2013 3rd International Electric Drives Production Conference

(EDPC 2013)

Nuremberg, Germany
29-30 October 2013
Table of contents

1. Magnet Material and Recycling

1.1 Magnetic Properties of Soft Magnetic Powder Composites at Higher Frequencies in Comparison with Electrical Steels;
 Dr. Schoppa A., PMG Fuessen GmbH, Fuessen (D)……………………… 2
1.2 Improvement of the Magnetic Properties of Injection Molded Polymer Bonded Magnets;
 Kurth K., University of Erlangen Nuremberg (D)…………………….. 7
1.3 Disassembly Strategies for Recovering Valuable Magnet Material of Electric Drives;
 Klier T., University of Erlangen-Nuremberg (D)……………………… 12

2. Innovative Material for Magnetic Sheet

2.1 Iron Loss Modelling which Includes the Impact of Punching, Applied to High-Efficiency Induction Machines;
 Dr. Vandenbossche L., ArcelorMittal, Gent (B)………………………… 16
2.2 Effects and Advantages of High-Strength Non Grain Oriented Electrical Steel for Traction Drives;
 Tietz M., ThyssenKrupp Steel Europe AG, Bochum (D)……………….. 26
2.3 Development of a Contact and a Material Model of Laminated Stacks Low;
 Luchscheider V., University of Erlangen-Nuremberg (D)………………. 32

3. Magnet Manufacturing and Test

3.1 Automated Magnetic Inspection of Permanent Magnet Rotor;
 Dr. Vervaeke K., MagCam NV, Leuven (B)…………………………….. 38
3.2 Innovative Systems for Measuring and Characterisation of Permanent Magnets and Magnetic Fields;
 Holzhey R., INNOVENT e.V, Jena (D)…………………………………… N/A
3.3 Characterization of Magnetic Actuators by Measuring of Magnetic Stray Fields with GMR-Sensors;
 Brela M., Robert Bosch GmbH, Nuremberg (D)……………………… 43
4. Magnetic Sheet Metal Processing

4.1 Assessment of Lamination Stack Production;
 Stoll J., Karlsruhe Institute of Technology (D)………………………… 52

4.2 Localized Investigation of Magnetic Bulk Property
 Deterioration of Electrical Steel;
 Siebert R., Fraunhofer IWS, Dresden (D)…………………………….. 60

4.3 Comparison of Lasercutting vs. Punching and Several
 Established Stacking Alternatives Specially for Thin Laminations;
 Dr. Braun W., Kienle + Spiess GmbH, Sachsenheim (D)……………... N/A

5. Magnet Assembly

5.1 Automated Magnet Assembly for Large PM Synchronous Machines with
 Integrated Permanent Magnets;
 Hofmann B., University of Erlangen-Nuremberg (D)………………... 82

5.2 Optimized Handling of Permanent Magnets within the Mass Production of
 Electric Traction Drives;
 Schilp H., BMW Group, Munich (D)………………………………… 88

5.3 Development of technological competence innovations in
 disruptive changes using the electric motor as an example
 Wowreczko D., RWTH Aachen University (D)…………………..…….. 94

6. Quality Assurance

6.1 Enhanced Competitiveness with Quality Composites and Automated
 Systems;
 Prof. Ehmann B., Hedrich Group, Katzenfurt (D)…………………… N/A

6.2 Impact of Impregnation Materials and Processes on the Partial Discharge
 Resistance of Low Voltage Electrical Machines;
 Kuschnerus M., ELANTAS Beck GmbH, Hamburg (D)……………….. 111

6.3 Virtual Prototyping of Electric Drive Systems for System-level Parameter
 Studies and Optimization;
 Friebe J., Maplesoft, Waterloo (CDN)……………………………… N/A
7. **Winding Technologies (I)**

7.1 Material Based Process Model for Linear Noncircular Coil Winding Processes with Large Wire Gauges;
Sell-Le Blanc F., Karlsruhe Institute of Technology (D) 128

7.2 Direct winding of inside slotted stators - Needle Winding Applications for Concentrated and Distributed Windings;
Hagedorn J., Aumann GmbH, Espelkamp (D) N/A

8. **Production Concepts**

8.1 A Modular Framework for Evaluation of Electrical Machine Production Costs:
Fyhr P., Lund University (S) ... 136

8.2 Energy-Efficient Mobility as a Market Chance;
Dr. Weßner K., puls Marktforschung GmbH, Schwaig (D),
Dr. Schmidt R., IHK Mittelfranken, Nuremberg (D) N/A

8.3 Integrated Product and Process Development for Electric Engine Production;
Nee C., RWTH Aachen University (D) N/A

9. **Winding Technology (II)**

9.1 Guide Winding;
Taux F., Nittoku Engineering Co. Ltd., Saitama (J) N/A

9.2 Practical EV integration cases for static and dynamic wireless power transfer;
Jaksic D., Unum Limited, Auckland (NZ) N/A

9.3 Experiences of Manufacturing Equipment Producer working in "Co-Design" with Electric Drives Producer;
Kiefer D., Marsilli & Co. S.p.A., Castelleone (I) N/A
10. Machine Size Related Production Processes

