Shock Compression of Condensed Matter – 2011

PART ONE

EDITORS

Mark L. Elert
U. S. Naval Academy, Annapolis, Maryland, USA

William T. Buttler
Los Alamos National Laboratory, Los Alamos, New Mexico, USA

John P. Borg
Marquette University, Milwaukee, Wisconsin, USA

Jennifer L. Jordan
Air Force Research Laboratory, Eglin Air Force Base, Florida, USA

Tracy J. Vogler
Sandia National Laboratories, Livermore, California, USA

All papers have been peer reviewed.

AIP
American Institute of Physics
Melville, New York, 2012
AIP I CONFERENCE PROCEEDINGS ■ 1426
Table of Contents

PART ONE

Preface: Shock Compression of Condensed Matter - 2011
Mark Elert, William T. Buttler, John P. Borg, Jennifer Jordan, and Tracy Vogler
1

Foreword
3

Topical Group on Shock Compression of Condensed Matter
2009 - 2010 APS Fellows
4

Photograph: Recipient of the APS Shock Compression Science Award, 2011
5

Conferences of the American Physical Society Topical Group on Shock Compression of Condensed Matter
7

PLENARY

The role of the Gibbs function in solid-solid phase transformations under nonhydrostatic stress conditions
James N. Johnson
11

Material response to shock/dynamic loading: Windows into kinetic and stress-state effects on defect generation and damage evolution
George Thompson Gray III
19
Metalized heterogeneous detonation and dense reactive particle flow
Fan Zhang 27

Megaamps, megagauss, and megabars: Using the Sandia Z Machine to perform extreme material dynamics experiments
M. D. Knudson 35

BALLISTICS STUDIES

Deceleration of projectiles in sand
Stephan Bless, William Cooper, Keiko Watanabe, and Robert Peden 45

Ballistic penetration of sand with small caliber projectiles
John P. Borg, Andrew Fraser, and Andrew Van Vooren 48

Impact effects of explosively formed projectiles on normal strength concrete
Laurin Bookout and Jason Baird 52

Mechanism of anomalous penetration of shaped charge jet into ceramics
Boris V. Rumyantsev and Vladimir Yu. Klimenko 56

X-ray tomography to measure size of fragments from penetration of high-velocity tungsten rods
Zach Stone, Stephan Bless, John Tolman, Jason McDonald, Scott Levinson, and R. Hanna 60

Numerical study on the high-speed water-entry of hemispherical and ogival projectiles
Zitao Guo, Wei Zhang, Gang Wei, and Peng Ren 64

Incorporation of the Deshpande-Evans mechanism-based damage model into the EPIC code
Timothy J. Holmquist and Gordon R. Johnson 68

Anisotropic effects on constitutive model parameters of aluminum alloys
Nachhatter S. Brar and Vasant S. Joshi 72
Modeling interface defeat and dwell in long rod penetration into ceramic targets
Yehuda Partom 76

A computational study of segmented tungsten rod penetration into a thick steel target plate at high velocities
Michael B. Presnell and A. M. Rajendran 80

Ballistic performance of porous-ceramic, thermal protection systems
Joshua E. Miller, William E. Bohl, Eric C. Christiansen, Bruce A. Davis, and Cory D. Foreman 84

Testing boron carbide under triaxial compression
Charles Anderson, Sidney Chocron, Kathryn A. Dannemann, and Arthur E. Nicholls 88

Experimental analysis of blast mitigation associated with water sheets
Andrew J. Zakrajsek, Eric J. Miklaszewski, Daniel R. Guildenbecher, and Steven F. Son 92

Scaled long rod penetration experiments: Tungsten against rolled homogeneous armour
William Proud and Daniel Cross 96

Burst pressure failure of titanium tanks damaged by secondary plumes from hypervelocity impacts on aluminum shields
Henry Nahra, L. Ghosn, E. Christiansen, B. A. Davis, C. Keddy, K. Rodriguez, J. Miller, and W. Bohl 100

Inferring the high-pressure strength of copper by measurement of longitudinal sound speed in a symmetric impact and release experiment
Stephen Rothman, Rhys Edwards, Tracy Vogler, and M. D. Furnish 104

Ultrafine particle size distribution during high velocity impact of high density metals
Giorgio Buonanno, Luca Stabile, Andrew Ruggiero, Gianluca Iannitti, and Nicola Bonora 108

Scaled long rod perforation experiments using multiple diagnostics: Mild steel against rolled homogeneous armour
Daniel Cross and William Proud 112

The formation and stretching of bi-material shaped charge jets
John Philip Curtis, Frank Thomas Smith, and Alexander White 116
Gel versus aerogel to collect high velocity ejectas from laser shock-loaded metallic targets for postrecovery analyses
 Emilien Lescoute, Thibaut De Rességuier, and Jean-Marc Chevalier 120

Computational work minimization of two-bucket searches for meshless particle neighbors
 Charles Gerlach 124

BIOLOGICAL / NANOMATERIALS

Prospects for studying how high-intensity compression waves cause damage in human blast injuries
 Katherine Brown, Chiara Bo, Spyros Masouros, Arul Ramasamy, Nicolas Newell, Timothy Bonner, Jens Balzer, Adam Hill, Jon Clasper, Anthony Bull, and William Proud 131

The pathogenesis of retinal damage in human eye under impact and blast load
 Luca Esposito, Tommaso Rossi, Nicola Bonora, and Chiara Clemente 135

The dynamic response and shock-recovery of porcine skeletal muscle tissue
 James Michael Wilgeroth, Paul Hazell, and Gareth James Appleby-Thomas 139

Ballistic penetration of Perma-Gel
 Raymond Albert Ryckman, David Arthur Powell, and Adrian Lew 143

On the shock response of pisum sativum and lepidium sativum
 James Allen Leighs, Paul Hazell, and Gareth James Appleby-Thomas 149

Cellular characterization of compression-induced damage in live biological samples
 Chiara Bo, Jens Balzer, Mark Hahnel, Sara M Rankin, Katherine A Brown, and William Proud 153

Sporicidal effects of iodine-oxide thermite reaction products
 Rod Russell, Stephan Bless, Alexandra Blinkova, and Tiffany Chen 157
COMPOSITES AND POLYMERS

