Powders and Grains 2013
Proceedings of the 7th International Conference on Micromechanics of Granular Media

Sydney, Australia
8–12 July 2013

Editors
Aibing Yu
Kejun Dong
Runyu Yang
University of New South Wales, Sydney, Australia

Stefan Luding
Universiteit Twente, Enschede, Netherlands

All papers have been peer reviewed.

Sponsoring Organizations
Association for the Study of the Micromechanics of Granular Media (AEMMG)
University of New South Wales (UNSW)
Curtin University (CU)
Universiteit Twente (UT)
JMBC Research School for Fluid Mechanics, Netherlands
Elsevier, publisher of Advanced Powder Technology, Particuology and Powder Technology
Table of Contents

Preface: Powders and Grains 2013
Aibing Yu

INVITED PAPERS

From nanoscale cohesion to macroscale entanglement: Opportunities for designing granular aggregate behavior by tailoring grain shape and interactions
Heinrich M. Jaeger, Marc Z. Miskin, and Scott R. Waitukaitis

*From customized multiscale modeling to general mesoscience – *The principle of compromise*
Jinghai Li

Jamming and shear for granular materials
R. P. Behringer, Joshua Dijksman, Jie Ren, Jie Zhang, Trushant Majmudar, Bulbul Chakraborty, Daipeng Bi, and Antoinette Tordesillas

Establishing predictive capabilities of DEM – Verification and validation for complex granular processes
Jin Y. Ooi

The glass and jamming transitions in dense granular matter
Corentin Coulais, Raphaël Candelier, and Olivier Dauchot

Granular friction in a wide range of shear rates
Osamu Kuwano, Ryosuke Ando, and Takahiro Hatano

10,000 – A reason to study granular heat convection
I. Einav, P. Rognon, Y. Gan, T. Miller, and D. Griffiani

Quasistatic behaviour of granular materials: Some things we learned from DEM studies
Jean-Noël Roux

Rheometry of dense granular materials: The crucial effects of gravity and confining walls
V. Shravan Kumar, Tejas Murthy, and Prabhu R. Nott

Stress- and rate-controlled granular rheology
Yimin Jiang and Mario Liu

Identifying and following particle-to-particle contacts in real granular media: An experimental challenge
Gioacchino Viggiani, Edward Andò, Clara Jaquet, and Hugues Talbot
A hierarchy of particle-size segregation models: From polydisperse mixtures to depth-averaged theories
J. M.N.T. Gray

1. CONTEMPORARY ISSUES
1.1. Nano, Micro, and Irregular Particles

Shear alignment and orientational order of macroscopic rodlike grains
R. Stannarius, S. Wegner, B. Szabó, and T. Börzsönyi

Stability determination of steric-stabilized nanoparticles – Numerical and experimental analysis
Olakunle Olatunji and Jürgen Tomas

Multidimensionality in fluidized nanopowder agglomerates
Lilian de Martín, Wim G. Bouwman, and J. Ruud van Ommen

Shear-induced failure in jammed nanoparticle assemblies
Ishan Srivastava, Kyle C. Smith, and Timothy S. Fisher

Tribo-electric charging particle in a shaker
Masayuki Imba, Toshiko Kanazawa, Junichi Ida, Hideo Yamamoto, Mojtaba Ghadiri, and Tatsuhsi Matsuyama

Experimental and theoretical study of a micro-fluidized bed
V. Zivkovic, M. N. Kashani, and M. J. Biggs

Two-phase nc-TiN/a-(C,CN)x nanocomposite films: A HRTEM and MC simulation study
J. Guo, Y. H. Lu, X. J. Hu, and Y. G. Shen

A DEM model for contact electrification of irregular shaped particles
Chunlei Pei, Chuan-Yu Wu, Michael Adams, David England, Stephen Byard, and Harald Berchtold

Axial segregation of horizontally vibrated binary granular mixtures in an offset-Christmas tree channel
Ashish Bhatjea, Ishan Sharma, and Jayant K. Singh

Diffusion of light in two-dimensional granular materials
Zeinab Sadjadi and MirFaez Miri

Synergistic combination dry powders for inhaled antimicrobial therapy
Desmond Heng, Sie Huey Lee, Jeanette Teo, Wai Kiong Ng, Hak-Kim Chan, and Reginald B. H. Tan

Electrostatics effects in granular materials
Saurabh Sarkar and Bodhisattwa Chaudhuri
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The characterizations and electrochemical properties of lignosulfonate templates based mesoporous NiO</td>
<td>Feng Chen, Hongfei Yao, Ping Fan, Jintao Yang, and Mingqiang Zhong</td>
<td>121</td>
</tr>
<tr>
<td>Influence of sintering additives and TiC on properties of TiC/Si$_3$N$_4$ ceramics</td>
<td>Yong Jiang, Laner Wu, and Wenzhou Sun</td>
<td>125</td>
</tr>
<tr>
<td>Fabrication and characterisation of patterned magnetorheological elastomers</td>
<td>Weihua Li, Xianzhou Zhang, Tongfei Tian, and Weijia Wen</td>
<td>129</td>
</tr>
<tr>
<td>Study of shear-stiffened elastomers</td>
<td>Tongfei Tian, Weihua Li, Jie Ding, Gursel Alici, and Haiping Du</td>
<td>133</td>
</tr>
<tr>
<td>Preparation of γ-AlON transparent ceramics by one-step method with high-activity Al$_2$O$_3$ powders</td>
<td>Wenzhou Sun, Yuhong Chen, Laner Wu, and Yong Jiang</td>
<td>137</td>
</tr>
<tr>
<td>Agglomerating fluidization of nanoparticles in the vibration or magnetic field</td>
<td>Tao Zhou, Hao Duan, Hui Wang, Feng Zhang, Hiroyuki Kage, and Yoshihide Mawatari</td>
<td>141</td>
</tr>
</tbody>
</table>

