26th International Technical Meeting of the Satellite Division of the Institute of Navigation

(ION GNSS 2013)

Nashville, Tennessee, USA
16-20 September 2013

Volume 1 of 4
Table of Contents

> Viewing of the text and graphics and the ease of readability will depend on the quality and/or consistency of the author original file.

PLENARY SESSION

Challenges of Globally Implementing ADS-B (Automatic Dependent Surveillance – Broadcast): Martin-Ulrich Ripple, *UberDash Consulting Pty Ltd., Canada*
1

Defining the Gold Standard for Navigation: Logan Scott, *LS Consulting*
16

A1: Remote Sensing with GNSS and Integrated Systems

GNSS Reflected Signal Acquisition with Galileo Signals: T.R. Peres, R. Castro, J.S. Silva, N. Catarino, P.F. Silva, *DEIMOS Engenharia, Portugal*
38

Enhancing Gyrocompassing Performance Using Low-Cost Optical Sensors: M.J. Veth, *Veth Research Associates, LLC*
47

Remote Sensing of Soil Based on a Compact and Fully Software GNSS-R Receiver: Y. Pei, R. Notarpietro, S. De Mattia, P. Savi, F. Dovis, *Politecnico di Torino, Italy*; M. Pini, *Istituto Superiore Mario Boella, Italy*
56

Snow Height and Surface Temperature Variations from Ground GPS Receivers in Greenland: N. Najibi, S. Jin, *Shanghai Astronomical Observatory, Chinese Academy of Sciences, China*
62

GPS Seismo-ionospheric Disturbances and Behaviors Following the 2011 Tohoku and 2008 Venchuan Earthquakes: S. Jin, R. Jin, *Shanghai Astronomical Observatory, Chinese Academy of Sciences, China*
69

On the Correlation Between Ionosphere Scintillation and Geomagnetic Field Activity: Y. Jiao, Y. Morton, S. Taylor, *Miami University (Ohio)*; W. Pelgrum, *Ohio University*
77

Distributed Array of GPS Receivers for 3D Wind Profile Determination in Wind Farms: D. Chen, L. Heng, D. Jia, G.X. Gao, *University of Illinois at Urbana-Champaign*
84
B1: Receiver/Antenna Technology

Using Both GPS L1 C/A and L1C: Strategies to Improve Acquisition Sensitivity:
K.C. Seals, U.S. Coast Guard Academy; W.R. Michalson, Worcester Polytechnic Institute;
P.F. Swaszek, University of Rhode Island; R.J. Hartnett, U.S. Coast Guard Academy 92

Analysis and Verification to the Effects of NH Code for BeiDou Signal Acquisition and Tracking:
K. Yan, H. Zhang, T. Zhang, L. Xu, X. Niu, Wuhan University, China .. 107

Integrating Compression and Multi-Rate Algorithms for Robust Acquisition: Analysis using GPS L2C Signal:
S.R. Babu, A. Kumar, V. Gambhir, Samsung Research India Limited, India 114

Improving GNSS Bit Synchronization and Decoding Using Vector Tracking:
T. Ren, M. Petovello, University of Calgary, Canada; C. Basnayake, General Motors 121

Collaborative GNSS Signal Processing: A. Soloviev, Qunav; J. Dickman, Northrop Grumman 135

A Novel Approach for Multipath and Interference Mitigation with Dual Tracking Antenna Receiver:
R. Guidi, V. Martorelli, Ingegneria dei Sistemi S.p.A.; D. Jiménez Baños, J.A. Ávila Rodríguez,
European Space Agency, The Netherlands ... 144

GNSS Multipath Mitigation using High-Frequency Antenna Motion:
T. Ertan, M.L. Psiaki, B.W. O’Hanlon, R.A. Merluzzi, S.P. Powell, Cornell University 154

Quad Constellation Receiver- GPS, GLONASS, Galileo, BeiDou: P.G. Mattos, STMicroelectronics, UK;
F. Pisoni, STMicroelectronics, Italy .. 176

Matched Quantization and Band Separation in a Direct Sampling Dual Band GNSS Receiver for Civil Aviation:
A. Blais, C. Macabiau, O. Julien, École Nationale de l’Aviation Civile, France 182

GNSS Receiver Technology Trends: J-H. Won, S-J. Ko, I. Kraemer, University FAF Munich, Germany 197

C1: Aviation Applications

SBAS Flight Trials in European Eastern Countries where EGNOS is Still not Available: J. Cegarra,
J. Escartín, J. Ostolaza, GMVAD, Spain; M. Krywanis-Brzostowska, European GNSS Agency; H. de With,
GNSS Expert .. 205

Can Current DME Support PBN Operations with Integrity?: G.E. Berz, V. Vitan, I. Skyrda, Eurocontrol,
Belgium; P.B. Ober, Integricom, The Netherlands .. 233
The Future Role of a “Standalone” Distance Measuring Equipment (DME) in the United States National Airspace System (NAS): E. Etienne, V. Hinton, S. Frodge, Federal Aviation Administration; R. Achanta, Tetra Tech

Wide Area Multilateration Evaluation Test Bed using USRP Based ADS-B Receiver: S-S. Jan, S-L. Jheng, A-L. Tao, National Cheng Kung University, Taiwan

Real-Time Data Link Implementation Aspects of a Measurement-Based ADS-B System for Conflict Detection and Resolution: P. Duan, M. Uijt de Haag, Ohio University; J.L. Farrell, Vigil Inc.

Precise GNSS Product-Aided Flight Inspection System: Y. Wang, Queensland University of Technology, Australia; X. Shi, Beihang University, China; P. Wang, Aviation Data Communication Corporation, China

The EGNOS NOTAM Proposals Service: Towards Full ICAO Compliance: J. Vázquez, M.A. Sánchez, ESSP-SAS, Spain; J. Cegarra, P.D. Tejera, P. Gómez Martínez, GMVAD, Spain

GNSS Multipath Failures Modes Analysis for Airport Surface Operations: L. Montloin, L. Azoulai, Airbus, France; A. Martineau, C. Milner, C. Macabiau, ENAC Telecom lab, France

Curved Approach Segments for Noise Abatement: M. Troller, R. Germann, Skyguide, Swiss Air Navigation Services, Switzerland; A. Frik, Cessna Aircraft Company, Zurich Citation Service Center, Switzerland; M. Bertschi, Swiss Air Force, Switzerland; P. Truffer, M. Scaramuzza, Skyguide, Swiss Air Navigation Services, Switzerland

D1: Emerging GNSS (Galileo, COMPASS, QZSS, IRNSS)

An Efficient Acquisition Method for the CSK Signal of QZSS LEX: K. Nakakuki, R. Hirokawa, Mitsubishi Electric Corporation Kamakura Works, Japan

BeiDou Receiver Autonomous Integrity Monitoring (RAIM) Performance Analysis: X-L. Su, Shanghai Jiao Tong University, China; China Academy of Engineering Physics, China; X. Zhan, F. Qin, X. Zhang, Y. Zhang, Shanghai Jiao Tong University, China

Design, Implementation, and Performance Analysis of ACE-BOC Modulation: Z. Yao, M. Lu, Tsinghua University, China

The Comparison on the Positioning Performance Between BeiDou and GPS: Y. Xu, S. Ji, W. Chen, D. Weng, Y. Xu, W. Chen, D. Weng, The Hong Kong Polytechnic University, Hong Kong; S. Ji, China University of Petroleum, China

Four-constellation Reliability in Challenging GNSS Signal Environments and the Estimation of Inter-system Time-offsets: R. Winit, K. O’Keefe, University of Calgary, Canada

BeiDou Consumer Receiver Chips at Last: P.G. Mattos, STMicroelectronics, UK; F. Pisoni, STMicroelectronics, Italy
Approaches to Obtaining BeiDou Hazardous Pseudorange Bias with the Ordered Weighted Aggregation Operators: S. Qian, Research Center of Electrical Automation and Information Communication, China Waterborne Transport Research Institute, China; Y. Yuan, China Air Force Engineering University, China

E1: Indoor Navigation and Timing 1

WLAN TOA Ranging with GNSS Hybrid System for Indoor Navigation: B. Li, K. O'Keefe, University of Calgary, Canada

Positioning in GPS Challenged Locations – The NextNav Terrestrial Positioning Constellation: S. Meiyappan, A. Raghupathy, G. Pattabiraman, NextNav, LLC.