Temperature dependent equation of state for HMX-based composites
Melvin Baer, S. Root, R. L. Gustavsen, T. Pierce, S. DeFisher, and B. Travers
163

High strain rate behavior of polyurea compositions
Vasant S. Joshi and Christopher Milby
167

Challenges in the hydrocode modelling of hopkinson bar tests on polymeric specimens
Rory Cornish, P. Church, I. Lewtas, P. Gould, and R. Pereira
171

Mesoscale simulations of particle reinforced epoxy-based composites
Bradley W. White, Harry Keo Springer, Jennifer Jordan, Jonathan E. Spowart, and Naresh Thadhani
175

Composite layering technique for use in a eulerian shock physics code
Shane Schumacher
179

The shock response of a tape wrapped carbon fiber composite
David Christopher Wood, Paul Hazell, Gareth James Appleby-Thomas, and Nicholas Barnes
183

Functionally graded shells subjected to underwater shock
Shi Wei Gong and Khin Yong Lam
187

High strain rate mechanical properties of glassy polymers
Jennifer Jordan, Clive Richard Siviour, and Brian Woodworth
191

DETONATIONS & SHOCK-INDUCED CHEMISTRY

Cylindrical converging shock initiation of reactive materials
Charles M. Jenkins, Yasuyuki Horie, Christopher Michael Lindsay, George C Butler, David Lambert, and Eric Welle
197

Shock compression of formic acid
Virginia W. Manner, S.A. Sheffield, Dana M. Dattelbaum, and David B Stahl
201
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental determination of detonation parameters of explosives</td>
<td>Alexander Utkin, Vladimir Lavrov, and Valentina Mochalova</td>
<td>205</td>
</tr>
<tr>
<td>based on ammonium nitrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental measurements of the chemical reaction zone of TATB</td>
<td>Viviane Bouyer, Philippe Hebert, Michel Doucet, Lionel Decaris, and Louis-Pierre Terzulli</td>
<td>209</td>
</tr>
<tr>
<td>and HMX based explosives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modelling detonation in ultrafine tntb hemispherical boosters using</td>
<td>Nicholas J Whitworth</td>
<td>213</td>
</tr>
<tr>
<td>crest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchtop energetics progress</td>
<td>Mario Fajardo, Emily C Fossum, Christopher D Molek, and William K Lewis</td>
<td>217</td>
</tr>
<tr>
<td>A hydrocode study of explosive shock ignition</td>
<td>George C Butler and Yasuyuki Horie</td>
<td>223</td>
</tr>
<tr>
<td>Effect of electric fields on the reaction rates in shock initiating</td>
<td>Craig M. Tarver</td>
<td>227</td>
</tr>
<tr>
<td>and detonating solid explosives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical simulation of detonation propagation in PETN at arbitrary</td>
<td>Shiro Kubota, Tei Saburi, Yuji Ogata, and Kunihito Nagayama</td>
<td>231</td>
</tr>
<tr>
<td>initial density by simple model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchtop energetics: Detection of hyperthermal species</td>
<td>Emily C Fossum, Christopher D Molek, William K Lewis, and Mario Fajardo</td>
<td>235</td>
</tr>
<tr>
<td>Burn front and reflected shock wave visualization in an inertially</td>
<td>Guillermo Terrones, Michael W. Burkett, and Christopher L. Morris</td>
<td>239</td>
</tr>
<tr>
<td>confined detonation of high explosive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The effects of PBX 9502 ratchet growth on detonation failure as</td>
<td>Terry R. Salyer</td>
<td>243</td>
</tr>
<tr>
<td>determined via the lanl failure cone test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSD/WBL-consistent JWL equations of state for EDC35</td>
<td>Alexander N Hodgson and Caroline Angela Handley</td>
<td>247</td>
</tr>
</tbody>
</table>
Effect of shockwave curvature on run distance observed with a modified wedge test
 Richard Lee, Robert J. Dorgan, Gerrit Sutherland, Ashley Benedetta, and Christopher Milby 251

Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive

A simple model for the dependence on local detonation speed of the product entropy
 David C Hetherington and Nicholas J Whitworth 259

Detonation theory for condensed phase explosives with anisotropic properties
 D. Scott Stewart, Laurence E Fried, and Matthew Szuck 263

Non ideal detonation of emulsion explosives mixed with metal particles
 Ricardo Mendes, José B. Ribeiro, I. Plaksin, and Jose Campos 267

Fast reactions of aluminum and explosive decomposition products in a post-detonation environment
 Bryce C. Tappan, Virginia W. Manner, Joseph M. Lloyd, and Steven J. Pemberton 271

Air blast characteristics of laminated al and NI-AL casings
 Fan Zhang, Robert Ripley, and William Wilson 275

Shock initiation of powder mixtures of aluminum with dense metal oxides
 Francois-Xavier Jette, Sam Goroshin, David Frost, and Fan Zhang 279

Critical hotspots and flame propagation in HMX-based explosives
 Caroline Angela Handley 283

A computational exploration of the differences between prompt and bow shock initiation of explosives by shaped charge jets
 Christopher Mellor, Hugh R James, and Michael J Goff 287