1.2. Modelling and Simulation Techniques

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding multi-scale structural evolution in granular systems through gMEMS</td>
<td>David M. Walker and Antoinette Tordesillas</td>
<td>145</td>
</tr>
<tr>
<td>Event-driven DEM of soft spheres</td>
<td>Thorsten Pöschel and Patric Müller</td>
<td>149</td>
</tr>
<tr>
<td>Multi-scale simulation of discrete systems with multi-scale supercomputer</td>
<td>Wei Ge and Jinghai Li</td>
<td>153</td>
</tr>
<tr>
<td>Scaling laws in granular flow and pedestrian flow</td>
<td>Shumiao Chen, Fernando Alonso-Marroquin, Jonathan Busch, Raúl Cruz Hidalgo, Charmila Sathianandan, Álvaro Ramírez-Gómez, and Peter Mora</td>
<td>157</td>
</tr>
<tr>
<td>Multiscale modelling of pharmaceutical powders: Macroscopic behaviour prediction</td>
<td>Jonathan Loh, William Ketterhagen, and James Elliott</td>
<td>161</td>
</tr>
<tr>
<td>A parallel version of the contact dynamics method</td>
<td>Z. Shojaaee, M. R. Shaebani, L. Brendel, J. Török, and D. E. Wolf</td>
<td>165</td>
</tr>
<tr>
<td>On the use of graphics processing units (GPUs) for molecular dynamics simulation of spherical particles</td>
<td>R. C. Hidalgo, T. Kanzaki, F. Alonso-Marroquin, and S. Luding</td>
<td>169</td>
</tr>
<tr>
<td>A nonlinear dynamical systems modelling approach unveils chaotic dynamics in simulations of large strain behaviour of a granular material under biaxial compression</td>
<td>Michael Small, David Walker, and Antoinette Tordesillas</td>
<td>173</td>
</tr>
</tbody>
</table>
Particle-based simulation of hydraulic fracture and fluid/heat flow in geothermal reservoirs
Peter Mora, Yucang Wang, and Fernando Alonso-Marroquin 177

Uncertainty quantification and granular thermodynamics
Jeffrey D. Picka 181

DEM simulation of particles of complex shapes using the multisphere method: Application for additive manufacturing
Eric J. R. Parteli 185

Numerical simulation of suffusion phenomena through granular media
Francesco Federico, Andrea Montanaro, and Mauro Scienza 189

2. GEOMATERIALS AND CONSTRUCTIONS:
2.1. Theoretical

Directional plastic flow and fabric dependencies in granular materials
Barthélémy Harthong and Richard G. Wan 193

Granular mechanics of the critical state of coarse soils
Calixtro Yanqui 197

The influence of void ratio on small strain shear modulus of granular materials: A micromechanical perspective
Xiaomin Xu, Yipik Cheng, and Dongsheng Ling 201

Mesh size effect in the simulation of powder geo-material
L. C Huang, C. Y. Zhou, Y. Cheng, and W. K. Li 205

Simulation on particle crushing of tailings material under high pressure
Hai-ming Liu, Yi-ming Liu, Chun-he Yang, and Jing Cao 209

Distinct element analyses of collapsible behaviour of structured loess under one-dimensional compression
M. J. Jiang, T. Li, and H. J. Hu 213

Numerical simulation of rock failure process using improved rigid body spring method
Chi Yao, Qinghui Jiang, Jianfu Shao, and Chuangbing Zhou 217

2.2. Numerical

Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling
David M. Cole, Mark A. Hopkins, and Stephen A. Ketcham 221

DEM modeling of penetration test in static and dynamic conditions
Quoc Anh Tran, Bastien Chevalier, and Pierre Breul 225
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A new definition on critical state of granular media accounting for fabric anisotropy</td>
<td>Jidong Zhao and Ning Guo</td>
<td>229</td>
</tr>
<tr>
<td>Wave propagation in assemblies of cemented spheres</td>
<td>T. Matthew Evans and Zhangwei Ning</td>
<td>233</td>
</tr>
<tr>
<td>Distinct element analyses of inclined cone penetration test in granular ground</td>
<td>Mingjing Jiang, Yongsheng Dai, Zhifu Shen, and Ning Zhang</td>
<td>237</td>
</tr>
<tr>
<td>Penetration strength of coarse granular materials from DEM simulations</td>
<td>Juan Carlos Quezada, Gilles Saussine, Pierre Breul, and Farhang Radjai</td>
<td>241</td>
</tr>
<tr>
<td>Modelling desiccation cracking in thin clay layer using three-dimensional discrete element method</td>
<td>Jun Sima, Mingjing Jiang, and Chuangbing Zhou</td>
<td>245</td>
</tr>
<tr>
<td>Effects of granular soil micro-mechanics on the pressure-sinkage relationship</td>
<td>Liang Cui and Savvas Avramidis</td>
<td>249</td>
</tr>
<tr>
<td>Characterizing inclined loading capacity of a pile embedded in methane-hydrate-bearing marine sediments</td>
<td>Fang Liu, Mingjing Jiang, Fangyuan Zhu, and Yu Xiao</td>
<td>253</td>
</tr>
<tr>
<td>On the physical meaning of equivalent skeleton void ratio for granular soil with fines</td>
<td>Bei-Bing Dai and Jun Yang</td>
<td>257</td>
</tr>
<tr>
<td>PFC2D simulation of thermally induced cracks in concrete specimens</td>
<td>Xinghong Liu, Xiaolin Chang, Wei Zhou, and Shuirong Li</td>
<td>261</td>
</tr>
<tr>
<td>Micro-characteristics of monodisperse and best-packing mixture samples under one dimensional compression</td>
<td>N. H. Minh and Y. P. Cheng</td>
<td>265</td>
</tr>
<tr>
<td>Mechanical behavior modeling of sand-rubber chips mixtures using discrete element method (DEM)</td>
<td>Danial Rezazadeh Eidgahee and Ehsan Seyedi Hossefininia</td>
<td>269</td>
</tr>
<tr>
<td>Strength and fabric evolution of unsaturated granular materials by 3D DEM analyses</td>
<td>Mingjing Jiang and Zhifu Shen</td>
<td>273</td>
</tr>
<tr>
<td>Challenges of simulating undrained tests using the constant volume method in DEM</td>
<td>Kevin J. Hanley, Xin Huang, Catherine O'Sullivan, and Fiona Kwok</td>
<td>277</td>
</tr>
<tr>
<td>Effect of inter-particle rolling resistance on passive earth pressure against a translating rigid retaining wall</td>
<td>Mingjing Jiang, Jie He, Fang Liu, and Huaning Wang</td>
<td>281</td>
</tr>
</tbody>
</table>
Feasible use of particle-flow virtual test for the mechanical properties mixed soil
Zhang Jia-ming, Ren Yong-qiang, Shao Xiao-quan, and Wang Gang 285

