Table of Contents

Preface: 2011 Physics Education Research Conference
 N. Sanjay Rebello, Paula V. Engelhardt, and Chandralekha Singh 1

Conference Overview 3

Schedule 5

INVITED PAPERS
 (NOT PEER REVIEWED)

In search of alignment: Matching learning goals and class assessments
 David T. Brookes and Eugenia Etkina 11

Fostering computational thinking in introductory mechanics
 Marcos D. Caballero, Matthew A. Kohlmyer, and Michael F. Schatz 15

Development of proximal formative assessment skills in video-based teacher professional development

FCI normalized gain, scientific reasoning ability, thinking in physics, and gender effects
 Vincent P. Coletta, Jeffrey A. Phillips, and Jeff Steinert 23

Graphical representations of vector functions in upper-division E&M
 Elizabeth Gire and Edward Price 27

Implementation of phased-array homework: Assessment and focused understanding
 Stacy H. Godshall 31

ACS exams as an example of scholarship-based assessment in a discipline
 Thomas Holme and Megan Grunert 35

Promoting and assessing creativity and innovation in physics undergraduates
 Patrick B. Kohl, H. Vincent Kuo, Susan Kowalski, and Frank Kowalski 39

Developing a magnetism conceptual survey and assessing gender differences in student understanding of magnetism
 Jing Li and Chandralekha Singh 43
Can multiple-choice questions simulate free-response questions?
Shih-Yin Lin and Chandralekha Singh

Assessment to complement research-based instruction in upper-level physics courses
Michael E. Loverude

Representations for a spins-first approach to quantum mechanics
Corinne Manogue, Elizabeth Gire, David McIntyre, and Janet Tate

Complex interactions between formative assessment, technology, and classroom practices
Edward Price

Changing scientific reasoning and conceptual understanding in college students
Brian A. Pyper

Comparing students’ performance on research-based conceptual assessments and traditional classroom assessments
N. Sanjay Rebello

Standards-based grading with voice: Listening for students’ understanding
Andy Rundquist

Assessment lessons from K-12 education research: Knowledge representation, learning, and motivation
Lorrie A. Shepard

Improving students’ understanding of quantum mechanics by using peer instruction tools
Chandralekha Singh and Guangtian Zhu

When students can choose easy, medium, or hard homework problems
Raluca E. Teodorescu, Daniel T. Seaton, Caroline N. Cardamone, Saif Rayyan, Jonathan E. Abbott, Analia Barrantes, Andrew Pawl, and David E. Pritchard

Representations of partial derivatives in thermodynamics
John R. Thompson, Corinne A. Manogue, David J. Roundy, and Donald B. Mountcastle

Representation issues: Using mathematics in upper-division physics
Joseph F. Wagner, Corinne A. Manogue, and John R. Thompson

When basic changes to a solution suggest meaningful differences in mathematics
Michael C. Wittmann and Katrina E. Black

The Group Administered Interactive Questionnaire: An alternative to individual interviews
Edit Yerushalmi, Charles Henderson, William Mamudi, Chandralekha Singh, and Shih-Yin Lin

PEER REVIEWED PAPERS

Expectancy violation in physics and mathematics classes in a student-centered classroom
Carolina Alvarado, Angeles Dominguez, Ruth Rodriguez, and Genaro Zavala
Interpretive themes in quantum physics: Curriculum development and outcomes
Charles Baily and Noah D. Finkelstein

107

Student interpretation of the signs of definite integrals using graphical representations
Rabindra R. Bajracharya, Thomas M. Wemyss, and John R. Thompson

111

Students’ difficulties with unit vectors and scalar multiplication of a vector
Pablo Barniol and Genaro Zavala

115

Using artifact methodology to compare learning assistants’ and colleagues’ classroom practices
Stephanie A. Barr, Mike J. Ross, and Valerie Otero

119

Student-generated content: Using PeerWise to enhance engagement and outcomes in introductory physics courses

123

Implementation of physics and everyday thinking in a high school classroom: Concepts and argumentation
Shelly N. Belleau, Mike J. Ross, and Valerie K. Otero

127

Designing a physics learning environment: A holistic approach
David T. Brookes and Yuhfen Lin

131

Item response theory analysis of the mechanics baseline test
Caroline N. Cardamone, Jonathan E. Abbott, Saif Rayyan, Daniel T. Seaton, Andrew Pawl, and David E. Pritchard