The effect of failure diameter on the initiation of explosives by shaped charge jets
 Hugh R James, Christopher Mellor, and Michael J Goff 291
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of test method on pop plot results</td>
<td>Gerrit Sutherland</td>
<td>295</td>
</tr>
<tr>
<td>The role of viscosity in TATB hot spot ignition</td>
<td>Laurence E Fried, Luis Zepeda-Ruis, W. Michael Howard, Fady Najjar,</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>and John E. Reaugh</td>
<td></td>
</tr>
<tr>
<td>Determination of detonation parameters for liquid high explosives</td>
<td>Valentina Mochalova and Alexander Utkin</td>
<td>303</td>
</tr>
<tr>
<td>The shock-triggered statistical hot spot model</td>
<td>Larry Glenn Hill</td>
<td>307</td>
</tr>
<tr>
<td>Sensitivity of PBX-9502 after ratchet growth</td>
<td>Roberta N. Mulford and Damian Swift</td>
<td>311</td>
</tr>
<tr>
<td>Improving laser-driven flyer efficiency with high absorbance layers</td>
<td>H.R. Brierley, David Martin Williamson, and T. A. Vine</td>
<td>315</td>
</tr>
<tr>
<td>Theoretical study of the influence of the equation of state mixture properties on the velocity-curvature relationship for heterogeneous solid explosives</td>
<td>Christophe Matignon, Nicolas Desbiens, Remy Sorin, and Vincent Dubois</td>
<td>319</td>
</tr>
<tr>
<td>Shock initiation and detonation properties of bisfluorodinitroethyl formal (FEFO)</td>
<td>L. L. Gibson, S.A. Sheffield, Dana M. Dattelbaum, and David B Stahl</td>
<td>323</td>
</tr>
<tr>
<td>Towards the role of interfacial shear in shock-induced intermetallic reactions</td>
<td>Mark Alistair Collinson, David James Chapman, Mark Burchell, David Martin Williamson, and Daniel E Eakins</td>
<td>327</td>
</tr>
<tr>
<td>Simulation of attenuation regularity of detonation wave in PMMA</td>
<td>Wei Lan and Hu Xiaomian</td>
<td>331</td>
</tr>
<tr>
<td>3D DSD calculation in a rectangular bar by the direct algorithm</td>
<td>Yehuda Partom</td>
<td>335</td>
</tr>
</tbody>
</table>
Dynamics of the detonation products of a TATB based high explosive: Photon doppler velocimetry and high-speed digital shadowgraphy of expanding species
 Arnaud Sollier, Viviane Bouyer, Louis-Pierre Terzulli, Michel Doucet, Philippe Hebert, and Lionel Decaris 339

Size effect and cylinder test on several commercial explosives
 P. Clark Souers, Lisa Lauderbach, Kou Moua, and Raul Garza 343

Determination of the velocity-curvature relationship for unknown front shapes
 Scott I Jackson and Mark Short 347

Modeling kinetics for the reaction of aluminum and teflon and the simulation of its energetic flow motion
 Sunhee Yoo, D. Scott Stewart, Sungjin Choi, and David Lambert 351

EXPERIMENTAL DEVELOPMENTS—DIAGNOSTICS

Analysis of cylindrical ramp compression experiment with radiography based surface fitting method
 Matthew R. Martin, R. W. Lemke, Ryan D. McBride, Jean-Paul Davis, and M. D. Knudson 357

Shot H3837: Darht’s first dual-axis explosive experiment
 James F. Harsh, Lawrence Hull, Jacob Mendez, and Wendy Vogan McNeil 361

Two-dimensional imaging velocity interferometry: Technique and data analysis
 David Erskine, Ray F Smith, Cindy Bolme, P. M. Celliers, and G. W. Collins 364

An application of the emissive layer technique to temperature measurement by infrared optical pyrometer
 Camille Chauvin, Jacques Petit, and Frederic Sinatti 368

Fourier transform and reflective imaging pyrometry
 Gerald Stevens 372
Neutron resonance spectrometry for temperature measurement during dynamic loading
 Damian Swift, Vincent Yuan, Richard Kraus, James M. McNaney,
 Drew Higginson, Andrew MacKinnon, Farhat Beg, Kate Lancaster,
 and Hiroyuki Nakamura
 376

A thin-film hugoniot measurement using a laser-driven flyer plate
 Hiroki Fujiwara, Kathryn Brown, and Dana Dlott
 382

Use of a fast near-infrared spectrometer for absorption and emission measurements within the expanding blast wave of a high explosive
 Jon D Koch, Joel Carney, James Lightstone, and Scott Piecuch
 386

Shockwave and detonation studies at ITEP-TWAC proton radiography facility
 Sergey Kolesnikov, Sergey Dudin, Vladimir Lavrov, Dmitriy Nikolaev,
 Victor Mintsev, Nikolay Shilkin, Vladimir Ternovoi, Alexander Utkin,
 Vladislav Yakushev, Denis Yuriev, Vladimir Fortov, Alexander Golubev,
 Alexey Kantsyrev, Lev Shestov, Gennady Smirnov, Vladimir Turtikov,
 Boris Sharkov, Vasily Burtsev, Nikolay Zavialov, Sergey Kartanov,
 Anatoly Mikhailov, Alexey Rudnev, Mikhail Tatsenko, and
 Mikhail Zhemokletov
 390

Velocity spectra from explosively driven powders and balls
 Matthew Briggs, James Faulkner, Lawrence Hull, and Michael Shinas
 394

Embedded optical fibers for PDV measurements in shock-loaded, light and heavy water
 Patrick Mercier, Jacky Benier, Pierre Antoine Frugier,
 Michel Debruyne, and Cyril Bolis
 398

Simultaneous photonic doppler velocimetry and ultra-high speed imaging techniques to characterize the pressure output of detonators
 Michael Murphy and Steven A. Clarke
 402

A novel use of PDV for an integrated small scale test platform
 Carl P Trujillo, Daniel T Martinez, Michael W. Burkett, Juan P.
 Escobedo, Ellen Cerreta, and George Thompson Gray III
 406

Determining the source of oxygen in post-detonation combustion of aluminum
 Jeremy E. Monat, Joel Carney, James Lightstone, and
 Nobumichi Shimizu
 410
Influence of the donor charge initiation on the fragments cloud of a metal plate pushed by high explosives
Alexandre Lefrancois, Jacques Petit, Sebastien Dumant, Frederic Sinatti, and Patrick Rey 414

Response of HMX-based HE to low-velocity loading by steel cylindrical impactor
Victor Pushkov, Anatoly Abakumov, Alexey Yurlov, Alexey Kal'manov, Alexander Sedov, and Alexey Rodionov 418

Recovering a short timescale signal from a pair of long-delay visars
David Erskine 422

Experimental technique for direct observation of onset of reaction in shocked powder mixtures
Francois-Xavier Jetté, Sam Goroshin, Andrew Higgins, David Frost, and Julian Lee 426

On the development of an impact-loaded wedge test using ORVIS
Marcia A Cooper and Wayne M. Trott 430

Free-field microwave interferometry for detonation front tracking and run-to-detonation measurements
Philip Rae, Brian Glover, Jake Gunderson, and Lee Perry 434

Increasing data from high rate characterization experiments using optical reconstruction
Clive Richard Siviour, Matthew R Arthington, Euan Wielewski, and Nik Petrinic 438