2.3. Experimental

Multi-phase mechanics and multi-scale interactions among soil-water-gas in tsunami disaster
Tatsuya Imase, Kenichi Maeda, Yoshimi Ito, and Mai Goto 289

Quantification of time-dependent microstructural change of a silty sand under load
M. Yusa and E. T. Bowman 293

Postmortem analysis of sand grain crushing from pile interface using X-ray tomography
I. Matías Silva, Gaël Combe, Pierre Foray, Frédéric Flin, and Bernard Lesaffre 297

Physical and mechanical properties of cement-treated granular soils with respect to geotechnical application
Kimitoshi Hayano, Phan Huy Dong, and Yoshiyuki Morikawa 301

Optimum mixture design of granular materials reinforced by short fiber
Shigeaki Nozoe, Kenji Kaneko, and Yutaka Hashizume 305

CPT-based estimation of bearing and deformation indexes for TJ-1 lunar soil simulant ground
Mingjing Jiang, Ning Zhang, Zhifu Shen, and Xiaofeng Wu 309

DEM simulation of footpads quasi-statically penetrating into granular ground
Chao Sun, Fang Liu, Mingjing Jiang, and Huaning Wang 313

3. GRANULAR SOLIDS
3.1. Packing, Jamming and Related Properties

Dynamical systems model and discrete element simulations of a tapped granular column

Confined packings of frictionless spheres and polyhedra
Jean-François Camenen, Yannick Descantes, and Patrick Richard 321

Microstructural characteristics of planar granular solids
Takashi Matsushima and Raphael Blumenfeld 325

Statistical mechanics of dry granular materials: Between fragile solid (jamming) and dry fluid (rheology)
Nicolas Rivier and Jean-Yves Fortin 329

Settlement statistics of a granular layer composed of polyhedral particles
Juan Carlos Quezada, Gilles Saussine, Pierre Breul, and Farhang Radjai 333

DEM simulation of experimental dense granular packing
Maryam Hanifpour, Nicolas Francois, Mehdi Vaez Allaei, and Mohammad Saadatfar 337
The theory of granular packings for coarse soils
 Calixtro Yanqui 341

Analysis of the behavior of granular materials at a meso-scale
 Ngoc-Son Nguyen, Hélène Magoariec, and Bernard Cambou 345

Minkowski tensors and local structure metrics: Amorphous and crystalline sphere packings

Analysis of Voronoi clusters in the packing of uniform spheres
 C. C. Wang, K. J. Dong, and A. B. Yu 353

Discrete modelling of the packing of ellipsoidal particles
 Zongyan Zhou, Ruiping Zou, David Pinson, and Aibing Yu 357

The role of inter-grain friction in determining the mechanical and structural properties of superellipsoid packings
 Gary W. Delaney, James E. Hilton, Paul W. Cleary, and Claire Miller 361

Fast synchrotron X-ray tomography study of the rod packing structures
 Xiaodan Zhang, Chengjie Xia, Haohua Sun, and Yujie Wang 365

Crystallisation in a granular material
 N. Francois, M. Saadatfar, M. Hanifpour, R. Cruikshank, and A. Sheppard 369

A method for structural analysis of disordered particle systems
 Z. A. Tian, K. J. Dong, and A. B. Yu 373

Tomographic analysis of jammed ellipsoid packings
 Fabian M. Schaller, Max Neudecker, Mohammad Saadatfar, Gary Delaney, Klaus Mecke, Gerd E. Schröder-Turk, and Matthias Schröter 377

Non-Gaussian behavior in jamming / unjamming transition in dense granular materials
 A. P. F. Atman, E. Kolb, G. Combe, H. A. Paiva, and G. H. B. Martins 381

Granular jamming transitions for a robotic mechanism
 Allen Jiang, Tomaso Aste, Prokar Dasgupta, Kaspar Althoefer, and Thrishantha Nanayakkara 385

 3.2. Forces

Dynamic cone penetration tests in granular media: Determination of the tip's dynamic load-penetration curve
 E. Escobar, M. Benz, R. Gourvès, and P. Breul 389

Critical-like features of a granular intruder
 Benjamin D. Elwood and Leonardo E. Silbert 393
Force-chain identification in quasi-2D granular systems
Ling Zhang, Jun-Qi Wu, and Jie Zhang 397

Granular matter: A special buffer for impact load
Shunying Ji, Xiaodong Chen, Pengfei Li, and Ying Yan 401

Cushioning effect in highly polydisperse granular media
Charles Voivret 405

Experimental evidence and structural mechanics analysis of force chain buckling at the microscale in a 2D polymeric granular layer
Andrew B. Croll, Antoinette Tordesillas, David Carey, and Bekele Gurmessa 409

Force distribution/transmission in amorphous and crystalline packings of spheres
Xizhong An and Fei Huang 413

A mechanistic analysis of bulk powder caking
G. Calvert, N. Curcic, and M. Ghadiri 417

Anisotropy of microstructure and force chains in granular materials
Xihua Chu, Lunlun Zhou, and Yuanjie Xu 421

Experimental investigations of micro-structural phenomena inside strain localisation in granular materials
Danuta Lesniewska and Magdalena Pietrzak 425

An attempt in assessing contact forces from a kinematic field
Vincent Richefeu, Gaël Combe, and Raphaël Maurin 429

Local elastic fields in granular solids
J. Boberski, L. Brendel, and D. E. Wolf 433

Cooperative dynamics of a group of intruders subsiding in granular media: A DEM study
Cher Hui Goey and Chuan-Yu Wu 437

Non-contact measurement of the stress within granular materials via neutron diffraction
C. M. Wensrich, E. H. Kisi, V. Luzin, and O. Kirstein 441

Granular impact dynamics: Fluctuations at short time-scales
Abram H. Clark, Lou Kondic, and R. P. Behringer 445

3.3. Shear tests and analysis
3.3.1. Experimental

Dilation, compression, and convection in granular shear experiments
Nathan Beasley, Jacob Jantzi, Ryan Kinser, and Jeffrey S. Olafsen 449
Experimental evidence of "Granulence"
G. Combe, V. Richefeu, G. Viggiani, S. A. Hall, A. Tengattini, and A. P. F. Atman 453

Imaging soft sphere packings in a novel triaxial shear setup
Joshua A. Dijksman, Hu Zheng, and Robert P. Behringer 457