10.1 Aerosol-Jet-Printing of Dielectric Elastomer Actuators;
 Dr. Hedges M., Neotech Services MTP, Nuremberg (D)……………… 170
10.2 Flexible Mass Production Concept for Segmented BLDC Stator;
 Spitzner R., Buehler Motor GmbH, Nuremberg (D)...................………. 177
10.3 New drives innovation need new mass manufacturing processes;
 Schwander R., SCO Consulting GmbH, Luzern (CH)………………….. N/A

11. Innovative Impregnation Processes and Materials

11.1 Modern Low Emission Resins Used in Efficient Production;
 Jonat T., ELANTAS Beck GmbH, Hamburg (D)………………………… N/A
11.2 Production Techniques to Shield the Vital Components of Electric Drives;
 Schedding T., HUEBERS Verfahrenstechnik Maschinenbau GmbH,
 Bocholt (D)…………………………………………………………………… N/A
11.3 Hot riveting – BHS Technology & Impregnation of Hybrid and Electric
 Motors
 Fischer Y.; Rieger M., bdtronik GmbH, Weikersheim (D)…………….. N/A

12. Lightweight and Innovative Designs

12.1 New Conceptional Lightweight Design Approaches for Integrated
 Manufacturing Processes;
 Peter M., Karlsruhe Institute of Technology (D)……………………….. 206
12.2 ANOFOL, Coils from Anodized Aluminium, the Alternative to Copper;
 Dr. Zimmermann O., STEINERT Elektromagnetbau GmbH,
 Cologne (D)…………………………………………………………………… N/A
12.3 New Self-Excited Synchronous Machine with Tooth Concentrated
 Winding;
 Dr. Dajaku G., FEAAM GmbH, Neubiberg (D)………………………… N/A
13. E-MOTIVE

13.1 Electromobility

13.1.1. The Innovative Hybrid-Synchro-Machine in the New BMW i3;
Dr. Merwerth J., BMW Group, Munich (D)......................... N/A
13.1.2. E-Antrieb.Net - Pre Competitive Research of Leading Technologies for Electromobility;
Gerlach M., RWTH Aachen (D)................................. N/A

13.2 New Electric Motor Concepts

13.2.1. Production Concepts for Electric Drives;
Baumeister J., ZF-Friedrichshafen AG, Schweinfurt (D)........ N/A
13.2.2. Electric motors in wearable rehabilitation devices;
Dr. Budaker B., Fraunhofer IPA, Stuttgart (D)................ N/A
13.2.3. High-Performance and Highly Efficient Electric Wheel Hub Drive in Automotive Design;
Dr. Freitag G., Siemens AG, Munich (D)....................... 268

13.3 Drive Control

13.3.1. Robustness Analysis of Different Position Observers for Surface–Mount Permanent Magnet Synchronous Motors vis–à–vis Rotor Saliency;
Dr. Devos T., Schneider Toshiba Inverters, Pacy Sur Eure (F)… 275
13.3.2. Analysis of Sensor Parameter Characteristics and Digital Control on the Electric Drive’s Performance;
Dr. Brockerhoff P., Infineon Technologies, Neubiberg (D)….. 281
13.3.3. Highly Dynamic, Highly Integrated Current Sensors for Electromobility Applications;
Dr. Slatter R., Sensitec GmbH, Lahnau (D)..................... 287
14. E|SPC

14.1 Safety and Quality in Battery Production

14.1.1. Design of Safe Assembly Processes for Live Working in Traction Battery Series Production;
Ranzinger R., AUDI AG, Ingolstadt (D)................................. 294

14.1.2. Electro mobility - Innovative Training Methods in Respect of Production orientated qualifications of High Voltage Energy Storage;
Fink S., Chemnitz University of Technology (D)...................... 302

14.1.3. Method for Quality Parameter Identification and Classification in Battery Cell Production;
Westermeier M., Technische Universitaet Muenchen (D)......... 308

14.2 Electro- / Chemical Storages Production and Technologies

14.2.1. Laser Applications in Battery Production - From Cutting Foils to Welding the Case;
Kirchhoff M.,
Trumpf Laser- und Systemtechnik GmbH, Ditzingen (D)....... 318

14.2.2. New Requirements for the Virtual Assembly Validation Caused by the Electrification of Passenger Vehicles;
Kunz K., Audi AG, Ingolstadt (D).............................. 318

14.3 Alternative Energy Storage Technologies

14.3.1. Hydropneumatic Storage Technology for Energy Recuperation in Passenger Cars;
Wohlgemuth S., Technische Universitaet Muenchen (D)......... 325

14.3.2. Kinetic Energy Storage - Energy-Efficient and Highly Dynamic for Decentralised Application;
Schaede H., Darmstadt Technical University (D)............... N/A
15. **E/TEV**

15.1 Design and Optimization Approaches

15.1.1. Systematically Design and Optimisation of Inductive Power Transmission Systems;
Rathge C., Institut fuer Automation und Kommunikation e.V. (ifak), Magdeburg (D)……………………………………………… N/A