Index of refraction measurements and window corrections for PMMA under shock compression
David James Chapman, Daniel E Eakins, David Martin Williamson, and William Proud 442

Effect of work hardening on dynamic friction
Ron Winter, S.M. Stirk, and Mark Alistair Collinson 446

The miniaturization and reproducibility of the cylinder expansion test
Chad Rumchik, Rachel Nep, George C Butler, Bradley Breaux, and Christopher Lindsay 450
On the importance of encapsulation environment for lateral gauges
Jonathan David Painter, Gareth James Appleby-Thomas, Paul Hazell, Ron Winter, Ernest Joseph Harris, Gareth D. Owen, and David Christopher Wood 454

Experimental and computational investigation of lateral gauge response in polycarbonate
Jim Eliot, Ernest Joseph Harris, Paul Hazell, Gareth James Appleby-Thomas, Ron Winter, and David Christopher Wood 458

The effect of gauge misalignment on the measurement of lateral stress
Gareth James Appleby-Thomas, Paul Hazell, and Andrew Roberts 462

Underwater laser plasma with reactive fuels
Joel Carney and Scott Piecuch 466

EXPERIMENTAL DEVELOPMENTS - LOADING TECHNIQUES

Determination of pressure and density of shocklessly compressed beryllium from x-ray radiography of a magnetically driven cylindrical liner implosion

Gigabar material properties experiments on nif and omega
Damian Swift, James Hawreliak, David Braun, Andrea Kritcher, Siegfried Glenzer, G. W. Collins, Stephen Rothman, David Chapman, and Steven Rose 477

A simple machine for isentropic compression experiments (ICE)
Douglas G Tasker, Charles H Mielke, George Rodriguez, and Dwight G Rickel 481

High pressure hugoniot measurements using mach waves
Justin Brown and Guruswami Ravichandran 485

Implosion-driven technique to create fast shockwaves in high-density gas
Matthew Serge, Jason Loiseau, Justin Huneault, Daniel Szirti, Andrew Higgins, and Vincent Tanguay 489
Phase velocity enhancement of linear explosive shock tubes
 Jason Loiseau, Justin Huneault, Matthew Serge, Andrew Higgins, and Vincent Tanguay 493

The reverse edge-on impact test: A small scale experiment for non-shock ignition studies
 Didier Picart, D. Damiani, and M. Doucet 497

Versatile gas gun target assembly for studying blast wave mitigation in materials
 S. Bartyczak and W. Mock Jr. 501

ENERGETIC MATERIALS

Chemistry resolved kinetic flow modeling of TATB based explosives
 Peter Vitello, Laurence E Fried, Howard William, George Levesque, and P. Clark Souers 507

Predicting Run Distances for a Modified Wedge Test
 Robert J. Dorgan, Richard Lee, and Gerrit Sutherland 511

Reactive flow calibration for diaminoazoxyfurazan (DAAF) and comparison with experiment
 Carl Johnson, Elizabeth Green Francois, and John Morris 515

A comparison between entropy, temperature and pressure-dependent reactive-burn models
 Caroline Angela Handley and Hugh R James 519

Simulation of the detonation process of an ammonium nitrate based emulsion explosive using the lee-tarver reactive flow model
 José B. Ribeiro, Cristóvão Silva, Ricardo Mendes, I. Plaksin, and Jose Campos 525

Modeling compressive reaction and estimating model uncertainty in shock loaded porous samples of hexanitrostilbene (HNS)
 Aaron L. Brundage and Jared C Gump 529
Dynamic behavior of particulate/porous energetic materials

Microstructural effects on ignition sensitivity in Ni/Al systems subjected to high strain rate impacts
Robert V Reeves, Alexander S Mukasyan, and Steven Son 539

Enhanced reactivity of mechanically-activated nano-scale gasless reactive materials consolidated via the cold-spray technique
Antoine Bacciochini, Matei I. Radulescu, Yannick Charron-Tousignant, Jason Van Dyke, Bertrand Jodoin, Michel Nganbe, Mohammed Yandouzi, and Julian Lee 543

The effect of gaseous additives on dynamic pressure output and ignition sensitivity of nanothermites
Zac Doorenbos, Ian Walters, Paul Redner, Deepak Kapoor, Wendy Balas-Hummers, Jacek Swiatkiewicz, and Jan Puszynski 547

Improving the model fidelity for the mechanical response in a thermal cookoff of HMX
Albert Nichols 551

A comparison of deflagration rates at elevated pressures and temperatures with thermal explosion results
Elizabeth A. Glascoe, Harry Keo Springer, Joseph Tringe, and Jon L. Maienschein 555

Study of thermal sensitivity and thermal explosion violence of energetic materials in the LLNL ODTX system
Peter C. Hsu, Gary Hust, Chadd M. May, W. Michael Howard, Steven Chidester, Harry Keo Springer, and Jon L. Maienschein 559

Developments in a small scale test of violence
Susan Sorber, Chris Stennett, and Matt Goldsmith 563

γ Phase RDX: Initial study of geometry, spectrum and EOS

Calculation of the vibrational spectra of α-RDX using the grimme DFT potential
Warren Perger, William J Slough, Loredana Valenzano, and K. M. Flurchick 571
Equations of state of hexanitrostilbene (HNS)
Jared C Gump, Chad Stoltz, Brian P Mason, and Emily M Heim 575

Gas gun experiments to measure the shock compression behavior of high performance propellant (HPP)
Nathaniel Sanchez, Rick Gustavsen, L. L. Gibson, and Dan Hooks 579

Front curvature and rate stick data on formulations containing DAAF, TATB, RDX and HMX including diameter and temperature effects
Elizabeth Green Francois, V. Eric Sanders, and John Morris 583

Detonation failure characterization of non-ideal explosives
Robert S Janesheski, Lori J Groven, and Steven Son 587

The relation between reaction rate and shock strength—A possible second order improvement to the crest reactive burn model
Brian D Lambourn and Hugh R James 591

Anfo Response To Low-Stress Planar Impacts
Marcia A Cooper, Wayne M. Trott, Robert G Schmitt, Mark Short, and Scott I Jackson 595