TRACKER: A particle image tracking (PIT) technique dedicated to nonsmooth motions involved in granular packings
Gaël Combe and Vincent Richefeu 461

Novel experimental apparatus for granular experiments on basal friction
Hu Zheng, Joshua A. Dijksman, and Robert P. Behringer 465

Measuring creep and stick-slip behavior in 2-dimensional photoelastic granular medium
N. Sepúlveda and R. P. Behringer 469

Experimental investigation of the Rowe’s dilatancy law on an atypical granular medium from a municipal solid waste incineration bottom ash
Frédéric Becquart and Nor Edine Abriak 471

Experimental studies of precursors to failure in granular material
Antoine Le Bouil, Axelle Amon, and Jérôme Crassous 475

Development of a biaxial compression test apparatus for granular materials
Lian-Wei Zhang and Jian-Min Zhang 479

The stadium shear device: A novel apparatus for studying dense granular flows
Tom Miller, Pierre Rognon, and Itai Einav 483

3.3.2. Numerical

Prediction of bulk particle breakage due to naturally formed shear bands
Colin Hare and Mojtaba Ghadiri 487

Granular shear flows of flexible rod-like particles
Y. Guo, J. Curtis, C. Wassgren, W. Ketterhagen, and B. Hancock 491

Study of some micro-structural phenomena in granular shear zones
Jan Kozicki, Jacek Tejchman, and Danuta Leśniewska 495

On liquid migration in sheared granular matter
R. Mani, D. Kadau, D. Or, and H. J. Herrmann 499

Constitutive relations of jammed frictionless granular materials under oscillatory shear
Michio Otsuki and Hisao Hayakawa 503
Minimum cut and shear bands
 Antoinette Tordesillas, Andrew Cramer, and David M. Walker

Shear strength, force distributions and friction mobilization in sheared packings composed of angular particles
 Emilien Azéma, Nicolas Estrada, and Farhang Radjai

Simulation of sheared, caking powder
 A. Weuster, L. Brendel, and D. E. Wolf

Shear strength and microstructure of 3D assemblies of platy particles
 Mauricio Boton, Emilien Azéma, Nicolas Estrada, Farhang Radjai, and Arcesio Lizcano

Evolution of the contact distribution in sheared 2D granular packings
 Jens Boberski, M. Reza Shaebani, and Dietrich E. Wolf

Homogeneity and packing structure of a 2D sheared granular system
 Jie Ren, Joshua Dijksman, and Robert P. Behringer

Numerical investigation of granular flow in a shear cell
 X. Wang, H. P. Zhu, A. B. Yu, and S. Luding

3.4. Transportation, Propagation and Conduction

Mass–disorder effects on the frequency filtering in one–dimensional discrete particle systems
 Brian P. Lawney and Stefan Luding

Thermal conduction in particle packs via finite elements
 Jeremy B. Lechman, Cole Yarrington, William Erikson, and David R. Noble

Forming and breaking of contacts in jammed granular media by nonlinear acoustic waves
 S. Wildenberg, Y. Yang, M. van Hecke, and X. Jia

Constrained optimisation in granular network flows: Games with a loaded dice
 Qun Lin and Antoinette Tordesillas

Transport pathways within percolating pore space networks of granular materials
 Kevin Vo, David M. Walker, and Antoinette Tordesillas

Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method
 Yanxin Yu, Xiaomin Xu, Yi Pik Cheng, and Kenichi Soga

Dispersive behavior and acoustic scaling in granular rocks
 Santos Carlos, Urdaneta Vanessa, Medina Ernesto, and García Xavier

Global Markov modelling and analysis of the dynamics of granular deformation and flow
 Gary Froyland, Antoinette Tordesillas, and David M. Walker
Granular acoustics of polyhedral particles
Wei Shen Cheng, Jian Chen, and Hans-Georg Matuttis 567

Grain-based characterisation and acoustic wave propagation in a sand packing subject to triaxial compression
Mohammad Saadatfar, Nicolas Francois, Alon Arad, Mahyar Madadi, Adrian Sheppard, Tim Senden, and Mark Knackstedt 571

The role of Rayleigh waves in granular solids
Alessandro Spadoni and Bart Van Damme 575

Energy transmission through grain-to-grain contacts: The role of bulk and Rayleigh waves
Bart Van Damme, Emil Shaykhilislamov, and Alessandro Spadoni 577

Hydraulic and acoustic investigation of sintered glass beads
Ibrahim Gueven, Stefan Luding, and Holger Steeb 581

3.5. Compaction

A multiscale description of failure in granular materials
Nejib Hadda, François Nicot, Luc Sibille, Farhang Radjai, Antoinette Tordesillas, and Félix Darve 585

Statistical mechanics description of an isotropic compression and its relationship to micromechanics
W. F. Oquendo and J. D. Muñoz 589

Simulation of current-activated pressure-assisted densification
Sebastian Angst, Gabi Schierning, and Dietrich E. Wolf 593

Distinguishing and predicting granular failure via multiscale evolution of contact cycle topologies
Sebastian Pucilowski, David M. Walker, and Antoinette Tordesillas 597

Force correlations, anisotropy, and friction mobilization in granular assemblies under uniaxial deformation
O. I. Imole, M. Wojtkowski, V. Magnanimo, and S. Luding 601

Length scales from elastic buckling of a force chain under confined axial compression
Antoinette Tordesillas, David Carey, and Jingyu Shi 605

Modeling of compressible self-organized granular media under static load
Mikhail N. Skachkov 609

Effect of fabric on the strength of granular materials in biaxial compression
Homayoun Shaverdi, Mohd Raihan Taha, and Farzin Kalantary 613
4. GRANULAR LIQUIDS
4.1. Unconfined and Surface Flows

4.1.1. Theoretical

Granular force on objects and correlation length: Drag coefficient enhancement in low Froude number flow regimes
Thierry Faug 617

Numerical analysis of impact processes of granular jets
Tomohiko G. Sano and Hisao Hayakawa 622

Inclined granular flows on collisional shear layers
James T. Jenkins and Diego Berzi 626

An energy-based splash function for the impact of particles with granular beds
Chuan-Yu Wu 630

Impaction of particle streams on a granular bed
Sida Liu, Zongyan Zhou, Kejun Dong, Aibing Yu, John Tsalapatis, and David Pinson 634

Dissipative discrete element model applied to rock avalanches
G. Mollon, V. Richefeu, P. Villard, and D. Daudon 638