Seamless Location Based Services (LBS) in Train Stations Using GNSS and IMES: A. Shikimura, Hokkaido JR Cybernet Co., Ltd., Japan; K. Mutoh, Japan Aerospace Exploration Agency, Japan; N. Kohtake, Keio University, Japan; M. Utsumi, Generation Create, Japan; T. Furutou, East Japan Marketing & Communications Inc., Japan; H. Tomita, Hitachi, Ltd., Japan; M. Ishii, GNSS Technology Inc., Japan

The GEOCOM Mobile Positioning System: D. Weigand, E. Soto, M. Volpe, J. Koss, The Boeing Company

Visual Positioning with Image Database and Range Camera: W-W. Kao, I-J. Chu, National Taiwan University of Science and Technology, Taiwan

Using Multiple Sensor Triads for Enhancing the Navigation Solution of Portable and Wearable Devices: M. Omr, Trusted Positioning Inc./Queen's University, Canada; J. Georgy, Trusted Positioning Inc., Canada; A. Noureldin, Royal Military College of Canada/Queen's University, Canada

F1: Alternatives and Backups to GNSS 1

LTE OTDOA Positioning Performance Under Interference Conditions: T-Y. Chiou, Y-W. Ting, Y-C. Lin, MediaTek Inc, Taiwan

Novel Environmental Features for Robust Multisensor Navigation: D. Walter, P.D. Groves, University College London, UK; B. Mason, J. Harrison, J. Woodward, P. Wright, Terrafix Ltd., UK
Vision-based Real-time Estimation of Smartphone Heading and Misalignment: B. Kazemipur, Trusted Positioning Inc./University of Calgary, Canada; Z. Syed, J. Georgy, Trusted Positioning Inc., Canada; N. El-Sheimy, University of Calgary, Canada 505

Stereo-Vision Aided GNSS for Automotive Navigation in Challenging Environments: B.M. Aumayer, M.G. Petovello, G. Lachapelle, University of Calgary, Canada 511

Instantaneous Ambiguity Resolution of MOSAIC/DME: A Single Station Based 3D Positioning System for Alternative PNT: O-J. Kim, C. Kim, J. Song, Y. Kim, C. Kee, Seoul National University, South Korea 521

Panel 1: Program Updates

GPS Program Updates: B. Cooley, GPS Directorate 537

Galileo Programme Status Update: E. Chatre, European Commission, Belgium 555

A2: Marine and Land Based Applications

Demonstrating the Benefits of Resilient PNT: A. Grant, P. Williams, C. Hargreaves, M. Bransby, The General Lighthouse Authorities of the United Kingdom and Ireland 598

SeaSlug: A Low-cost, Long-duration Mobile Marine Sensor Platform for Flexible Data-collection Deployments: B. Mairs, R. Curry, G. Elkaim, University of California, Santa Cruz 605

Networked GPS Approach to Tracking Marine Animal Schools: L. Heng, G.X. Gao, University of Illinois at Urbana Champaign 612

At-sea Data Collection in the Salmon Fisheries Using GPS-enabled Android: J.W. Lavrakas, W. Black, Advanced Research Corporation 620

A PVT Estimation for the ERTMS Train Control Systems in Presence of Multiple Tracks: A. Neri, A.M. Vegni, RADIOLABS, Italy; F. Rispoli, Ansaldo STS, Italy 631

Pushing Standardisation of GNSS-based Location Systems to Support Terrestrial Applications Development: J. Giraud, Thales Alenia Space, France; M-L. Mathieu, FDC, France; J.P. Boyero Garrido, I. Fernandez Hernandez, European Commission

B2: Alternatives and Backups to GNSS 2

GPS Denied Navigation Using Meta-Image Objects From Georeferenced Maps: B.A. Schnaufer, Rockwell Collins; K. Celik, Iowa State University; J. Nadke, P. Hwang, Rockwell Collins; A. Somani, Iowa State University

Experimental Study of Two-channel UWB-OFDM Radar for Indoor Navigation with INS Integration: K. Kauffman, J. Raquet, Air Force Institute of Technology; Y. Morton, D. Garmatyuk, Miami University (Ohio)

Integrating Vision Derived Bearing Measurements with Differential GPS and UWB Ranges for Vehicle-to-vehicle Relative Navigation: E.A. Abolfathi, K. O'Keefe, University of Calgary, Canada

Positioning Results for LDACS1 Based Navigation with Measurement Data: N. Schneckenburger, B. Elwischger, D. Shutin, M. Suess, B. Belabbas, M-S. Circiu, German Aerospace Center (DLR), Germany

Integration of Vision and Navigation: J.E Kain, J. Summerville, J. Summerville, WaldoAir Corporation

Research on the Epoch Folding Phase Estimation X-ray Pulsars Relative Navigation Based Spatial States Determination of Formation Flying Spacecrafts: C-J. Guo, Z. Tian, X-C. Zhang, University of Electronic Science and Technology of China; Z. Chen, China Aerospace Science and Industry Academy of Information Technology, China
C2: GNSS Space Based Augmentation Systems (SBAS)

SBAS L1/L5 ICDS and Alternatives: Analysis of Multi-GNSS Service Performance Assessment:
M. Cueto, A. Cezón, J. Caro, GMV, Spain; C. Rodriguez, D. Brocard, ESA/CNES, France; J.C. Denis, ESA; E. Châtre, European Commission, Belgium 805

Implementation of the L5 SBAS MOPS: T. Walter, J. Blanch, P. Enge, Stanford University 814

Qualifying an L5 SBAS MOPS Ephemeris Message to Support Multiple Orbit Classes:
T. Reid, T. Walter, P. Enge, Stanford University 825

SBAS Interoperability Demonstration: F. Lorge, Federal Aviation Administration 844

Receiver Inter System Bias Impact on SBAS Dual Constellation Positioning and Integrity:
C. Boulanger, N. Suard, F. Mercier, C. Rodriguez, CNES, France; D. Lapeyre, Thales Services, France 854

A New Method to Make Ionospheric Delay Corrections in SBAS for GPS and Compass Dual Constellations: S. Wang, B. Zhu, Peking University, China 865

SBAS in Equatorial Regions: A. Cezón, M. Cueto, E. Sardón, D. Rizzo, GMV, Spain 875

The Arctic Testbed – Providing GNSS Services in the Arctic Region: P.E. Kvan, Kongsberg Seatex, Norway; M. Jeannot, European Space Agency 890

WAAS Availability Over the Solar Maximum: T. Schempp, B. Stimmel, Raytheon Company 902

Dual Frequency SBAS Trial and Preliminary Results for East-Asia Region: T. Sakai, K. Hoshinoo, Electronic Navigation Research Institute, Japan; T. Walter, Stanford University 912

D2: GPS and GLONASS Modernization

GPS III Signal Integrity Improvements: S. Shaw, A.J. Katronick, Lockheed Martin Corporation 936

GPS Inter-Signal Corrections (ISCs) Study: W. Feess, J. Cox, E. Howard, K. Kovach, The Aerospace Corporation 951