Laser-accelerated flyer system for investigating reactions in Ni-Al mixtures
Sean C. Kelly, Sara Barron, Naresh Thadhani, and Timethy P. Weihs 599

Simulation of the reflected blast wave from a C-4 charge
W. Michael Howard, Allen L Kuhl, and Joseph Tringe 603

Preparation and characterization of functionalized aluminum nanoparticles
Jillian M Horn, James Lightstone, Joel Carney, and Jason Jouet 607

Development of metal cluster-based energetic materials at NSWC-IHD
James Lightstone, Chad Stoltz, Rebecca M Wilson, Jillian M Horn, Joe Hooper, Dennis Mayo, Bryan Eichhorn, Kit H. Bowen, and Michael G. White 611

Shock initiation of hexanitrostilbene at ultra-high shock pressures and critical energy determination
Mike Bowden, Matthew Peter Maisey, and Sarah Knowles 615
Gap Test Calibrations And Their Scaling
Harold Sandusky 619

Low velocity impact experiments on the explosive LX-10 with modeling of reaction violence
Steven Chidester, Frank Garcia, Kevin S. Vandersall, Craig M. Tarver, and Louis Ferranti 623

Shock-induced chemical reactions in simple organic molecules
Dana M. Dattelbaum and S.A. Sheffield 627

Characterization of detonation products of RSI-007 explosive
Timothy Ager, Christopher Neel, Bradley Breaux, Christopher Vineski, Eric Welle, David Lambert, and Lalit Chhabildas 633

Detailed characterization of PBX morphology for mesoscale simulations
Scott Gary Bardenhagen, Huiyang Luo, Ronald W. Armstrong, and Hongbing Lu 637

Sonocrystallization as a tool for controlling crystalline explosive morphology and inclusion content
Chad Stoltz, Brian P Mason, Colin Roberts, Steven Hira, and Geoffrey Strouse 641

Study of energy partitioning using a set of related explosive formulations
Mark Lieber, Joseph C Foster, and D. Scott Stewart 645

Analysis of the requirements on modern energetics and their impact on materials design
Joseph C. Foster Jr., Nick Glumac, and D. Scott Stewart 649

Strain-rate master curves for a PBX and binder
Daniel Drodge, David Martin Williamson, Stewart Palmer, and William Proud 653

Time-temperature superposition applied to PBX mechanical properties
Darla Thompson, Racci DeLuca, and Walter J. Wright 657

Taylor impact tests and simulations of plastic bonded explosives
Brad E. Clements, Darla Thompson, D. J. Luscher, Racci DeLuca, and Geoffrey Brown 661
Study on dynamic fracture and mechanical properties of a PBX simulant by using dic and SHPB method
Zhongbin Zhou, Pengwan Chen, and Fenglei Huang

Modeling violent reaction following low speed impact on confined explosives
John Philip Curtis, Andrew Jones, Christopher Hughes, and John Reaug

The use of the ITrAC test to characterise main charge materials
Mark Wright, Matthew Peter Maisey, and Andrew Stoodley

Critical detonation thickness in vapor-deposited pentaerythritol tetranitrate (PETN) films
Alexander S. Tappan, Robert Knepper, Ryan R. Wixom, Michael P. Marquez, J. Patrick Ball, and Jill C. Miller

Small-scale dynamic gap test
Malcolm David Cook

Visualisation of the three-dimensional structure of energetic polymer composite materials
Antonia E. Carmichael, David Martin Williamson, Rebecca Govier, and Claire Leppard

Promising HE for explosive welding of thin metallic foils
Leonid Andreevskikh, Oleg Drennov, A. A. Deribas, A. L. Mikhaylov, N. N. Titova, and Marvin A. Zocher

Development of the floret test for screening the initiability of explosive materials
Mark Wright

Analysis of the mini-deflagration cylinder test: Inference of internal conditions from wall motion
Larry Glenn Hill, Dan Hooks, and Timothy Pierce

Violent cookoff reactions in HMX-based explosives in DDT tubes:
Tracking luminous waves with streak imaging
Gary Parker, Peter Dickson, Blaine W. Asay, Laura Smilowitz, Bryan Henson, and John McAfee
Mesoscale modeling of deflagration-induced deconsolidation in polymer-bonded explosives
Harry Keo Springer, Elizabeth A. Glascoe, John E. Reaugh, James Kercher, and Jon L. Maienschein 705

Cookoff of non-traditional detonators
Jonathan Zucker, Bryce C. Tappan, Virginia W. Manner, and Alan Novak 709

Small-scale explosives sensitivity safety testing: A departure from Bruceton
Daniel Preston, Geoffrey Brown, Cary B. Skidmore, Bettina L. Reardon, and David A. Parkinson 713

Modeling of a random network of extended CO solids
I. G. Batyrev, W. D. Mattson, and Betsy M. Rice 717

A mitigation scheme for underwater blast: Experiments and modeling
Lee G. Glascoe, Jon Margraf, Larry McMichael, and Kevin S. Vandersall 721

On the thermal expansion hysteresis of a UK PBX
David Williamson, Stewart Palmer, Claire Leppard, and Rebecca Govier 725

Modeling shear instability and fracture in dynamically deformed Al/W granular composites
Karl Olney, David Benson, and Vitali F. Nesterenko 729

Mesoscale studies of mixing in reactive materials during shock loading
Ilya Lomov, Eric B Herbold, and Ryan A. Austin 733

Processing and dynamic testing of Al/W granular composites
Po-Hsun Chiu, Chien-Wei Lee, and Vitali F. Nesterenko 737

Fluoropolymer and aluminum piezoelectric reactives
Robert S Janesheski, Lori J Groven, and Steven Son 741

Ratchet growth experiments on TATB and PBX 9502
Racci DeLuca, Darla Thompson, Geoffrey Brown, Mary Sandstrom, Stephanie I. Hagelberg, Anna M. Giambra, and Larry Glenn Hill 745
EQUATION OF STATE

Extension of jaguar procedures for new gaseous species
Leonard Stiel, Ernest L. Baker, and Daniel Murphy 751

Shock compression and unloading response of 1050 aluminum to 70 GPA
Deep Choudhuri and Yogendra M. Gupta 755

Solid and liquid equation of state for initially porous aluminum where specific heat and γ/v are constant
Jerry W. Forbes, E. R. Lemar, and Mary Brown 759