Jumps and bores in bulky frictional granular flows
Thierry Faug 642

Effect of cohesive force on the formation of a sandpile
K. J. Dong, R. P. Zou, K. W. Chu, R. Y. Yang, A. B. Yu, and D. S. Hu 646

4.1.2. Experimental

Identification of avalanche precursors by acoustic probing in the bulk of tilted granular layers
M. Duranteau, V. Tournat, V. Zaitsev, R. Delannay, and P. Richard 650

Study of solids contact shearing and collisions in granular debris flows
Gordon G. D. Zhou, Q. C. Sun, and M. L. Fei 654

Design of protection structures: The role of the grainsize distribution
Benji Marks, Aurelio Valaulta, Alexander Puzrin, and Itai Einav 658

Tumbling sandpiles in a fluid
Farhang Radjai, Vincent Topin, Frédéric Perales, and Yann Monerie 662

Experimental investigation on failure mode of fine-grain rainfall-induced debris flow
Zhao Cheng, Zhou Jian, Li Yexun, and Tian Jiashen 666
4.2. Confined flow

Mode-coupling theory for sheared granular liquids
Koshiro Suzuki and Hisao Hayakawa 670

Velocity and density scaling at the outlet of a silo and its role in the expression of the mass flow rate
D. Maza, A. Janda, S. M. Rubio-Largo, I. Zuriguel, and R. C. Hidalgo 674

Prediction of silo-vibrations using a modified lambdameter
Stefan Jäckel, Ralf Schünemann, Thomas Mütze, and Urs A. Peuker 678

Effect of friction and cohesion on anisotropy in quasi-static granular materials under shear
A. Singh, V. Magnanimo, and S. Luding 682

Avoiding clogs: The shape of arches and their stability against vibrations
Angel Garcimartín, Celia Lozano, Geoffroy Lumay, and Iker Zuriguel 686

The influence of particle shape on granular Hopper flow
G. Mollon and J. Zhao 690

Microscopic analysis of Hopper flow with ellipsoidal particles
Sida Liu, Zongyan Zhou, Ruiping Zou, David Pinson, and Aibing Yu 694

Silo clogging reduction by placing an obstacle above the outlet
C. Lozano, I. Zuriguel, A. Janda, A. Garcimartín, R. Arévalo, and D. Maza 698

Dynamics of rotating spirals in agitated wet granular matter
Kai Huang, Lorenz Butzhammer, and Ingo Rehberg 702

Visualising shear stress distribution inside flow geometries containing pharmaceutical powder excipients using photo stress analysis tomography and DEM simulations
Saeed Albaraki, S. Joseph. Antony, and C. Babatunde Arowosola 706

Pipe transport in underground mining: An experimental approach
A. Janda, I. Zuriguel, J. Bienzobas, A. Garcimartín, and D. Maza 710

4.3. Mixing and Segregation

4.3.1. Theoretical and Numerical

Size separation of binary mixture under vibration
Chuanping Liu, Lige Tong, Shaowu Yin, Peikun Zhang, and Li Wang 714

Segregation in dense, dry, inclined flows of binary mixtures of grains
Michele Larcher and James T. Jenkins 718
Influence of rotation on BN separation in binary particle system
Ping Wu, Shuang Wang, Ziang Xie, Yuming Huang, Lige Tong, Peikun Zhang, Shaowu Yin, Chuanping Liu, and Li Wang

DEM simulation of particle mixing for optimizing the overcoating drum in HTR fuel fabrication
Malin Liu, Zhenming Lu, Bing Liu, and Youlin Shao

Mixing behaviour of cohesive and non-cohesive particle mixtures in a ribbon mixer
H. Musha, K. Dong, G. R. Chandratilleke, J. Bridgwater, and A. B. Yu

Simulations on the flow segregation problem in bidimensional piles
Jesica Benito, Rodolfo Uñac, Ana Maria Vidales, and Irene Ippolito

Effects of size and density differences on mixing of binary mixtures of particles
H. Musha, G. R. Chandratilleke, S. L. I. Chan, J. Bridgwater, and A. B. Yu

Radial segregation driven by axial migration
Xiaoxing Liu, Wei Ge, and Jinghai Li

Formation of ordered structure and its effect on particle percolation in a vibrated bed
A. H. Esfandiary, K. J. Dong, and A. B. Yu

Numerical analysis of separation and mixing dynamics in multiphase granular systems
Tracy Rushmer, Antoinette Tordesillas, David M. Walker, and Nick Petford

4.3.2. Experimental

Granular segregation in quasi-2d rectangular bin
Sandip H. Gharat and D. V. Khakhar

The formation of polygon-shaped patterns in vibrated, cylindrical granular beds
G. Lu, J. R. Third, M. H. Köhl, and C. R. Müller

Pattern formation in a flat rotating box
Frank Rietz and Ralf Stannarius

Segregation of binary mixtures of spheres and ellipsoids
Changxing Li, Zongyan Zhou, Ruiping Zou, David Pinson, and Aibing Yu

Segregation and convection rolls in two-dimensional packings
Frank Rietz

Patterns and velocity field in vertically vibrated granular materials
Istafaul H. Ansari and Meheboob Alam

Dry coating in a high shear mixer: Comparison of experimental results with DEM analysis of particle motions
E. Serris, A. Sato, A. Chamayou, L. Galet, M. Baron, P. Grosseau, and G. Thomas
5. GRANULAR GASES

5.1. Theoretical

Evidence for a new force in dissipative system derived from Boltzmann equation: Consequence for the mechanics of the material point, experimental evidences and possible applications
 Pierre Evesque 783

Scaling of the normal coefficient of restitution for wet impacts
 Thomas Müller, Frank Gollwitzer, Christof A. Krüle, Ingo Rehberg, and Kai Huang 787

Asymmetric velocity distribution in boundary-heating granular gas and a hydrodynamic description
 Yanpei Chen, Meiying Hou, Pierre Evesque, Yimin Jiang, and Mario Liu 791

Shearbanding and inhomogeneous states in granular fluid
 Meheboob Alam and Priyanka Shukla 795

Characteristics of Casimir-like forces in fluidized granular media
 M. Reza Shaebani, Jalal Sarabadani, and Dietrich E. Wolf 799

5.2. Numerical and Experimental

Can one "Hear" the aggregation state of a granular system?
 Christof A. Kruelle and Almudena García Sánchez 803