GPS SPS Performance in 2012 – How Good Was It?: B. Renfro, J. Kammerman, M. Bratton, D. Munton, ARL, The University of Texas at Austin 959

GLONASS Navigation Message Format for Flexible Row Structure: A.A. Povalyaev, JSC Russian Space Systems Moscow Aviation Institute (National Research University), Russia 972
E2: Indoor Navigation and Timing 2

Next Generation Indoor Positioning System Based on WiFi Time of Flight: L. Banin, U. Schtzberg, Y. Amizur, Intel Corp, Israel ---975

Accurate Indoor Positioning Using Multipath Components: C. Gentner, T. Jost, A. Dammann, German Aerospace Center (DLR), Germany ---983

User Aided Self-growing Approach on Radio Map Construction for WLAN Based Localization: D. Zou, W. Meng, S. Han, Z. Gong, Harbin Institute of Technology, China; B. Yu, Heibei Satellite Navigation Technology and Equipment Engineering Technology Research Centre, China ---991

SmartSLAM - An Efficient Smartphone Indoor Positioning System Exploiting Machine Learning and Opportunistic Sensing: R.M. Faragher, R.K. Harle, University of Cambridge, UK ---1006

Cooperative Exploitation for Indoor Geolocation: A. Soloviev, Qunav, LLC; C. Yang, Sigtem Technology, Inc. ---1024

Indoor Localization Based on Magnetic Anomalies and Pedestrian Dead Reckoning: J. Ma, J. Qian, P. Li, R. Ying, P. Liu, Shanghai Jiaotong University, China ---1033

F2: GNSS-MEMS Integration

Investigating the use of MEMS Based Wrist-worn IMU for Pedestrian Navigation Application: J. Qian, J. Ma, L. Xu, R. Ying, W. Yu, P. Liu, Shanghai Jiao Tong University, China ------------------------1057

Low Power Tracking of GNSS Signal by IMU Aided Intermittent Tracking Algorithm: L. Xu, M. Wang, R. Ying, P. Liu, W. Yu, Shanghai Jiao Tong University, China ------------------------1065

Development of High-precision Navigation Algorithm by Fusion of GPS and MEMS Sensors: Y. Kosaka, T. Tsuchiya, The University of Tokyo, Japan; M. Naruoka, H. Tomita, Japan Aerospace Exploration Agency (JAXA), Japan; H. Kurihara, K. Ishida, T. Ichikawa, Tokyo Aircraft Instrument Co. Ltd., Japan ------------------------1071

MEMS Sensor Assisted Terrestrial Vehicular Navigation on Portable Devices: S. Bharadwaj, S. Murali, J. Balakrishnan, Texas Instruments, India; A. Deshpande, University of Wisconsin, USA; Y. Shekar, Texas Instruments, India; G. Dutta, AngioMetrix Corporation, India ------------------------1084
An Algorithm for Automatic Inertial Sensors Calibration: S. Guerrier, R. Molinari, University of Geneva, Switzerland; J. Skaloud, École Polytechnique Fédérale de Lausanne, Switzerland; M-P. Victoria-Feser, University of Geneva, Switzerland

A Technique for Fast Magnetometer Calibration with Little Space Coverage: A. Wahdan, J. Georgy, W.F. Abdelfatah, A. Noureldin, Trusted Positioning Inc, Canada

Panel 2: IP Policies Related to GNSS

Towards an IP Policy for the EU GNSS Programme Galileo: G. Caratti, European Commission, JRC, Belgium

IP Landscape, Risks and Policies Around GNSS: Pascal Asselot, France Brevets, France

A3: Precise Point Positioning

Real Time Precise GPS Constellation and Clocks Estimation by Means of a Kalman Filter: D. Laurichesse, L. Cerri, J.P. Berthias, F. Mercier, Centre National d'Etudes Spatiales, France

Integrity Monitoring in Precise Point Positioning: G. Seepersad, S. Binsath, York University, Canada

Precise Point Positioning with Fast Ambiguity Resolution - Prerequisites, Algorithms and Performance: L. Mervart, C. Rocken, T. Iwabuchi, Z. Lukes, GPS Solutions Inc., USA; M. Kanzaki, Hitachi Zosen Corp., Japan

Concepts for Undifferenced GLONASS Ambiguity Resolution: S. Banville, Natural Resources Canada & University of New Brunswick, Canada; P. Collins, F. Lahaye, Natural Resources Canada, Canada

Interchangeable Integration of GPS and Galileo by Using a Common System Clock in PPP: T. Melgard, Fugro Satellite Positioning AS, Norway/University of Calgary, Canada; J. Tegedor, Norwegian University of Life Sciences As, Norway; K. de Jong, Fugro Intersite BV, The Netherlands; D. Lapucha, Fugro Chance Inc., USA; G. Lachapelle, University of Calgary, Canada

Time Correlation in GNSS Precise Point Positioning: M.E.D. Goode, S.J. Edwards, P. Moore, Newcastle University, UK; K. de Jong, Fugro Intersite B.V., The Netherlands

Towards the Inclusion of Galileo and BeiDou/Compass Satellites in Trimble CenterPoint RTX: H. Landau, M. Brandl, X. Chen, R. Drescher, M. Glocke, A. Nardo, M. Nitschke, D. Salazar; U. Weinbach, F. Zhang, Trimble TerraSat GmbH, Germany
Improving Ambiguity Validation and Integrity Monitoring of Precise Point Positioning (PPP):
A. Jokinen, S. Feng, W. Schuster, W. Ochieng, Imperial College London, UK; L. Yang, T. Moore, C. Hill, NGI, University of Nottingham, UK

An Evaluation of Solar Radiation Pressure Models for QZS-1 Precise Orbit Determination:
S. Ikari, T. Ebinuma, R. Funase, S. Nakasuka, The University of Tokyo, Japan

B3: Multi-Sensor and Integrated Navigation in GNSS-Challenged Environments 1

Performance of Fault Detection and Exclusion for GNSS/Locata Integrated Navigation:
L. Yang, University of New South Wales, Australia

Seamless Indoor Outdoor Positioning using Bayesian Sensor Data Fusion on Mobile and Embedded Devices:
G. Hejc, J. Seitz, J. Gutierrez Boronat, T. Vaupel, Fraunhofer Institute for Integrated Circuits, IIS, Germany

Error Correction Method with Precise Map Data for GPS/DR Based on Vision/Vehicle Speed Sensor:
B-H. Lee, G-I. Jee, Konkuk University, Republic of Korea; S-H. Im, M-B. Heo, Korea Aerospace Research Institute, Republic of Korea

Probabilistic Integration of 3D Building Models and GNSS for Reliable Vehicle Localization in Urban Areas—the GAIN Approach:
S. Bauer, M. Obst, G. Wanielik, Chemnitz University of Technology, Germany

Ultra-Wideband Aided Carrier Phase Ambiguity Resolution in Real-Time Kinematic GPS Relative Positioning:
E. Broshears, S. Martin, D. Bevly, Auburn University

Tightly Coupled Multi-GNSS Receiver Fusion for Robust Position Estimation in Urban Environments:
R. Streiter, S. Bauer, G. Wanielik, Technische Universität Chemnitz, Germany

Real-time Cycle-slip Detection and Correction for Land Vehicle Navigation using Inertial Aiding:
M.O. Karaim, T.B. Karamat, Queen’s University, Canada; A. Nouredin, Royal Military College of Canada and Queen’s University, Canada; M. Tamazin, Queen’s University, Canada; M.M. Atia, Royal Military College of Canada

Reliability of GNSS Measurements via Pseudorange Prediction Using an Odometer for Robust Land-Vehicle Navigation:
K.A. Bin Ahmad, M. Sahmoudi, ISAE, France; C. Macabiau, ENAC, France

