacDonald, USA</td>
<td></td>
</tr>
<tr>
<td>Aerodynamics of buoyant gases within a longitudinally ventilated tunnel: experiments in two different reduced scale models</td>
<td>175</td>
</tr>
<tr>
<td>J Le Clanche, P Salizzoni, M Creyssels, Ecole Centrale de Lyon; R Mehaddi, F Candelier, O Vauquelin, Institut Universitaire des Systèmes Thermiques Industriels (IUSTI), France</td>
<td></td>
</tr>
<tr>
<td>Impact of fire source characteristics and wall heat losses on smoke behaviour in a longitudinally ventilated reduced scale model tunnel: experiments and numerical simulations</td>
<td>189</td>
</tr>
<tr>
<td>A Mos, CETU; J Le Clanche, P Salizzoni, M Creyssels, C Nicot, Ecole Centrale Lyon, France</td>
<td></td>
</tr>
<tr>
<td>Numerical quantification of fire smoke toxicity in tunnels</td>
<td>203</td>
</tr>
<tr>
<td>F Rabe, A Löhniert, C Knaust, S Thöns, BAM Federal Institute for Materials Research and Testing, Germany</td>
<td></td>
</tr>
<tr>
<td>An integral fire model and critical velocity in longitudinally ventilated tunnel with gradient</td>
<td>217</td>
</tr>
<tr>
<td>Q Zhang, A Paladin, A Canfora, D Cappello, P Grasso, GEODATA Engineering SpA, Italy; X Guo, Dalian University of Technology, China</td>
<td></td>
</tr>
<tr>
<td>A modified critical velocity for road tunnel fire smoke management with dedicated smoke extraction configuration</td>
<td>231</td>
</tr>
<tr>
<td>Y Liu, S Cassady, HNTB Corporation, USA</td>
<td></td>
</tr>
</tbody>
</table>
ROAD TUNNELS

Fire

Fire risk assessment and mitigation for the installation of transmission cables in vehicular tunnel
K H L Wong, Y Song, Ove Arup & Partners Hong Kong Ltd., China
249

Wall temperatures for road tunnel fire scenarios
M Bilson, P Kumar, Parsons Brinckerhoff; N Harvey, Hatch Mott MacDonald, USA
265

Determination of an HGV fire heat release rate profile
K J Harris, J L Harder, Parsons Brinckerhoff, USA
281

Mathematical modelling of fires in short road tunnels. Influence of tunnel geometrical parameters on the people safety at fire
A V Karpov, D V Ushakov, All-Russian Research Institute for Fire Protection (VNIIPO); A N Giletich, A A Panov, Emercom of Russia, Russia
295

ROAD TUNNELS

Ventilation Control

Peculiarities of control ventilation in the Kuznetsovsky railway tunnel
S G Gendler, Open joint – stock company “LenMetroGiproTrans”, Russia
309

Zero-flow response to fire in longitudinally-ventilated tunnels
I Nakahori, Sohatsu Systems Laboratory Inc., Japan; S Jiang, Chongqing Communications Research & Design Institute, China; A Vardy, University of Dundee, UK
323

Control strategies of the tunnel ventilation system for Ohashi junction
H Saito, K Kitajima, Metropolitan Expressway Company Limited, Japan
337

The fully automated ventilation response for the fire situation in the Prado-Carrénage tunnel in Marseilles
E Casalé, Thônes & Aix-Marseille Université; D Monnier, Société Marreilaise du Tunnel Prado-Carrénage; S Lavaux, International Conseil Service Études; G Giovannelli, Centre Scientifique et Technique du Bâtiment; O Vauquelin, Aix-Marseille Université, France
351

Bi-national Bielsa-Aragnouet tunnel: Intelligent traffic and ventilation system enabling alternate bidirectional and unidirectional traffic flow
P Personna, Consortium Tunnel Bielsa-Aragnouet; F Portugués, D Octavio, R Sánchez, L M Gonzalo, Geocontrol, Spain
367
METRO AND RAIL

Aerodynamics

Cross passage pressurisation with non-incident tunnel impulse devices: approximation methodology for system design
S O’Gorman, R Nuttall, Parsons Brinckerhoff, Australia
383

Rail tunnel ventilation and train egress interaction
A Purchase, P Gehrke, S O’Gorman, Tunnel Ventilation, Fire Life Safety Engineers, Australia
403

Dust in railway tunnels – causes, risks and countermeasures
J Rodler, B Hagenah, Gruner GmbH; R Lassy, Wiener Linien GmbH & Co. KG, Austria
419

Comparison of 3D CFD simulation approach for aerodynamics effects in high speed railway tunnel system
D K H Wu, Parsons Brinckerhoff (Asia) Ltd; E H T Xu, University of Shanghai for Science and Technology, China
433

METRO AND RAIL

Thermodynamics and Cooling

Heat waves and their influence on tunnel environments
J A Thompson, M J Gilbey, Parsons Brinckerhoff; S Kemp, London Underground Ltd, UK
445

Operation of evaporative cooling systems on metros
M J Gilbey, Parsons Brinckerhoff Ltd; G Archer, Private Consultant, UK
461