Microgravity experiments on a granular gas of elongated grains

Collective granular dynamics in a shaken container at low gravity conditions

Experimental study of a granular gas homogeneously driven by particle rotations
 E. Falcon, J.-C. Bacri, and C. Laroche 815

Pattern dynamics of cohesive granular particles under plane shear
 Satoshi Takada and Hisao Hayakawa 819

Effect of gravity on particle dispersion in a horizontally vibrating bed
 Kejun Dong, Kunio Shinohara, and Aibing Yu 823

6. PARTICLE PROPERTIES

6.1. Interparticle Interactions

Rolling resistance effect for sheared granular materials in the inertial regime
 Hayley H. Shen 827
A new contact model for modelling of elastic-plastic-adhesive spheres in distinct element method
Massih Pasha, Selasi Dogbe, Colin Hare, Ali Hassanpour, and Mojtaba Ghadiri

Wear particles: Influence on local stress and dynamical instabilities
Viet-Hung Nhu, Mathieu Renouf, Francesco Massi, and Aurélien Saulot

From particle to powder properties – A mesoscopic approach combining micro-scale experiments and X-ray microtomography
S. Strege, H. Zetzener, and A. Kwade

Unitary stick-slip motion in granular beds
J. E. Hilton, P. W. Cleary, and A. Tordesillas

Finite element analysis of the contact forces between viscoelastic particles
Q. J. Zheng, H. P. Zhu, and A. B. Yu

Calibration and validation of DEM rolling and sliding friction coefficients in angle of repose and shear measurements
Piotr Frankowski and Martin Morgeneyer

Numerical simulation of interaction between two PM$_{2.5}$ particles under acoustic travelling wave conditions
Fengxian Fan, Mingjun Zhang, and Chang Nyung Kim

An experiment investigation on electrification by collision between chemically identical glass particles
L. Xie, Y. Jiang, N. Bao, K. Han, and J. Zhou

Rebound characteristics for ash particles impacting a planar surface
Ming Dong, Sufen Li, Jian Han, and Jun Xie

Damping of rotating beams with particle dampers: Discrete element method analysis
D. N. J. Els

Identification of micro parameters for discrete element simulation of agglomerates
Stefan Palis, Sergiy Antonyuk, Maksym Dosta, and Stefan Heinrich

6.2. Size and Shape Effects

Effect of size polydispersity on micromechanical properties of static granular materials
M. R. Shaebani, M. Madadi, S. Luding, and D. E. Wolf

Slow dynamics for elliptical particles under continuous shear and cyclic compression
Somayeh Farhadi, Robert P. Behringer, and Alex Zihao Zhu
A benchmark for particle shape dependence
Gaël Combe, Cécile Nouguier-Lehon, Émilien Azéma, Krzysztof Szarf, Baptiste Saint-Cyr, Marie Chaze, Farhang Radjai, Pascal Villard, Jean-Yves Delenne, Vincent Richerfeu, Philippe Sornay, Charles Voivret, and CEGEO Group

The influence of aspect ratio and roughness on flowability
Colin Hare and Mojtaba Ghadiri

Comparison of the effects of rolling resistance and angularity in sheared granular media
Nicolas Estrada, Emilien Azéma, Farhang Radjai, and Alfredo Taboada

Influence of the feeding rate on the packing properties of faceted particles
R. C. Hidalgo, M. Acevedo, I. Zuriguel, I. Pagonabarra, and D. Maza

6.3. Size Reduction

Estimation of new surface generation and energy analysis during particle fracture
Manoj Khanal and Jürgen Tomas

A probabilistic approach of confined comminution in polydisperse granular materials
Carlos Ovalle, Charles Voivret, Christophe Dano, and Pierre-Yves Hicher

Impact of numerical models on fragmentation processes
Mathieu Renouf, Belien Gezahengn, Micheline Abbas, and Florent Bourgeois

Radical edge crack problem of a circular disk under circumference load
W. S. Xiao and H. P. Zhu

A study on the effect of particle shape and fragmentation on the mechanical behavior of granular materials using discrete element method
Ali Aminzadeh and Ehsan Seyedi Hosseininia

Experimental studies on the kinematics of cutting in granular materials
T. G. Murthy, C. Saldana, S. Yadav, and F. Du

Evolution of sand crushability and its effect on particle-scale energy allocation
Bo Zhou, Runqiu Huang, and Jianfeng Wang

Numerical simulation study of quasistatic grinding process on a model granular material
V. P. B. Esnault and J.-N. Roux

Analysis of seed processing by the distinct element method
Mehrdad Pasha, Colin Hare, Mojtaba Ghadiri, Patrick M. Piccione, and Scott Taylor

Numerical analysis of impact events in a centrifugal impact pin mill
C. Labra, J. Y. Ooi, J. F. Chen, and J. Sun
7. COHESION

7.1. Theoretical and Numerical

Micromechanical properties of colloidal structures
A. Kwade, C. Schilde, C. Burmeister, M. Roth, P. Lellig, and G. Auernhammer 939

Electrically-enhanced deposition of fine particles on a fiber: A numerical study using DEM
Mengmeng Yang, Shuiqing Li, Guanqing Liu, and Qiang Yao 943

DEM study on the interaction between wet cohesive granular materials and tools
Takuya Tsuji, Yu Matsui, Yuta Nakagawa, Yuuichi Kadono, and Toshitsugu Tanaka 947

Numerical estimation of the restitution coefficient for dry and wet agglomerates
Sergiy Antonyuk, Maksym Dosta, and Stefan Heinrich 951

Granular cohesion and fast rotators in the NEA population
Paul Sánchez and Daniel J. Scheeres 955

Assessing flowability of small quantities of cohesive powder using distinct element modelling
Massih Pasha, Colin Hare, Ali Hassanpour, and Mojtaba Ghadiri 959

Particle scale investigation of flow and mixing of wet particles in rotating drums
P. Y. Liu, R. Y. Yang, and A. B. Yu 963

DEM analysis of effects of particle properties and mixing conditions on particle attachment processes
Jiecheng Yang, Chuan-Yu Wu, and Michael Adams 967

Flow of dry and wet granular materials: Numerical simulation results
Saeed Khamseh, Jean-Noël Roux, and François Chevoir 971

7.2. Experimental

Erosion rate and instability of a wet/dry granular interface
Gautier Lefebvre and Pierre Jop 975