Global equation of state for copper
Jeffrey H. Peterson, Kevin G. Honnell, Carl Greeff, James D. Johnson, Jonathan Boettger, and Scott Crockett 763

An equation of state for polymethylpentene (TPX) including multi-shock response
Tariq D. Aslam, Rick Gustavsen, Nathaniel Sanchez, and Brian D. Bartram 767

A review of reshock data for PMMA above the phase transition and the implied Grüneisen coefficient
Christopher Neel, Lalit Chhabildas, and William Reinhart 771

Shock/reload response of water and aqueous solutions of ammonium nitrate
Mike J Morley and David Martin Williamson 775

A relatively simple analytical equation of state for liquid metals
John Richard Maw 779

Resolving the shock profile in a viscous fluids
Kenneth Bernard Jordan and John P. Borg 783

The equation of state of dense xenon plasma under double-shock compression to 172 GPA
Jun Zheng, Yunjun Gu, Qifeng Chen, and Zhiyun Chen 787

Shock compression of precompressed deuterium
Michael Armstrong, Jonathan Crowhurst, Alexander Goncharov, Joseph Zaug, Sorin Bastea, and Burkhard Militzer 791
Complex behavior of noble gases under compression
B.A. Nadykto 795

Equation of state for solids
Dennis Grady 800

A novel equation of state for hydrocode
Michael Greenfield 804

Adaptive tabulation for verified equations of state
John H. Carpenter 808

Tabular equation of state for gold
Jonathan Boettger, Kevin G. Honnell, Jeffrey H. Peterson, Carl Greeff, and Scott Crockett 812

Interferometric windows characterization up to 450 K for shock wave experiments: Hugoniot curves and refractive index
E. Fraizier, Patrice Antoine, Jean Louis Godefroit, Gael Lanier, and Gilles A. Roy 816

Equation of state for a mixture of unreacted HE and HE detonation products
B. A. Nadykto 820

Experimental determination of Grüneisen gamma for polyether ether ketone (PEEK) using the shock-reverberation technique
Andrew Roberts, Gareth James Appleby-Thomas, and Paul Hazell 824

Hugoniot and properties of diesel fuel used in ANFO
David L. Robbins, S. A. Sheffield, Dana M. Dattelbaum, and David B. Stahl 828

The single phase and two-phase equations of state for aluminum
Haifeng Liu, Haifeng Song, and Gongmu Zhang 832

First-principle simulation of shock-wave experiments for aluminum
Dmitry V. Minakov, Pavel R. Levashov, and Konstantin V. Khishchenko 836

Compression waves and phase plots: Simulations
Daniel Orlikowski and Roger Minich 840
PART TWO

GEOPHYSICS & PLANETARY SCIENCE

Flyer acceleration by high-power laser and impact experiments at velocities higher than 10 km/s

Direct measurement of chemical composition of SO\textsubscript{x} in impact vapor using a laser gun

Time-resolved spectroscopic observations of shock-induced silicate ionization

A linear TOF mass spectrometer as a tool for the investigation of impact ionisation plasma
 Anna Mocker, Klaus Hornung, Zoltán Sternovsky, Sascha Kempf, Theresa Johnson, Eberhard Grün, and Ralf Srama 859

Possible magnetic fields of super earths generated by convecting, conducting oxides
 W. J. Nellis 863

Structure and thermal properties of porous geological materials
 Simon Stewart Kirk and David Martin Williamson 867

High-velocity impacts in porous solar system materials
 Katarina Miljković, Gareth S. Collins, David James Chapman, Manish R. Patel, and William Proud 871

Physics of intact capture of cometary coma dust samples
 William Anderson and Thomas Ahrens 875
Soft x-ray shock loading and momentum coupling in meteorite and planetary materials
 J. L. Remo, M. D. Furnish, and R. J. Lawrence 879

Analytic models for pulsed x-ray impulse coupling
 R. J. Lawrence, M. D. Furnish, and John L. Remo 883

Shock compression of preheated silicate liquids: Apparent universality of increasing Grüneisen parameter upon compression
 Paul D. Asimow 887

Observation of mass and velocity of projectile fragments produced by hypervelocity impact with lightweight ceramic targets
 Fumikazu Saito, Nobuaki Kawai, and Hideki Tamura 891

A semi-analytical on-Hugoniot EOS of condensed matter using a linear U_p-U_S relation
 S. Sugita, Kosuke Kurosawa, and T. Kadono 895

Demonstration of survivable space penetrator
 Philip Church, William Huntington-Thresher, Alan Bruce, Nick Penny, Alan Smith, and Rob Gowan 899

HIGH ENERGY DENSITY PHYSICS/WARM DENSE MATTER

Atomistic simulation of laser ablation of gold: The effect of electronic pressure
 Vladimir Stegailov, Sergey Starikov, and Genri Norman 905

Ultrashort elastic and plastic shockwaves in aluminum
 Nail Inogamov, Viktor Khokhlov, Yuri Petrov, Sergey Anisimov, Vasily V. Zhakhovsky, Brian J. Demaske, Ivan I. Oleynik, Sergey I. Ashtikov, Konstantin V. Khishchenko, Mikhail Agranat, Vladimir Fortov, and Carter T White 909

Mesoscale simulation of shocked poly-(4-methyl-1-pentene) (PMP) foams
 Thomas A. Haill, Thomas R. Mattsson, Seth Root, Diana G. Schroen, and Dawn G. Flicker 913

Equation of state of shock compressed gases at megabar pressure range
 V.K. Gryaznov, Igor L Iosilevskiy, and Vladimir Fortov 917
Double shock experiments on the sandia z machine
Heath Hanshaw, Matthew R. Martin, Michael Desjarlais, and R. W. Lemke 921

Temperature measurements and hydrogen transformation under dynamic compression up to 150 GPa.
Dmitry Nikolaev, Vladimir Ternovoi, Alexey Pyalling, Sergey Kvitov, and Vladimir Fortov 925

INELASTIC DEFORMATION, FRACTURE, & SPALL

Plastic behavior of polycrystalline tantalum in the $5 \times 10^7/s$ regime
Benjamin Hammel, Damian Swift, Bassem El-Dasher, Mukul Kumar, G. W. Collins, and Jeffrey Florando 931