Comparison of Tightly Coupled and Deeply Coupled GPS/INS Integration for Automotive Application Using a Software Defined GNSS Receiver Framework:
M. Langer, G.F. Trommer, Karlsruhe Institute of Technology, Germany

Wi-Fi Indoor Localisation Based on Collaborative Ranging Between Mobile Users:
H. Jing, J. Pinchin, C. Hill, T. Moore, University of Nottingham, UK
C3: GNSS Ground Based Augmentation Systems (GBAS)

Tightening DGNSS Protection Levels Using Direct Position-Domain Bounding:
O. Osechas, J. Rife, *Tufts University* ... 1329

An Empirical Model for Computing GPS SPS Pseudorange Natural Biases Based on High Fidelity Measurements from a Software Receiver:
S. Gunawardena, F. van Graas, *Ohio University* .. 1341

Simulation of Swept FM Interference and its Impact on an Aviation Receiver:
M. Brenner, *Honeywell* .. 1359

Performance Analysis and Experimental Validation of Broadband Interference Mitigation Using an Atomic Clock-Aided GPS Receiver:

GPS Multipath Assessment in Real Airport Conditions to Support Category III Operations:
L. Azoulai, A. Chen, Y. Cruz Cavalcanti, *Airbus, France* .. 1380

GAST C and GAST D Performance Analysis Based on BeiDou Navigation Satellite System:
Z. Wang, J. Zhang, Y. Zhu, R. Xue, *Beihang University, China* 1395

Potential for the use of GBAS at Close-by Airports:
M. Felux, P. Remi, S. Circiu, *German Aerospace Center (DLR), Germany* 1403

Design of Ephemeris Fault Detection Algorithm Using Baseline Length of Integrated GBAS:
J. Ahn, D. Won, S. Sung, Y.J. Lee, *Konkuk University, Republic of Korea*; J. Kim, *Korea Aerospace University, Republic of Korea*; H.S. Jun, *Korea Aerospace Research Institute, Republic of Korea* .. 1411

GBAS Enhancement by Using the Ionospheric Gradient Correction:
D. Weng, W. Chen, S. Ji, Y. Xu, *The Hong Kong Polytechnic University, Hong Kong* ... 1417

Detecting Ionospheric Threat for GBAS Based on Spatial-temporal Method:
P. Zhao, J. Zhang, R. Xue, *Beihang University, China* ... 1428

D3: GNSS Compatibility, Interoperability, and Services

The Inadequacy of the Spectral Separation Coefficient and Aggregate Gain Factor for Quantifying the Effects of GPS C/A Code Self Interference:

On the Design of a GNSS Acquisition Aiding Signal:
M. Paonni, M. Bavaro, *Institute for the Protection and Security of the Citizen (IPSC), Joint Research Centre (JRC) European Commission, Italy* ... 1445

Galileo Consumer Receiver: Live Satellites at Last:
P.G. Mattos, *STMicroelectronics, UK*; F. Pisoni, *STMicroelectronics, Italy* ... 1457

Analysis of the use of CSK for Future GNSS Signals:
First GNSS Positioning using IOV Galileo Satellites: B. Bonhoure, C. Boulanger, T. Chapuis, F.X. Marmet, N. Suard, CNES Centre National d’Etudes Spatiales, France

E3: Software Receivers

Turning a Television into a GNSS Receiver: C. Fernández-Prades, J. Arribas, P. Closas, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Spain

Open Source Software Defined Radio Platform for GNSS Recording and Simulation: A. Brown, J. Redd, M. Dix, NAVSYS Corporation

Fast Prototyping of Receiver Accelerators Using NI LabVIEW FPGA: A. Soghoyan, University of Texas at San Antonio; D. Kinjarapu, Qualcomm, Inc.; D. Akopian, University of Texas at San Antonio

Feasibility Study on the use of Xilinx COTS Rad-Hardened FPGAs to for GNSS Signal Acquisition in Space Applications: S. Ramakrishnan, P. Enge, Stanford University

STARx – A GPU Based Multi-System Full-Band Real-Time GNSS Software Receiver: B. Huang, Z. Yao, F. Guo, S. Deng, X. Cui, M. Lu, Tsinghua University, China

A Universal GNSS Software Receiver MATLAB® Toolbox for Education and Research: S. Gunawardena, Ohio University

A Multiple Lock Detector for the Signal Abnormality Detection in the GPS Receiver: M.H. Jin, Y.S. Choi, H.H. Choi, S.J. Lee, Chungnam National University, Republic of Korea; C. Park, Chungbuk National University, Republic of Korea

F3: Urban Navigation Technology

Correcting GNSS Multipath Errors Using a 3D Surface Model and Particle Filter: T. Suzuki, N. Kubo, Tokyo University of Marine Science and Technology, Japan

Multipath Mitigation Methods Based on Diversity Algorithms: S. Rougerie, AUSY, France; G. Carrie, Thales Alenia Space, France; J. Israel, ONERA, France; L. Ries, CNES, France; M. Monnerat, Thales Alenia Space, France; P. Thevenon, ENAC, France

Pulsed-RF Ultra Wideband Transceivers for Aiding in Distributed Navigation Networks: B. Dewberry, Time Domain

TAXISAT: A Driverless GNSS Based Taxi Application Capable of Operating Cost Effectively:
O. Otaegui, Vicomtech-IK4, Spain; O. Desenfans, V. Barreau, M3Systems, Belgium; L. Plault, Capital HighTech, France; A. Lago, Robosoft, France

Navigation Performance Using Long-Term Ephemeris Extension for Mobile Device:
Y. Li, Y. Gao, University of Calgary, Canada

Varying Step Length Estimation Using Nonlinear System Identification:
A. Wahdan, M. Omr, J. Georgy, A. Noureldin, Trusted Positioning Inc., Canada

Methods for Improving PPP Accuracy in Urban Canyons:
Y. Kubo, Y. Suzuki, M. Ozaki, M. Ohashi, S. Sugimoto, Ritsumeikan University, Japan

Omnidirectional Antenna Model Based Wi-Fi Positioning Method for Urban Area:
J-H. Song, G-I. Jee, Konkuk University, Republic of Korea

Simulating Non-LOS GNSS Reflected Signals in Urban and Dense Urban Environments:
J. Jakobsen, DTU Space, National Space Institute, Denmark; A.B.O. Jensen, AJ Geomatics, Denmark

Panel 3: New Products

GNSS Road Applications:
G. Capelle, GUIDE – Thales Alenia Space France

Location for Mobile Computing:
G. Turetzky, Intel Mobile Communications

New Developments in Mobile Devices Chips and Receivers for GNSS:
P.G. Mattos, STMicroelectronics R&D Ltd, UK

GNSS and ITS: The Need for Performance Standards:
F. Peyret, IFSTTAR, France

Galileo “Early Services” Promoting New Applications and Products:
M. Lisi, European Space Agency/European Commission/European GNSS Agency, The Netherlands

Uninhabited Aerial Vehicle as Avionics Prototyping Platforms:
D. Gebre-Egziabher, University of Minnesota

Symmetricom Generates, Distributes and Applies Precise Time:
P. Bourekas, Symmetricom

New Products Panel Discussion:
S. Hickling, Spirent

Train Control Systems with GNSS Capability: Market Trends and Challenges:
F. Rispoli, Ansldo STS, Italy

Modernized Military GPS User Equipment: Our Way Forward:
T. Sharpe, The Aerospace Corporation

A4: GNSS and the Atmosphere 1

Determination of GPS Tropospheric Delays by Utilizing Ground-based GPS Network Measurements and its Applications for Weather Forecasts and Precise Point Positioning:
D. Kim, K-D. Park, Inha University, Republic of Korea