Effect of cohesion on granular-fluid flows in spouted beds: PIV measurement and DEM simulations
Runru Zhu, Shuiqing Li, and Qiang Yao 979

Behavior of cohesive powder in rotating drums
M. Wojtkowski, O. I. Imole, M. Ramaioli, E. Chávez Montes, and S. Luding 983

Experimental studies on the mechanics of cohesive frictional granular media
R. K. Kandasami and T. G. Murthy 987

Analysis of behavior of small agglomerated particles on two-dimensional vibrating plate
Murino Kobayakawa, Shuji Matsusaka, and Shuji Matsusaka 991
Influence of cohesive forces on the macroscopic properties of granular assemblies
Geoffroy Lumay, Jorge Fiscina, Francois Ludewig, and Nicolas Vandewalle 995

Incipient flow properties of two-component fine powder mixtures: Changing the flowability of smaller particles
Takehiro Kojima and James A. Elliott 999

Visualizing powder de-agglomeration upon impact with simultaneous flowing charge behaviour
Jin Wang Kwek, Desmond Heng, Sie Huey Lee, Wai Kiong Ng, Hak-Kim Chan, Jerry Heng, and Reginald Tan 1003

Internal structure and fragmentation kinetics of silica granules
P. Grosseau, T. Dumas, O. Bonnefoy, L. Barriquand, L. Guy, and G. Thomas 1007

Influence of the pan pelletizer rotational velocity and the particles size on the agglomeration of alumina oxide granules
Zheni Radeva, Peter Müller, and Juergen Tomas 1011

8. FLUID AND PARTICLES
8.1. Particle-fluid Interactions

FEM-DEM simulation of two-way fluid-solid interaction in fibrous porous media
K. Yazdchi, S. Srivastava, and S. Luding 1015

Characterization of fluid-particle interactions in poly-disperse systems
Francesco P. Di Maio and Alberto Di Renzo 1019

Capillary states of granular materials in the funicular state
Jean-Yves Delenne, Vincent Richefeu, and Farhang Radjai 1023

Preparation and characterisation of user-friendly PMMA microcapsules for consumer care
Xuemiao Pan, Ruben Mercade-prieto, David York, Jon A. Preece, and Zhibing Zhang 1027

Squeeze flow of a bi-viscosity fluid between two rigid spheres
Xu Chun-Hui, Zhang Mi, and Xu Yong 1031

A parametric study on the leakage-soil interaction due to a leaking pipe using the coupled DEM-LBM technique
X. Cui, J. Li, A. H. C. Chan, and D. N. Chapman 1035

Water retention in discrete element method
Yixiang Gan, Federico Maggi, and Itai Einav 1039

Free running droplets on packed powder beds
Catherine P. Whitby, Xun Bian, and Rossen Sedev 1043
8.2. Suspension, Sedimentation, Saltation, and Dust Emission

Where to dig for gold? – Density segregation inside migrating dunes
Christopher Groh, Ingo Rehberg, and Christof A. Krueelle 1047

Simulation of aeolian saltation
M. V. Carneiro and H. J. Herrmann 1051

Dust emission modelling around a stockpile by using computational fluid dynamics and discrete element method
S. M. Derakhshani, D. L. Schott, and G. Lodewijks 1055

Scaling laws in aeolian sand transport: Erodible versus non-erodible bed

DEM-PFV analysis of solid-fluid transition in granular sediments under the action of waves
E. Catalano, B. Chareyre, and E. Barthélémy 1063

Coulombic wall slip of concentrated soft-particle suspensions
Michael Adams, Wei Liu, Zhibing Zhang, and Peter Fryer 1067

Effect of shear-induced diffusion on the transfer of heat across a sheared suspension
Ouamar Rahli, Xiaolong Yin, and Bloen Metzger 1071

Pattern formation during capillary rising of a fluid front into a granular media
A. P. F. Atman, G. Combe, Thaysa R. M. Ferreira, and Jéssica A. A. Barros 1075

Grain sedimentation with SPH-DEM and its validation
Martin Robinson, Stefan Luding, and Marco Marco Ramaioli 1079

2D DEM model of sand transport with wind interaction
L. Oger and A. Valance 1083

Wind tunnel studies on the vertical emission of sand grains from surface
L. Guo and N. Huang 1087

Rheology of dense suspensions: Insights from soft dynamics simulations
P. Rognon, C. Gay, and I. Einav 1090

Effect of ground granulated blast furnace slag particle size distribution on paste rheology: A preliminary model
Alireza Kashani, John L. Provis, and Jannie S. J. van Deventer 1094

8.3. Gas Fluidisation

Particle dynamics in the fluidized bed: Magnetic particle tracking and discrete particle modelling
Johannes Neuwirth, Sergiy Antonyuk, and Stefan Heinrich 1098
Transitional behavior in gas-fluidized beds
Colin Thornton, Fang Yang, and Jonathan Seville 1102

Contact analysis of different flow regimes in gas fluidization
Q. F. Hou, Z. Y. Zhou, and A. B. Yu 1106

Identification of flow regime in a slurry bubble column by Hilbert-Huang transform analysis
Weiling Li, Wenqi Zhong, Baosheng Jin, and Rui Xiao 1110

Computational study of heat transfer in gas fluidization
Q. F. Hou, Z. Y. Zhou, and A. B. Yu 1114

Discrete particle simulation of heat transfer in pressurized fluidized bed with immersed cylinders
Hadi Wahyudi, Kaiwei Chu, and Aibing Yu 1118

SPH-DEM simulations of grain dispersion by liquid injection
Martin Robinson, Stefan Luding, and Marco Ramaioli 1122

Novel multiscale simulation environment for modeling of fluidized bed granulation
Maksym Dosta and Stefan Heinrich 1126

Discrete element modeling of gas fluidization of fine ellipsoidal particles
Jieqing Gan, Zongyan Zhou, Ruiping Zou, and Aibing Yu 1130

8.4. Other Particle-fluid Flows

Fluid coupling in DEM simulation using Darcy's law: Formulation, and verification
M. Goodarzi, C. Y. Kwok, L. G. Tham, and F. Chen 1134

Polygonal particles in fluids
Shi Han Ng and Hans-Georg Matuttis 1138

Fibrous random materials: From microstructure to macroscopic properties
K. Yazdchi and S. Luding 1142

CFD analysis of the aerosolization of carrier-based dry powder inhaler formulations
Qi (Tony) Zhou, Zhenbo Tong, Patricia Tang, Runyu Yang, and Hak-Kim Chan 1146