135

But does it last? Sustaining a research-based curriculum in upper-division electricity and magnetism
Stephanie V. Chasteen, Rachel E. Pepper, Steven J. Pollock, and Katherine K. Perkins

139

Teasing out the effect of tutorials via multiple regression
Stephanie V. Chasteen

143

What do students learn about work in physical and virtual experiments with inclined planes?
Jacquelyn J. Chini, Adrian Madsen, N. Sanjay Rebello, and Sadhana Puntambekar

147

Differentiation of energy concepts through speech and gesture in interaction
Hunter G. Close and Rachel E. Scherr

151

The use of PDAs as classroom interaction system: Instructors’ perspective
Edgar D. Corpuz, Ma. Aileen A. Corpuz, and Mary A. Moriarty

155

Teaching physics to life science students—Examining the role of biological context
Catherine H. Crouch and Kenneth Heller

159
Experiences of new faculty implementing research-based instructional strategies
Melissa H. Dancy and Charles Henderson

Teaching assistant-student interactions in a modified SCALE-UP classroom
George DeBeck and Dedra Demaree

Gender bias in the force concept inventory?
R. D. Dietz, R. H. Pearson, M. R. Semak, and C. W. Willis

Applying Rasch theory to evaluate the construct validity of brief electricity and magnetism assessment
Lin Ding

Student views of macroscopic and microscopic energy in physics and biology
Benjamin W. Dreyfus, Edward F. Redish, and Jessica Watkins

Problem-based learning in upper division courses: Student successes, perceptions, and reactions
Gintaras Duda and James Ross

"Implicit Action": Understanding discourse management in modeling instruction
Jared Durden, Eric Brewe, and Laird Kramer

Developing an energy assessment for elementary education majors
Tom Foster and Daniel Barnett

Making sense of quantum operators, eigenstates and quantum measurements
Elizabeth Gire and Corinne Manogue

Effects of the learning assistant experience on in-service teachers’ practices
Kara E. Gray, David C. Webb, and Valerie K. Otero

Elements of proximal formative assessment in learners’ discourse about energy
Benedikt W. Harrer, Rachel E. Scherr, Michael C. Wittmann, Hunter G. Close, and Brian W. Frank

Probing student understanding with alternative questioning strategies
Jeffrey M. Hawkins, Brian W. Frank, John R. Thompson, Michael C. Wittmann, and Thomas M. Weymss

Physics Education Research funding census
Charles Henderson, Ramón Barthelemy, Noah Finkelstein, and Jose Mestre

Scaffolding students’ application of the ‘area under a curve’ concept in physics problems
Dehui Hu, Joshua Von Korff, and N. Sanjay Rebello

Using Johnson-Laird’s cognitive framework of sense-making to characterize engineering students’ mental representations in kinematics
Bashirah Ibrahim and N. Sanjay Rebello

Understanding the variable effect of instructional innovations on student learning
Heidi L. Iverson

viii
Assessing students’ ability to solve introductory physics problems using integrals in symbolic and graphical representations
 Neelam Khan, Dehui Hu, Dong-Hai Nguyen, and N. Sanjay Rebello 227

Replicating a self-affirmation intervention to address gender differences: Successes and challenges
 Lauren E. Kost-Smith, Steven J. Pollock, Noah D. Finkelstein, Geoffrey L. Cohen, Tiffany A. Ito, and Akira Miyake 231

Socratic dialogs and clicker use in an upper-division mechanics course
 H. Vincent Kuo, Patrick B. Kohl, and Lincoln D. Carr 235

Successes and constraints in the enactment of a reform
 May Lee, Melissa Dancy, Charles Henderson, and Eric Brewe 239

Students’ difficulties with equations involving circuit elements
 Jing Li and Chandralekha Singh 243

Assessing physics learning identity: Survey development and validation
 Sissi L. Li and Dedra Demaree 247

Using analogical problem solving with different scaffolding supports to learn about friction
 Shih-Yin Lin and Chandralekha Singh 251

TA-designed vs. research-oriented problem solutions
 Shih-Yin Lin, Chandralekha Singh, William Mamudi, Charles Henderson, and Edit Yerushalmi 255

The effect of immigration status on physics identity and physical science career intentions
 Florin Lung, Geoff Potvin, Gerhard Sonnert, and Philip M. Sadler 259

Should students be provided diagrams or asked to draw them while solving introductory physics problems?
 Alex Maries and Chandralekha Singh 263