Prediction of Regional Ionospheric Delays with Spherical Cap Harmonic Analysis and Vector Auto-regressive Models: M. Ohashi, K. Nishimoto, T. Sakai, Y. Kubo, S. Sugimoto, *Ritsumeikan University, Japan*

Mitigation of Ionospheric Mapping Function Error: M.M. Hoque, N. Jakowski, *German Aerospace Center (DLR), Germany*

Ionosphere Magnetic Storm Occurrence Probability: M. Chassan, *IMT Université Toulouse 3 & CNES, France*; J-M. Azais, *IMT Université Toulouse 3, France*; G. Buscarlet, *Thales Alenia Space, France*; N. Suard, *CNES, France*

Small-scale Ionospheric Delay Variation Associated with Plasma Bubbles Studied with GNSS and Optical Measurements and its Impact on GBAS: S. Saito, T. Yoshihara, *Electronic Navigation Research Institute, Japan*; Y. Otsuka, *Nagoya University, Japan*

Ionosphere TEC and TEC Gradients Estimation Using a Regional GNSS Network: C. Wang, *Tongji University, China and Miami University (Ohio)*; Y. Morton, *Miami University, (Ohio)*

B4: GNSS Simulation and Testing

Evaluation of GNSS RF Signal Simulators and Receivers Based on Recorded Multi GNSS Signals in Scenarios of Traffic Telematics: R. Richter, *Technische Universität Dresden, Germany*; B. Wolf, *Fraunhofer Institute for Transportation and Infrastructure Systems IVI, Germany*; O. Michler, *Technische Universität Dresden, Germany*

Automated Test-bench Infrastructure for GNSS Receivers – Case Study of the TUTGNSS Receiver:
S. Thombre, J. Raasakka, T. Paakki, F. Della Rosa, M. Valkama, J. Nurmi, Tampere University of Technology, Finland ---1919

GNSS Over-the-Air Testing using Wave Field Synthesis: A. Rügamer, G. Del Galdo,
Fraunhofer Institute for Integrated Circuits IIS, Germany; J. Mahr, Technical University Ilmenau,
Germany; G. Rohmer, G. Siegert, M. Landmann, Fraunhofer IIS, Germany --1931

A-GPS Assistance Network Delay Modeling and Estimation Over Mobile Networks:
G. Huang, D. Akopian, The University of Texas at San Antonio ---1944

An Integrated and Cost-Effective Simulation Tool for GNSS Space Receiver Algorithms Development:
J.S. Silva, H.D. Lopes, T.R. Peres, J.M. Vasconcelos, M.M. Coimbra, P.F. Silva, DEIMOS Engenharia,
Portugal; P. Palomo, J. Pérez, J.A. Pulido, DEIMOS Space, Spain; A. Garcia, J. Roselló,
European Space Agency --1951

C4: Algorithms and Methods

Receding Horizon Trajectory Optimization for Simultaneous Signal Landscape Mapping and Receiver Localization: Z.M. Kassas, J.A. Bhatti, T.E. Humphreys, University of Texas at Austin ----------1962

Plug-and-play Information Fusion in an INS/GNSS/SoOps Integrated Navigation:
X. Zhang, X. Zhan, Shanghai Jiao Tong University, China ---1970

Overcoming Errors in Processing Nonlinear Measurements: A New Extension for the Kalman Filter:
A. Draganov, Argon St, a whole owned subsidiary of the Boeing Company --1977

An Innovative and Efficient Frequency Estimation Method for GNSS Signals Acquisition:
P. Esteves, Institut Supérieur de l’Aéronautique et de l’Espace (ISAE/SUPAERO), TeSA,
University of Toulouse, France ---1996

Multipath Mitigation Using Linear Adaptive Filtering Techniques: S. Ugazio, L. Lo Presti,
Politecnico di Torino, Italy; E. Falletti, Istituto Superiore Mario Boella, Italy ---2007

Attitude Determination with Low-cost GPS/INS: P. Henkel, Technical University of Munich and Advanced Navigation Solutions – ANAVS, Germany; C. Günther, Technical University of Munich;
Advanced Navigation Solutions – ANAVS, and German Aerospace Center (DLR), Germany -------------------------------2015

A New Multipath Detection and Mitigation Approach for Pseudolite Systems:
O. Kurz, C. Mongredien, G. Rohmer, Fraunhofer Institute for Integrated Circuits IIS, Germany -----------------------2024
Climbing the GNSS Hill: Lessons from the Evolution of the GPSTk: B. Parsons, J. Little, B. Tolman, B. Renfro, S. Nelsen, D. Munton, ARL, The University of Texas at Austin; B. Harris, MAE, The University of Texas at Arlington2032

D4: Multi-Sensor and Integrated Navigation in GNSS-Challenged Environments 2

Autonomous Snowplow Design: S. Craig, A. Naab-Leyy, K. Li, R. Kollar, P. Duan, W. Pelgrum, F. van Graas, M. Uijt de Haag, Ohio University ..2044

Robust Wi-Fi Assisted GNSS Positioning in Urban Canyons: S. Ramakrishnan, D.W. Waters, J. Balakrishnan, Texas Instruments, India ..2058

Novel Integrity Monitoring for Train Navigation using a GNSS-IMU Bayesian Position Estimator and a Curvature Change Detector: B. Belabbas, A. Grosch, German Aerospace Center (DLR), Germany ..2066

Reconfigurable Integration Filter Engine (RIFE) for Plug-and-Play Navigation: A. Soloviev, Qunav, LLC; C. Yang, Sigtem Technology, Inc. ...2075

Relative Navigation with Displacement Measurements and its Absolute Correction: C. Yang, Sigtem Technology, Inc.; A. Soloviev, Qunav, LLC ..2084

Detection and Mitigation of Errors on an Ultra-Tight Integration System Based on Integrity Monitoring Method: F. Qin, X. Zhan, X-L. X. Zhang, Shanghai Jiao Tong University, China ..2102

A Low-cost Integrated Navigation System of Quadrotor Aerial Vehicle: Design, Development and Performance: Z. Zhou, J. Zhang, J. Bai, University of Electronic Science Technology of China, China; L. Yang, University of New South Wales, Australia ...2114

E4: Advanced Inertial Sensing and Applications

A New Approach to Better Low-cost MEMS IMU Performance Using Sensor Arrays: H. Martin, P.D. Groves, University College London, UK; M. Newman, BAE Systems, UK; R. Faragher, University of Cambridge, UK ..2125

Attitude Determination Kalman Filter with 1/f Flicker Noise Gyro Model: M.E. Pittelkau, Aerospace Control Systems, LLC ...2143

Thermal Analysis and Temperature Control Strategy for FOG-Based SINS: L. Fu, C. Duan, Beihang University, China ..2166
The Effects of Using Heading Measurement During Alignment of a Low-cost IMU/GPS System: M. Choi, Konkuk University, Republic of Korea; D. Won, University of Colorado, USA; S. Sung, Konkuk University, Republic of Korea; Y. Lee, Korea Advanced Institute of Science and Technology, Republic of Korea; J. Kim, Korea Aerospace University, Republic of Korea; J-P. Park H-W. Park, Agency for Defense Development, Republic of Korea; Y.J. Lee, Konkuk University, Republic of Korea

Railway Track Irregularity Measuring by GNSS/INS Integration: Q. Chen, Q. Zhang, Y. Cheng, Wuhan University, China

Sensor Auto-Calibration on Dynamic Platforms in 3D: J. Britt, D.M. Bevly, Auburn University

Robustness Evaluation and Improvements of an In-situ Hand Calibration Method for Low-end IMUs in Pedestrian Navigation Applications: Y. Li, X. Niu, Q. Wang, C. Shi, Wuhan University, China