Continuous particle manipulation and separation in a hurdle-combined curved microchannel using DC dielectrophoresis
Ming Li, Shunbo Li, Weihua Li, Weijia Wen, and Gursel Alici 1150

Numerical study of vertical pneumatic conveying: Effect of friction coefficient
K. Li, S. B. Kuang, R. P. Zou, R. H. Pan, and A. B. Yu 1154

Study of raceway in COREX melter gasifier by using three progressive methods
Jun-jie Sun, Zhi-guo Luo, Zhan-xia Di, Chong-lin Liu, Zong-shu Zou, and Yan-Song Shen 1158
Numerical study of jet-induced cratering of a granular bed: Effect of gravity
S. B. Kuang, C. Q. LaMarche, J. S. Curtis, and A. B. Yu 1162

Magnetic resonance imaging (MRI) study of jet height hysteresis in packed beds
Maximilian H. Köhl, Guang Lu, James R. Third, Klaas P. Prüssmann, and Christoph R. Müller 1166

Sensitivity to damping in sand production DEM-CFD coupled simulations
Natalia Climent, Marcos Arroyo, Catherine O'Sullivan, and Antonio Gens 1170

Air effects on subharmonic bifurcations of impact in vertically vibrated granular beds
Z. H. Jiang, H. Han, R. Zhang, and X. R. Li 1174

Numerical simulation of rip-raps with the distinct element method
Livia Mittelbach 1178

Particle scale modelling of the multiphase flow in a dense medium cyclone: Effect of medium-to-coal ratio
Kaiwei Chu, Jiang Chen, Aibing Yu, and Andrew Vince 1182

9. CONTINUUM MODELLING AND SIMULATION
9.1. Granular Rheology

Granular statistical mechanics: Volume-stress phase space, equipartition and equations of state
Raphael Blumenfeld, Joe F. Jordan, and Sam F. Edwards 1186

Non-linear deformation behavior of granular media by elliptic microstructure based model
Kenichi Maeda and Kinya Miura 1190

Modeling of a cohesive granular materials by a multi-scale approach
T. K. Nguyen, G. Combe, D. Caillerie, and J. Desrues 1194

Dense annular flows of granular media
Alain de Ryck and Olivier Louisnard 1198

From discrete particles to continuum fields in mixtures
T. Weinhart, S. Luding, and A. R. Thornton 1202

Mechanisms of energy dissipation in saturated granular mass flows
Francesco Federico 1206

Subdiffusive behavior in a two-dimensional granular assembly under shear
J. M. Salazar 1210

Micromechanics of deformation non-coaxiality in granular materials
Xia Li and Hai-Sui Yu 1214
Continuum stress characteristics inside shear bands
Antoinette Tordesillas, John F. Peters, and Jingyu Shi 1218

A hierarchical model for cross-scale simulation of granular media
Ning Guo and Jidong Zhao 1222

2D cyclic pure shear of granular materials, simulations and model
D. Krijgsman and S. Luding 1226

Eddies, mixing and heat transfer in dense granular flows
P. Rognon, T. Miller, and I. Einav 1230

A micromechanical numerical analysis for a triaxial compression of granular materials
V. Magnanimo and L. La Ragione 1234

Evolution of the effective moduli for anisotropic granular materials during pure shear
N. Kumar, O. I. Imole, V. Magnanimo, and S. Luding 1238

Modeling of time-dependent distributions of impact and kinetic energies of particulate systems
Javan D. Tjakra, Nicolas Hudon, Jie Bao, and Runyu Yang 1242

9.2. Process Modelling and Analysis

Modelling of the mechanical behaviour of two pure PTFE powders during their compaction at room temperature
Carole Frédy, Rodrigo B. Canto, Nicolas Schmitt, Stéphane Roux, and René Billardon 1246

Multi-scale modelling of granular avalanches
Krishna Kumar, Kenichi Soga, and Jean-Yves Delenne 1250

A brief investigation into ejection times from a conical mass flow Hopper - Coulomb and conical model difference
L. A. Fullard and C. E. Davies 1254

Spatial and temporal coarse-graining for DEM analysis
C. Labra, J. Y. Ooi, and J. Sun 1258

Energy dissipation of debris flow through pile group obstructions
Minglong Fei, Qicheng Sun, Deyu Zhong, and Gordon G. D. Zhou 1262

Determining key variables of the kinetic theory of granular flow using DWS
V. Zivkovic, K. Berry, D. H. Glass, and M. J. Biggs 1266

Numerical investigation of solid mixing in a fluidized bed coating process
Venkatakrishna Kenche, Yuqing Feng, Danyang Ying, Chris Solnondal, Seng Lim, and Peter J. Witt 1270
Modelling ironmaking blast furnace: Solid flow and thermochemical behaviours
 Yansong Shen, Baoyu Guo, Aibing Yu, Sheng Chew, and Peter Austin 1274

Technological pretreatment of the synchysite non-oxidized ore
 B. Munkhtsetseg and G. Burmaa 1278

Dusting control of magnesium slag produced by Pidgeon process
 Laner Wu, Qixing Yang, Fenglan Han, and Chun Du 1282

Numerical simulations of solid-liquid stirred tank with an improved Intermig impeller
 Hongliang Zhao, Ting'an Zhang, Yan Liu, Zimu Zhang, and Chao Zhang 1286

Discharge of a granular silo as a visco-plastic flow
 L. Staron, P.-Y. Lagrée, and S. Popinet 1290

Effect of particle fineness on the finely disseminated iron ore for beneficiation
 T. S. Qiu, W. X. Zhang, X. H. Fang, and G. K. Gao 1294

Comparison of two methods to study the gas-liquid flows in a continuous slab casting mold
 Zhiguo Luo, Chonglin Liu, Tao Zhang, Junjie Sun, Zongshu Zou, and Yansong Shen 1296

Numerical simulations of gas-liquid flow in the gas injection process with mechanical stirring
 Pin Shao, Ting'an Zhang, Yan Liu, Zimu Zhang, and Dongxing Wang 1300

Experimental study of bottom blown oxygen copper smelting process for water model
 Dongxing Wang, Yan Liu, Zimu Zhang, Pin Shao, and Ting'an Zhang 1304

Particle scale modelling of the multiphase flow in a dense medium cyclone: Effect of near gravity material

Author Index 1313