15.1.2. Modeling of a Three-Phase Inductive Power Transfer System in Phasor Domain for Fast Simulation;
Arnold R., Karlsruhe Institute of Technology (D)………………… 343

15.1.3. Wireless Energy Transmission Construction Kit - 0.4kW to 10kW for Applications with Voltages between 12V and 500V;
Wiegand M., Leopold Kostal GmbH & Co. KG, Dortmund (D). 349

15.2 New Coil Designs

15.2.1. A Novel Positioning Tolerant Inductive Power Transfer System;
Joffe C., Fraunhofer IISB, Erlangen (D)…………………….. 355

15.2.2. Coil Design of Electric Vehicle Inductive Chargers with Homogeneous Low Magnetic Flux Density;
Dr. Turki F., Vahle GmbH & Co. KG, Kamen (D)………………. N/A

15.2.3. A New Hc Core Transmitter of a Contactless Power Transfer System that is Compatible with Circular Core Receivers and H-shaped Core Receivers;
Shimizu R., Saitama University (J)…………………………….. 369

15.3 Challenges for Industrialization and Market Introduction

15.3.1. High-Power Wireless Charging for the EV Market;
Daga A., Momentum Dynamics Corporation, Malvern, PA (USA).………………………………………………………… N/A

15.4 Dynamic Power Transfer Applications (I)

15.4.1. Inductive Power Supply for Heavy Rail Vehicles;
Streit S., Institute of Vehicle Concepts – German Aerospace Center, Stuttgart (D)……………………………………………………. 377

15.4.2. Electric Mobility for Heavy Duty Vehicles – Siemens eHighway Solution and Research Results;
Dr. Lehmann M., Siemens AG, Erlangen (D)………………….. N/A

15.4.3. Practical EV Integration Cases for Static and Dynamic Wireless Power Transfer;
Perik H., Flanders' Drive, Lommel (B)………………………….. N/A
15.5 Dynamic Power Transfer Applications (II)

15.5.1. Wireless Charging for Electric Vehicle with Microwaves;
 Prof. Shinohara N., Kyoto University (J)………………………….. 398

15.5.2. Inductive Power Transmission for Electric Vehicles with a
 Three-Phase Moving Transformer;
 Prof. Duschl-Graw G., Beuth Hochschule für Technik,
 Berlin (D)……………………………………………………….. N/A

15.5.3. Identification and Positioning System for Inductive
 Charging Systems;
 Dr. Loewel T., Alcatel-Lucent Deutschland AG, Berlin (D)…… 416

15.6 Broader Considerations

15.6.1. Extending a Traffic Simulation Tool for the Evaluation of
 novel Charging Infrastructures;
 Kurczveil T., Technical University Braunschweig (D)……….. 421

15.6.2. Development of Positioning Tolerant Inductive Charging
 Systems for Electric Vehicles;
 Prof. Dr. Parspour N., University of Stuttgart (D)…………….. N/A

15.6.3. Charging Infrastructure for Shared Use of Electric
 Vehicles in an Urban Area;
 Borrmann D., Fraunhofer IAO, Stuttgart (D)………………….. 431
16. Postersession

16.1 Proactive Quality Control System for Defect Reduction in the Production of Electric Drives;
Aichele J., Robert Bosch GmbH, Schwieberdingen (D)……………… 440

16.2 Structural Mechanic Finite Element Analysis of the Bend and Torsion Behavior of High-Voltage Cables;
Boenig J., University of Erlangen-Nuremberg (D)………………….. 446

16.3 Electrical Drivetrain without Rare Earth Magnets and Integrated Inverter with Inherent Redundancy;
Dr. Brockerhoff P., Infineon Technologies, Neubiberg (D)………… 455

16.4 Comparison of Counting Algorithms and Empiric Lifetime Models to Analyze the Load-Profile of an IGBT Power Module in a Hybrid Car;
Denk M., University of Bayreuth (D)…………………………........... 462

16.5 Design and Commissioning of a Low-Voltage 25 kW PMSM Traction Drive;
Endert F., Ilmenau University of Technology (D)………………….. 468

16.6 Robot Based Assembly of Stators;
Kuehl A., University of Erlangen-Nuremberg (D)……………........... 473

16.7 Optimization of Analytical Iron Loss Approaches for Electrical Machines;
Reinlein M., Technical University Nuremberg (D)………………….. 478

16.8 Flexible Automation for the Production of Contactless Power Transfer Systems for Electric Vehicles;
Risch F., University of Erlangen-Nuremberg (D)………………….. 485

16.9 Potential for Standardization and Guidelines of Product and Production Features of Electric Drives;
Sell-Le Blanc F., Karlsruher Institute of Technology (D)………… 492

16.10 Reliable Packaging Technologies for Power Electronics:
Diffusion Soldering and Heavy Copper Wire Bonding;
Syed Khaja A.H., University of Erlangen-Nuremberg (D)………… 498

16.11 Parallel Decomposition for Safety-Critical Systems;
Uygur G., University of Erlangen-Nuremberg (D)………………….. 504