F4: New Products and Commercial Services

Description and Applications of EDAS (EGNOS Data Access Service): E. Lacarra, J. Vázquez, ESSP-SAS, Spain; A.J. Gavin, J. Morán, GMV, Spain; M.A. Sánchez, ESSP-SAS, Spain

CRI Presents the CRI NAV 100: L. Stimac, D. Hartung, J. Suboski, Consolidated Resource Imaging

Real-Time Navigation System for Ultra-Tight Integration of GNSS and Multi-Sensors: T. Li, J. Georgy, Z. Syed, C. Goodall, Trusted Positioning Inc., Canada

ARGUS: Assisting Personal Guidance System for People with Visual Impairment: O. Otaegui, Vicomtech-IK4, Spain; J. Seybold, TeleConsult Austria, Austria; J. Spiller, The 425 Company, UK; A. Marconi, CEIT Alanova, Austria; R. Olmedo, OK-Systems, Spain; M. Dubielzig, Siemens AG, Germany

Ultra-Low Power Host off-load GNSS Positioning: M. Torroja, S. Malkos, C. Verne, Broadcom Corporation

TERRASTAR – Precise Point Positioning Service for Land and Near Shore Applications: G. Mack, D. McHardy, P. Toor, G. Wilcock, TERRASTAR, UK
Panel 4: High Integrity Systems

Wide Area Augmentation System (WAAS) – Program Update:
D. Bunce, Federal Aviation Administration -- 2299

EGNOS V2 Program Update: D. Thomas, European Space Agency EGNOS Division, France 2327

MSAS Status: T. Sakai, Electronic Navigation Research Institute, Japan; H. Tashiro,
Civil Aviation Bureau, MLIT, Japan --- 2343

SDCM Development Strategy: S. Karutin, Russian Space Systems, Russia 2361

The Influence of the Ionosphere on SBAS: T. Walter, Stanford University 2373

Evolution of SBAS: Two Frequencies & Multiple Constellations: T. Walter, Stanford University 2394

ESA R&D Program GNSS Evolution Program Update: F. Torán, European Space Agency, France 2414

A5: GNSS and the Atmosphere 2

GNSS Bias Calibration Process and Results: P. D’Angelo, J. Pulido, D. Rincón, DEIMOS Space, Spain;
P. Silva, P. Vieira, DEIMOS Engenharia, Portugal; F. Amarillo, ESA/ESTEC. TEC-ETN, The Netherlands 2440

Eliminating Potential Errors Caused by the Thin Shell Assumption: An Extended 3D UNB Ionospheric
Modelling Technique: W. Zhang, R.B. Langley, University of New Brunswick, Canada; A. Komjathy,
University of New Brunswick, Canada & JPL/ California Institute of Technology; S. Banville,
University of New Brunswick, & Natural Resources Canada 2447

Impact of Ionospheric Horizontal Asymmetry on Electron Density Profiles Derived by GNSS Radio
Occultation: M.M. Shaikh, R. Notarpietro, R. Romero, F. Dovis, Politecnico di Torino, Italy 2463

Correlation Properties of a 2-D Array of High Latitude Scintillation Receivers: G.S. Bust, Johns Hopkins
University APL; S. Datta-Barua, Illinois Institute of Technology; K. Deshpande, Virginia Polytechnic
Institute and State University; S. Bourand, Illinois Institute of Technology; S. Skone,
University of Calgary, Canada; Y. Su, Illinois Institute of Technology 2470

Modeling the Effects of Ionospheric Scintillation on GPS Carrier Phase Tracking using High Rate
TEC Data: R. Tiwari, H.J. Strangeways, Newcastle University,
UK; S. Skone, University of Calgary, Canada 2480

Improved Troposphere Blind Models Based on Numerical Weather Data: G. Möller, R. Weber,
J. Böhm, Vienna University of Technology, Austria 2489

Benefit of Multi GNSS Processing with GPS, GLONASS, and QZSS for Tropospheric Monitoring:
T. Iwabuchi, C. Rocken, GPS Solutions Inc. USA; A. Wada, M. Kanzaki, Hitachi Zosen Corp., Japan 2496
GNSS Radio Occultation Technique and Space Weather Monitoring: X. Yue, W.S. Schreiner, Y.-H. Kuo, D.C. Hunt, University Corporation for Atmospheric Research; C. Rocken, GPS Solutions Inc. 2508

Comparative Ionosphere Electron Content Estimation Method in SBAS Performances: P. Alleau, G. Buscarlet, S. Trilles, M. Van Den Bossche, Thales Alenia Space, France; J. Bigot, Institut Supérieur de l'Aéronautique et de l'Espace, France 2523

B5: Advances in Military GNSS Systems and Applications

Robust Open Service GNSS Receivers for Military Applications: G.A. McGraw, B. Desselkoen, Rockwell Collins; G. Buesnel, Satellite Applications Catapult Ltd., UK 2533

Interference-Resistant Vertically-Guided Approaches for Military Aircraft in Civil Airspace: D.A. Stratton, Rockwell Collins, Inc. 2569

On-the-Fly Estimation of Antenna Induced Biases in SFAP Based GNSS Antenna Arrays: Y.C. Chuang, I.J. Gupta, The Ohio State University 2577

Evaluating Integrity and Continuity Risks of Cycle Resolution in the Presence of Receiver Faults: S. Khanafseh, S. Langel, M. Joerger, B. Pervan, Illinois Institute of Technology 2583

C5: Next Generation GNSS Integrity

GPS Integrity Architecture Opportunities: C.S. Miles, Federal Aviation Administration; K. Kovach, The Aerospace Corporation; J. Dobyne, Booze Allen & Hamilton; K. Van Dyke, U.S. Department of Transportation; M. Weiss, National Institute of Standards and Technology 2592

An Analysis of ARAIM Performance Sensitivity to the Ground System Architecture Definition: C. Milner, C. Macabiau, C. Dulery, Ecole Nationale de l’Aviation Civile, France; M. Mabilleau, Egis Avia, France; N. Suard, C. Rodriguez, CNES, France; S. Pujol, DSNA-DTI, France 2614
Advanced RAIM Architecture Design and User Algorithm Performance in a Real GPS, GLONASS and Galileo Scenario: I. Martini, M. Rippl, M. Meurer, German Aerospace Center (DLR), Germany

The Impact of GPS Modernization on Standalone User Performance and Integrity with ARAIM: S. Pullen, P. Enge, Stanford University; S. Shaw, C. Frey, J. Frye, M. Souder, Lockheed Martin

Analysis of Multi-GNSS Service Performance Assessment: ARAIM vs. IBPL Performances Comparison: A. Cezón, M. Cueto, GMV, Spain; I. Fernández, European Commission

RAIM with Non-Gaussian Errors: P. Misra, J. Rife, Tufts University

ESA’s Multi-Constellation Regional System Land Users Test-Bed Integrity Algorithms Experimentation Results: E. Dominguez, J. Simón, GMV, Spain; M. Seetzen, CGI, UK; Y. Zheng, NSL, UK; E. Wittmann, IFEN GmbH, Germany; D. Lekaim, Thales Alenia Space, France; M. Tossaint, M. Jeannot, European Space Agency, The Netherland

D5: GNSS Algorithms and Methods 1

Integrity Risk and Continuity Risk for Fault Detection and Exclusion Using Solution Separation RAIM: M. Joerger, S. Stevanovic, F-C. Chan, S. Langel, B. Pervan, Illinois Institute of Technology

A Novel Multipath Estimation and Tracking Algorithm for Urban GNSS Navigation Applications: N. Sokhandan, University of Calgary, Canada

Offline Analysis of BeiDou MEO-3 Signal Quality: C-Y. He, J. Guo, X. Lu, X. Wang, NTSC, Chinese Academy of Sciences, China

Multipath Mitigation by Voting Channel Impulse Response in Navigation Domain with High-sensitivity GNSS Receivers: Z. He, M. Petovello, University of Calgary, Canada

Open GNSS Signal Authentication Based on the Galileo Commercial Service (CS): O. Pozzobon, C. Sarto, A. Pozzobon, Qascom, Italy; D. Dötterböck, B. Eissfeller, University FAF Munich, Germany; E. Pérez, D. Abia, Acorde Technologies, S.A.