Ice formation – aspects of planning and measures for climate impact
V Langner, B Hagenah, Gruner GmbH, Austria; T Cronvall, VR Track Oy, Finland
477

Efficient tunnel cooling using tunnel wall heat extraction
C Biotto, D Eckford, Mott MacDonald; A Q Chen, Arup, UK
491

Use of Platform Screen Doors and the benefit of surrounding tunnel wall and soil thermal inertia for the normal operation of metro tunnels under tropical weather area: Application to the Chennai metro project (India)
F Waymel, L Fournier, L Plagnol, Egis Tunnels, France; H Prasad, B Umesh Rai, Chennai Metro Rail Limited (CMRL), India
507

METRO AND RAIL

Pressure Transients

Fuzzy criteria for pressure comfort in tunnels
A Vardy, University of Dundee, UK
525
Countermeasure against the micro-pressure wave by a shelter linking neighboring tunnels
T Fukuda, S Saito, M Iida, Railway Technical Research Institute; T Kurita, East Japan Railway Company; S Ozawa, Tokyo University of Technology, Japan

Pressure-wave studies in the tunnel-simulation facility Göttingen (TSG)
D Heine, K Ehrenfried, C Wagner, German Aerospace Center DLR Göttingen, Germany

Measurements and prediction of the pressure variations at cross passages in high-speed railway tunnels
L Hermanns, A Grande, Centro de Modelado en Ingeniería Mecánica (CEMIM); J Fernández, I Del Rey, Universidad Politécnica de Madrid, Spain

Micro-pressure wave countermeasures realized in the Katzenberg tunnel and introduction of a new German micro-pressure wave regulation
P Deeg, M Hieke, C Gerbig, T Tielkes, DB Systemtechnik GmbH, Germany

METRO AND RAIL

Fire
The impacts of train fire profiles on station ventilation system design
S Li, A Louie, E Fuster, Parsons Brinckerhoff, USA

A detailed CFD simulation on the effect of ventilation system operation on smoke control in the 2003 Daegu Subway Station fire
J Choi, N Hur, Sogang University, Korea

Tools for fire hazard analysis of passenger rail vehicles
J Alston, K Schebel, Arup, USA

Simulations and implementation of Pajares Tunnel, and Barcelona Sants- la Sagrera Tunnel, ventilation systems in Spain HSR (AVE) network
A Ruiz-Jimenez, E Barrio, A Matas, TD&T, Spain

METRO AND RAIL

Fire Suppression
The energy budget in suppressed tunnel fires
F Tarada, Mosen Ltd, UK; L M Noordtjik, Efectis Nederland BV, The Netherlands; M K Cheong, W O Cheong, K W Leong, Land Transport Authority of Singapore, Singapore

Fire curve for tunnels with deluge suppression system
A D Lemaire, L M Noordtjik, M Vermeer, Efectis Nederland BV, The Netherlands; M K Cheong, W O Cheong, Land Transport Authority of Singapore, Singapore
CFD simulations of ventilation effects on water mist fixed fire suppression systems on tunnel fires
A X Wang, K Kottom, Hatch Mott MacDonald; N Rhodes, Parsons Brinckerhoff; R Trapani, Parsons Transportation, USA

Ventilation and FFFS fire tests for “Calle 30” road tunnels
S Fernández, A Grande, I Espinosa, FFII – CEMIM; I Del Rey, E Alarcón, ETSII-Universidad Politécnica de Madrid, Spain

Design fire heat release rate in road tunnels with fixed fire fighting systems
B J Melvin, C A Hawkins, R C Moreno, Parsons Brinckerhoff, USA

Capability of a CFD tool for assessing a water mist system in a tunnel
E Blanchard, LEMTA Nancy Université and CSTB; P Boulet, LEMTA Nancy Université, P Carlotti, CSTB, France

Numerical simulations of the interaction of water spray fire suppression and emergency ventilation systems in vehicular tunnels
Y Li, J Fay, Jacobs Engineering; D Kandra, J Alston, Arup, USA

METRO AND RAIL
Aerodynamics Testing and Equipment Design
A full scale test to determine the installation coefficient improvement of a new jetfan
A Valente, Systemair S.r.l., Italy; H Rudelgass, Systemair GmbH, Germany

Contact force disturbances of the pantograph system due to air flow at high-speed trains in tunnels
M Flueckiger, P Reinke, S Nyfeler, HBl Haerter Ltd, Switzerland; W Kapfenberger, ÖBB Infrastruktur AG, Austria

METRO AND RAIL
Fire Testing
Heat release rates of heavy goods vehicle fires in tunnels
M K Cheong, W O Cheong, K W Leong, Land Transport Authority of Singapore, Singapore; A D Lemaire, L M Noordijk, Efectis Nederland BV, The Netherlands; F Tarada, Mosen Ltd, UK

Full-scale fire testing for fire detection, fire suppression and ventilation of I-90 tunnels in Seattle
J Maevski, B Josephson, R Klein, Jacobs Engineering; D Haight, Z Griffith, WSDOT, USA

Full scale fire tests on Metro cars of the Vienna Public Transport
B Stodola, R Lassy, Wiener Linien, Austria

AUTHOR INDEX