Do prescribed prompts prime sensemaking during group problem solving?
 Mathew “Sandy” Martinuk and Joss Ives 267

Evidence of students’ content reasoning in relation to measure of reform
 Mojgan Matloob Haghanikar, Sytil Murphy, and Dean Zollman 271

Student views of similarity between math and physics problems
 Dyan L. McBride 275

Criteria for creating and categorizing forms of energy
Finding meaningful search features for automated analysis of short responses to conceptual questions
Christopher M. Nakamura, Sytill K. Murphy, Michael Christel, Scott M. Stevens, and Dean A. Zollman 283

Development of a mechanics reasoning inventory
Andrew Pawl, Analía Barrantes, Carolin Cardamone, Saif Rayyan, and David E. Pritchard 287

Facilitating faculty conversations: Development of consensus learning goals
Rachel E. Pepper, Stephanie V. Chasteen, Steven J. Pollock, and Katherine K. Perkins 291

Towards research-based strategies for using PhET simulations in middle school physical science classes
Katherine Perkins, Emily Moore, Noah Podolefsky, Kelly Lancaster, and Christine Denison 295

Context dependence of teacher practices in middle school science
Noah S. Podolefsky and Katherine K. Perkins 299

Issues and progress in transforming a middle-division classical mechanics/math methods course
Steven J. Pollock, Rachel E. Pepper, and Alysia D. Marino 303

Multiple roles of assessment in upper-division physics course reforms
Steven Pollock, Rachel Pepper, Stephanie Chasteen, and Katherine Perkins 307

Adapting a theoretical framework for characterizing students’ use of equations in physics problem solving
Carina M. Rebello and N. Sanjay Rebello 311

How accurately can students estimate their performance on an exam and how does this relate to their actual performance on the exam?
N. Sanjay Rebello 315

Communicating scientific ideas: One element of physics expertise
Idaykis Rodriguez, Renee Michelle Goertzen, Eric Brewe, and Laird Kramer 319

Following student gaze patterns in physical science lectures
David Rosengrant, Doug Herrington, Kerriann Alvarado, and Danielle Keeble 323

Teacher-driven professional development and the pursuit of a sophisticated understanding of inquiry
Mike Ross, Ben Van Dusen, Samson Sherman, and Valerie Otero 327

Comparing the development of students’ conceptions of pulleys using physical and virtual manipulatives
Amy Rouinfar, Adrian M. Madsen, Tram Do Ngoc Hoang, Sadhana Puntambekar, and N. Sanjay Rebello 331

Further investigation of examining students understanding of Lenz’s Law and Faraday’s Law
Casey W. Sanchez and Michael E. Loverude 335
Creating opportunities to influence self-efficacy through modeling instruction
Vashti Sawtelle, Eric Brewe, Renee Michelle Goertzen, and Laird H. Kramer 339

Intuitive ontologies for energy in physics
Rachel E. Scherr, Hunter G. Close, and Sarah B. McKagan 343

Promoting proximal formative assessment with relational discourse
Rachel E. Scherr, Hunter G. Close, and Sarah B. McKagan 347

What are the effects of self-assessment preparation in a middle school science classroom?
Sara E. Severance 351

Students’ understanding of the addition of angular momentum
Chandralekha Singh and Guangtian Zhu 355

A longitudinal study of the development of attitudes and beliefs towards physics

Toward an analytic framework of physics teaching assistants’ pedagogical knowledge
Benjamin T. Spike and Noah D. Finkelstein 363

Examining student ability to interpret and use potential energy diagrams for classical systems
Brian M. Stephanik and Peter S. Shaffer 367

Faculty perspectives about instructor and institutional assessments of teaching effectiveness
Chandra Turpen, Charles Henderson, and Melissa Dancy 371

Changing roles and identities in a teacher-driven professional development community
Ben Van Dusen and Valerie Otero 375

Assessment of vertical transfer in problem solving: Mapping the problem design space
Joshua Von Korff, Dehui Hu, and N. Sanjay Rebello 379

Evidence of embodied cognition about wave propagation
Michael C. Wittmann and Evan Chase 383

Students’ difficulties with quantum measurement
Guangtian Zhu and Chandralekha Singh 387

Transforming the advanced lab: Part I—Learning goals
Benjamin Zwickl, Noah Finkelstein, and H. J. Lewandowski 391

List of Participants and Email Addresses
395

Author Index
399