Federated Filtering Algorithm of Heading Angle Based On Magnetometer/GPS/IMU Integrated Navigation System: X. Chen, H. Guo, H. Yin, Nanchang University, Nanchang China; M. Yu, Jiangxi Normal University, China; J. Xiong, Nanchang University, China

Subarray Selection for Adaptive Array Signal Processing in GNSS Applications: X. Wang, E. Aboutanios University of New South Wales, Australia; M. Trinkle, University of Adelaide, Australia

A Modified Second-Order Extended Kalman Filter for Positioning: P. Lu, X. Liu, J. Yang, S. Yang, Southeast University, China

E5: Multi-Constellation/Portable Navigation Devices

BeiDou Integration in Cellphones and Tablets, Preferred Architecture for Consumer Products:
F. van Diggelen, K.W. Tan, Broadcom Corporation

Precision Limits of Low-Energy GNSS Receivers: K.M. Pesyna, Jr., R.W. Heath, Jr., T.E. Humphreys, The University of Texas at Austin

Single Chip Receiver for GNSS and LEO Constellations: J. Cookman, CSR Technology, Inc.; G. Gutt, D. Lawrence, iKare Corporation

Multi-constellation GNSS Receiver for Rail Applications: A. Ferrario, L. Marradi, P. Iacone, A. Galimberti, Thales Alenia Space Italia, Italy

An Insight on Mass Market Receivers Algorithms and their Performance with Galileo OS:
N. Linty, Politecnico di Torino, Italy; P. Crosta, European Space Agency, The Netherlands; P.G. Mattos, STMicroelectronics, UK; F. Pisoni, STMicroelectronics, Italy

Techniques for 3D Misalignment Calculation for Portable Devices in Cycling Applications:
H-W. Chang, University of Calgary/Trusted Positioning Inc., Canada; J. Georgy, Trusted Positioning Inc., Canada; N. El-Sheimy, University of Calgary, Canada

Beyond Where to How: A Machine Learning Approach for Sensing Mobility Contexts Using Smartphone Sensors: R.E. Guinness, Tampere University of Technology, Finland

F5: Interference and Spectrum Issues 1

Proving Location Using GPS Location Signatures: Why it is Needed and A Way to Do It:
L. Scott, LS Consulting

A Novel Detection and Tracking Algorithm of Chirp Type Civilian GNSS Interference:
C.H. Kang, S.Y. Kim, C.G. Park, Seoul National University, Republic of Korea

A Civil GPS Anti-Spoofing and Recovering Method Using Multiple Tracking Loops and an Adaptive Filter Technique: G.B. Moon, Konkuk University, South Korea; S-H. Im, Korea Aerospace Research Institute, South Korea; G-I. Jee, Konkuk University, South Korea
Spoof Detection Using Multiple COTS Receivers in Safety Critical Applications:
P.F. Swaszek, University of Rhode Island; R.J. Hartnett, U.S. Coast Guard Academy ..2921

GNSS Spoofing Detection Based on a Sequence of RSS Measurements:
V. Dehghanian, Mount Royal University, Canada; J. Nielsen, University of Calgary, Canada ..2931

Autonomous Spoofing Detection and Mitigation in a GNSS Receiver with an Adaptive Antenna Array:
A. Konovaltsev, M. Cuntz, C. Haettich, German Aerospace Center (DLR), Germany;
M. Meurer, German Aerospace Center (DLR), Germany / RWTH Aachen University, Germany ...2937

GNSS Spoofing Detection using High-Frequency Antenna Motion and Carrier-Phase Data:
M.L. Psiaki, S.P. Powell, B.W. O'Hanlon, Cornell University ...2949

PROSPA: Open Service Authentication:
M. Turner, A. Chambers, E. Mak, Astrium UK; L.E. Aguado, B. Wales, M. Dumville, NSL, UK ..2992

GNSS Spoofing Detection Based on Particle Filtering:
J. Nielsen, University of Calgary, Canada;
V. Dehghanian, Mount Royal University, Canada; N. Dawar, University of Calgary, Canada ...2997

Panel 5: Emerging GNSS

iGMAS and its Progress:
X. Dong, CSNO, China ..3006

Application of BeiDou in Civil Aviation:
X. Rui, National Key Laboratory of CNS/ATM, China3030

Galileo IOV Status and Results:
R. Lucas Rodriguez, European Space Agency, The Netherlands3065

SAR/Galileo: The GALILEO Search and Rescue Service:
I. Stojkovic, R. Morgan-Owen, GALILEO Project Office – ESA/ESTEC, The Netherlands ...3094

Galileo System Update and “Early Services:”
M. Lisi, European Space Agency/European Commission/European GNSS Agency, The Netherlands3125

European GNSS Evolution Program (EGEP):
S. Wallner, European Space Agency, The Netherlands3142

A6: Geodesy, Surveying and RTK for Civil Applications

GNSS Synthetic Aperture Processing with Artificial Antenna Motion:
T. Pany, N. Falk, B. Riedl, C. Stöber, J. Winkel, IFEN GmbH, Germany; H.-P. Ranner, Austrian Academy of Sciences ...3163

Network RTK Computing in the Cloud and the Importance of using GLONASS and QZSS:
Z. Lukes, C. Rocken, L. Mervart, T. Iwabuchi, J. Barron, S. Cummins, GPS Solutions Inc., USA; M. Kanzaki, Hitachi Zosen Corp, Japan; L. Mullen, Compass Informatics Ltd., Ireland ...3172

Comparison of Methods for Determination of the Vertical Acceleration in Airborne Gravimetry Using LaCoste & Romberg Zero Length Spring Gravimeter:
D. Zhong, R. Kingdon, CGG Canada Services Ltd., Canada ...3180
Assessment of Multi-constellation RTK Solutions During Differential Correction Data Outages:
V. Bhandari, K. O’Keefe, G. Lachapelle, University of Calgary, Canada 3194

Augmenting GPS RTK with Regional BeiDou in North America:
J. Dou, K. O’keefe, University of Calgary, Canada 3205

New Systems, New Signals, New Positions – Providing BeiDou Integration:
P. Fairhurst, X. Luo, A. Aponte, Leica Geosystems AG, Switzerland 3214

B6: Standalone GNSS Services in Challenging Environments

Investigation of Multipath Mitigation Methods for High Precision GNSS Applications:
A. Broumandan, Y. Zhang, A. Schultz, Nexteq Navigation, Canada 3221

A Portfolio Approach to NLOS and Multipath Mitigation in Dense Urban Areas:
P.D. Groves, Z. Jiang, M. Rudi, P. Strode, University College London, UK 3231

GNSS Receiver Carrier Tracking Loop Impact on Ionosphere Scintillation Signal C/N0 and Carrier Phase Estimation:
X. Mao, Samsung Semiconductor Inc.; Y. Morton, Miami University (Ohio) 3248

Robust Receiver Design for Equatorial Regions During Solar Maximum:
M. Najmafshar, F. Ghafoori, S. Skone, University of Calgary, Canada 3255

Integration of Vector Tracking Loop and Multipath Mitigation Technique and its Assessment:
L-T. Hsu, National Cheng Kung University, Taiwan 3263

Detection of Correlation Distortions Through Application of Statistical Methods:
M. Pini, B. Motella, M. Troglia Gamba, Istituto Superiore Mario Boella, Italy 3279