The resistance to deformation and fracture of magnesium ma2-1 under shock-wave loading at 293 k and 823 k of the temperature
Gennady Garkushin, Gennady I. Kanel, and Sergey V. Razorenov 935

Rate and temperature effects on the flow stress and tensile strength of metals
Gennady I. Kanel 939

2D- and 3D-explosive experiments for verification of spall and shear strength models for some steels
Evgeny Alexander Kozlov 945

Fragmentation behaviour of age-hardened copperberyllium alloy
CU-2WT%BE cylinders
S.M. Stirk and Ron Winter 949

Spall strength of sapphire
Andrey S. Savinykh, Gennady I. Kanel, and Sergey V. Razorenov 953

Shock response of soda lime glass at 6 GPa
Dattatraya Dandekar 957

Computational comparisons of statistical descriptions of a tungsten alloy subjected to explosive loading
Michael Hopson and David Lambert 961
Mechanical behavior of nanostructured and ultrafine-grained materials under shock wave loadings—Experimental data and results of computer simulation
Vladimir Skripnyak 965

Stress relaxation in silver between 300 and 1233 k
Eugene Zaretsky and Gennady I. Kanel 971

Probing dynamic material strength using in situ x-ray diffraction
James Hawreliak, Bassem El-dasher, Jon Eggert, J.R. Rygg, G. W. Collins, Hector Lorenzana, Giles Kimminau, Andrew Higginbotham, Bob Nagler, Sam Vinko, William Murphy, Thomas Whitcher, Stephen Rothman, Nigel Park, and Justin Wark 975

Dynamic characterization of eglin steel by symmetric impact experimentation
Bradley E Martin, Philip J Flater, Rachel Abrahams, Christopher Neel, William Reinhart, and Lalit Chhabildas 979

On the shock response of the magnesium alloy elektron 675
Paul Hazell, Gareth James Appleby-Thomas, Euan Wielewski, Clive Richard Siviour, and Chris Stennett 983

Study of dislocation walls evolution during spall in pure aluminum
Benny Glam, Daniel Moreno, Shalom Eliezer, and Dan Eliezer 987

The spall strength and Hugoniot elastic limit of tantalum with various grain size
Sergey V. Razorenov, Gennady Garkushin, Gennady I. Kanel, and Olga Nikolaevna Ignatova 991

Quantification of ejecta from shock loaded metal surfaces
Brendan A. Kullback, Guillermo Terrones, Mark D. Carrara, and Muhammad R. Hajj 995

The study of high-speed surface dynamics using a pulsed proton beam
William T. Buttlar, David M. Oro, Dean Preston, Karnig O Mikaelian, Frank J. Cherne, Robert S. Hixson, Fesseha G. Mariam, Christopher L. Morris, Joseph B. Stone, Guillermo Terrones, and Dale Tupa 999

Experimental study of ejecta on lead surface at different loading rates and amplitudes
Yongtao Chen, Haibo Hu, Qingzhong Li, Rongbo Wang, and Tiegang Tang 1003
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation of spectral characteristics of particles ejected from the free surfaces of metals and liquids under a shock wave effect</td>
<td>Alla Georgievskaya and Viktor Alekseevish Raevsky</td>
<td>1007</td>
</tr>
<tr>
<td>Laser-driven spall experiments in ductile materials in order to characterize Johnson fracture model constants</td>
<td>Laurent Videau, Patrick Combis, Stephane Laffite, Emilien Lescoute, Jean-Paul Jadaud, Jean-Marc Chevalier, Didier Raffestin, Fabrice Ducasse, Loic Patissou, Alain Geille, and Thibaut de Ressegui...</td>
<td>1011</td>
</tr>
<tr>
<td>Experimental and numerical techniques to investigate and to model dynamic fragmentation of laser shock-loaded metals</td>
<td>Thibaut de Ressegui</td>
<td>1015</td>
</tr>
<tr>
<td>Role of target strength in momentum enhancement</td>
<td>James D. Walker and Sidney Chocron</td>
<td>1019</td>
</tr>
<tr>
<td>The effects of the flyer plate's radius of curvature on the performance of an explosively formed projectile</td>
<td>Phillip Mulligan, Jason Baird, and Joshua Hoffman</td>
<td>1023</td>
</tr>
<tr>
<td>Modeling ductile metals under large strain, pressure and high strain rate incorporating damage and microstructure evolution</td>
<td>Gianluca Iannitti, Nicola Bonora, Andrew Ruggiero, and Simone Dichiaro</td>
<td>1027</td>
</tr>
<tr>
<td>Spall strength of niobium and molybdenum</td>
<td>Matthew Cotton, Jeremy Millett, Glenn Whiteman, and Nigel Park</td>
<td>1031</td>
</tr>
<tr>
<td>Advanced plasticity models applied to recent shock data on beryllium</td>
<td>Michael B. Prime, Shuh-Rong Chen, and Chris Adams</td>
<td>1035</td>
</tr>
<tr>
<td>Dynamic compressibility, shear strength, and fracture behavior of ceramic microstructures predicted from mesoscale models</td>
<td>John D. Clayton, R Brian Leavy, and Reuben H Kraft</td>
<td>1039</td>
</tr>
<tr>
<td>A comparison of calculated damage from square waves and triangular waves</td>
<td>Davis Tonks, Curt A. Bronkhorst, and John Bingert</td>
<td>1045</td>
</tr>
</tbody>
</table>
Comparing CTH simulations and experiments on explosively loaded rings
C.H. Braithwaite, Brady Aydelotte, Adam Collins, Naresh Thadhani, and David Martin Williamson 1049

Ductile damage evolution in high purity copper taylor impact test
Nicola Bonora, Andrew Ruggiero, Gianluca Iannitti, and Gabriel Testa 1053

Characterization of RHA and titanium 6-4 alloys
Garry Abfalter and Nachhatter S. Brar 1057

Energy dissipation in ultra-high performance fiber-reinforced concrete (UHPFRC) subjected to rapid loading
Brett Ellis, David L. McDowell, and Min Zhou 1061

Spallation response of Ti-6Al-4V: Rear surface velocimetry and X-ray tomography
Samuel A McDonald, Matthew Cotton, Neil Bourne, Jeremy Millett, and Philip J Withers 1065