Mitigation of CW PPDs via Signal Tracking Suppression:
T. Kraus, B. Eissfeller, Universität der Bundeswehr München, Germany 3290

Characterization of Time to First Fix for Standalone and Aided GNSS Multi-constellation Receivers in Challenging Environments:
T. Ferreira, F. Pelica, R. Sarnadas, L. Bonardi, GMV, Portugal; P. Crosta, R. Prieto-Cerdeira, European Space Agency 3295

C6: Space Applications

Navigating Above the GPS Constellation – Preliminary Results from the SGR-GEO on GIOVE-A:
M. Unwin, R. De Vos Van Steenwijk, P. Blunt, Y. Hashida, Surrey Satellite Technology Ltd., UK; S. Kowaltschek, L. Nowak, European Space Agency 3305

Flight Results of the NOX Dual-frequency GPS Receiver Payload On-board the TET Satellite:
A. Hauschild, M. Markgraf, O. Montenbruck, German Space Operations Center (DLR/GSOC), Germany 3316

D.A. Force, NASA Glenn Research Center 3325

GPS-Based Precise Relative Orbit Determination for LEO Satellites Using GPS Double-Differenced Carriers Phases:
Z. Kang, B. Tapley, S. Bettadpur, P. Nagel, The University of Texas at Austin 3329
Leveraging the L1Composite Signal to Enable Autonomous Navigation at GEO and Beyond:
S. Ramakrishnan, T. Reid, P. Enge, Stanford University
-- 3336

GNSS-based Precise Orbit Determination for a Highly Eccentric Orbit in the STE-QUEST Mission:
G. Hechenblaikner, J-J. Floch, F. Soualle, M-P. Hess, EADS Astrium, Germany
-- 3347

Weak GNSS Signal Navigation to the Moon: P.F. Silva, H.D. Lopes, T.R. Peres, J.S. Silva,
DEIMOS Engenharia, Portugal; J. Ospina, F. Cichocki, DEIMOS Space, Spain; F. Dovis, L. Musumeci,
Politecnico de Torino, Italy; D. Serant, T. Calmettes, I. Pessina, Thales Alenia Space; J.V. Perelló,
European Space Agency
-- 3357

Performance Demonstration of NSPO Space-borne GPS Receiver: H-Y. Chang, H-C., Chang, C-T.
Lin, National Space Organization, Taiwan
--- 3368

D6: Interference and Spectrum Issues 2

Preparing for New Wireless Spectrum Policies, Is the GNSS Industry Ready?:
R. Lee, Greenwood Telecommunications Consultants LLC; J.D. Litton, Litton Consulting Group, Inc.;
P. Williams, Consultant to GNSS, MSS Industries
--- 3378

An Interference Monitoring System for GNSS Reference Stations: J. Wendel, C. Kurzhals,
Astrium GmbH, Germany; M. Houdek, Iguassu Software Systems a.s.; J. Samson, European Space Agency,
France
--- 3391

Joint Space-Time Interference Mitigation for Embedded Multi-Antenna GNSS Receivers:
M.H. Castañeda, M. Stein, Technical University Munich, Germany; F. Antreich, German Aerospace Center
DLR, Germany; E. Tasdemir, L. Kurz, T.G. Noll, RWTH Aachen, Germany; J.A. Nossek,
Technical University Munich, Germany
--- 3399

Analysis of DME/TACAN Interference on the Lower L-Band: A. Steingass, German Aerospace Center
(DLR), Germany
--- 3409

Continuous Adaptive Interference Nulling for Defeat of Wideband GNSS Interference:
R. Vosburgh, V. Haridasan, Physical Devices LLC; C. Wilson, North Carolina State University
--- 3417

Optimization of a Blind Adaptive Spatial Filter for Interference Mitigation in GNSS Receivers:
E. Tasdemir, L. Kurz, T.G. Noll, RWTH Aachen University, Germany
--- 3424

Overcoming RFI with High Mask Angle Antennas and Multiple GNSS Constellations:
L. Heng, University of Illinois at Urbana-Champaign; T. Walter, P. Enge, Stanford University;
G.X. Gao, University of Illinois at Urbana-Champaign
--- 3433

The Karhunen-Loève Transform as a Future Instrument to Interference Mitigation: A. Szumski,
B. Eissfeller, University FAF Munich, Germany
--- 3443

QRD-based and SMI-based MVDR Beamforming for GNSS Software Receivers: L.T. Ong,
B. Sarankumar, Temasek Laboratories at National University of Singapore, Singapore
--- 3450
Transform Domain Interference Suppression in GPS/BD-2 Receiver Based on Fractional Fourier Transform: Y. Zhang, University of Calgary, Canada; H. Wu, Beijing Microelectronics Technology Institute, China; Y. Gao, University of Calgary, Canada

E6: Clock/Timing and Scientific Applications

A Pilot Experiment for GPS Link Calibration Between TL-MSL: J-L. Wang, Y-J. Huang, H-T. Lin, C-S. Liao, S-Y. Lin, Chunghwa Telecom Co., Ltd., Taiwan; T. Armstrong, Measurement Standards Laboratory, New Zealand; S-Y. Huang, National Tsing Hua University, Taiwan

Evaluating Aircraft Positioning Methods for Airborne Gravimetry: Results from GRAV-D’s “Kinematic GPS Processing Challenge”: T.M. Damiani, A. Bilich, G.L. Mader, NOAA- National Geodetic Survey

Joint Positioning and Time Synchronization for APNT: M. Suess, B. Belabbas, M. Meurer, German Aerospace Center (DLR), Germany

A Feasible Clock Control and Synchronization Method Used in CAPS Master Station: W. Jing, X. Lu, J. Wang, D. Zhao, C. He, Y. Rao, National Time Service Center, Chinese Academy of Sciences, China

F6: GNSS Algorithms and Methods 2

Optimal Doppler-Aided Autonomous Position with a Flexible Smoothing Window Width: X. Liu, S. Yang, J. Yang, P. Lu, Southeast University, China

A New Proposal for a FLL Discriminator Based on Energy: X. Tang, Politecnico di Torino, Italy; E. Falletti, Istituto Superiore Mario Boella, Italy; L. Lo Presti, Politecnico di Torino, Italy

A Robust Technique for Unambiguous BOC Tracking: J. Wendel, F.M. Schubert, Astrium GmbH, Germany; S. Hager, Technical University Munich, Germany

Design of an Adaptive Vector-tracking Loop for Reliable Positioning in Harsh Environment: S.F. Syed Dardin, V. Calmettes, B. Priot, Université de Toulouse, ISAE, France; J-Y. Tournérét, Université de Toulouse, IRIT-ENSEEIHT, France

New Algorithm for GNSS Positioning Using System of Linear Equations: B. Oszczak, University of Warmia and Mazury and Air Force Academy, Poland
Indoor Multipath Characterization and Separation using Distortions in GPS Receiver Correlation Peaks: V. Bellad, M.G. Petovello, University of Calgary, Canada

Interference Detection Based on Time-Frequency Analysis for GNSS: K. Sun, W. Liu, H. Xu, Hefei University of Technology, China; D. Yang, Beihang University, China

Determination of Early-Late Discriminator Errors on Filtered BPSK Waveforms: B. Fonville, E. Powers, D. Matsakis, U.S. Naval Observatory

Parallel Acquisition of GNSS Signal Based on Combined Code: L. Xu, K. Chen, R. Ying, P. Liu, W. Yu, Shanghai Jiao Tong University, China

Panel 6: Unmanned Vehicles

Multi-Sensor Fusion for Navigation of Autonomous Vehicles: A. Soloviev, Qunav

Unmanned Systems (Robotics): Challenges and Opportunities: D. Gebre-Egziabher, University of Minnesota