Tensile strength of aluminum-epoxy resin composite structure under high strain rate conditions
Damien Laporte, Frederic Malaise, Michel Boustie, Jean-Marc Chevalier, and Eric Buzaud 1069

Spall fracture of beryllium under shockwave loading
Viktor Skokov, Vladimir Arinin, Dmitry Kryuchkov, Vladimir Ogorodnikov, Viktor Raevsky, Konstantin Panov, Viktor Peshkov, and Olga Tyupanova 1073

Shock response of body centered cubic metals
Jeremy Millett, Matthew Cotton, Glenn Whiteman, Neil Bourne, Nigel Park, and George Thompson Gray III 1077

Approaching the ultimate shear and tensile strength of aluminum in experiments with femtosecond pulse laser
Sergey I. Ashitkov, Mikhail Agranat, Gennady I. Kanel, and Vladimir E. Fortov 1081

Dynamic-tensile-extrusion of polyurea
Jevan Furmanski, Carl Cady, Philip Rae, Carl P. Trujillo, George Thompson Gray III, and Eric Brown 1085
Study on dynamic compression performance of K9 glass with prefabricated internal defects
Changming Hu, Xiang Wang, Lingcang Cai, and Cangli Liu 1089

Coupled Euler-La Grange simulation for overpressure structural response
Andrew N. Lloyd, David K. Miller, Hua Pan, and John Cogar 1093

A study of fragmentation in a Ni+Al structural energetic material
Brady Aydelotte, C.H. Braithwaite, Kevin Mc Nesby, Richard Benjamin, Naresh Thadhani, David Martin Williamson, and Matthew Trexler 1097

Failure of metallic-intermetallic laminate composites under dynamic loading
Sergey Zelepugin, Vyacheslav Mali, Aleksej Zelepugin, and Elena Ilna 1101

Calibrating strain rate dependence of viscoplastic flow from fourth power law data
Yehuda Partom 1105

Interscale momentum exchange in dynamically deformed heterogeneous medium
Yury Meshcheryakov, Alexander Divakov, Boris Konstantinovich Barakhtin, and Natalia Ivanovna Zhigacheva 1109

Temperature dependence of magnesium alloy spall strength in the temperature range of 90...750 K
Alexander Pavlenko, Svetlana Malugina, D. N. Kazakov, and V. V. Bychkov 1113

Interscale momentum exchange and steady-wave propagation
Yury Meshcheryakov 1117

Dynamic properties of bulk metallic glass on the base of Zr
Ivan Smirnov, Svetlana Atroshenko, Yuri Sudenkov, Nikita Morozov, Wei Zheng, Natalia Naumova, and Jun Shen 1121

Evaluation of five fracture models in Taylor impact fracture
Wei Zhang, Xin-Ke Xiao, Gang Wei, and Zitao Guo 1125

Dynamic behavior of lead driven by head-on detonation waves
Chongyu Zhang, Haibo Hu, Tiegang Tang, Xuelin Sun, and Zhengtao Zheng 1129
The generalized Courant-Friedrichs equation of state for condensed matter
Michael Greenfield 1133

Plastic deformation and spall fracture of structural 12CR18NI10TI steel
Alexander Pavlenko, Svetlana Malugina, D. N. Kazakov, Yu. N. Zuev, A. E. Shestakov, and D. A. Belyaev 1137

Development of the gas gun driven expanding cylinder technique
David Robert Jones, Daniel E Eakins, Paul Hazell, David James Chapman, and Gareth James Appleby-Thomas 1141

Growth of defining relations of beryllium
Olga Nikolaevna Ignatova, Viktor Alekseevich Raevsky, and Sergey Stanislavovich Nadezin 1145

On the dynamic strength of 304l stainless steel under impact
Meir Werdiger, Benny Glam, Lior Bakshi, Ella Moshe, Yossef Horovitz, and Shlomi Levi Pistinner 1149

Effects of high pressure strength of rock material on penetration by shaped charge jet
Hongfa Huang 1153

Fracture of nanoceramics with porous structure at shock wave loadings
Vladimir Skripnyak, Vladimir Skripnyak, and Vladimir Skripnyak 1157

FIRST-PRINCIPLES & MOLECULAR DYNAMICS CALCS.

MD simulations of laser-induced ultrashort shock waves in nickel
Brian J. Demaske, Vasily V. Zhakhovsky, Nail Inogamov, Carter T. White, and Ivan I. Oleynik 1163

Investigation of laser shock induced ductile damage at ultra-high strain rate by using large scale MD simulations
Jean-Paul Cuq-Lelandais, Michel Boustie, Laurent Soulard, Laurent Berthe, Joelle Bontaz-Carion, and Thibaut de Resseguier 1167

Shock-induced phase transition in diamond
You Lin, Romain Perriot, Vasily V. Zhakhovsky, Xiang Gu, Carter T White, and Ivan I. Oleynik 1171
Shock compression of diamond: Molecular dynamics simulations using different interatomic potentials
Romain Perriot, You Lin, Vasily V. Zhakhovsky, Nicolas Pineau, Jan H. Los, Jean-Bernard Maillet, Laurent Soulard, Carter T White, and Ivan I. Oleynik 1175

The effect of a simulated volumetric expansion: Calculated vibrational properties and elastic constants of pentaerythritol

Effect of impurities on optical properties of pentaerythritol tetranitrate
Roman Tsyshhevskiy, Onise Sharia, and Maija M. Kuklja 1183

Effect of vacancy defects on the terahertz spectrum of crystalline pentaerythritol tetranitrate
Andrey Pereverzev and Thomas D. Sewell 1187

Accurate prediction of second-order elastic constants from first principles: PETN and TATB
Loredana Valenzano, William J. Slough, and Warren Perger 1191

Equations of state of mixtures: Density functional theory (DFT) simulations and experiments on Sandia’s z machine
Rudolph Magyar 1195

First-principles thermodynamics of energetic materials
Aaron C. Landerville, Michael W. Conroy, You Lin, Mikalai M. Budzevich, Carter T. White, and Ivan I. Oleynik 1199

Theoretical phase diagram of beryllium at low pressure and high temperature
Gregory Robert, Philippe Legrand, and Stephane Bernard 1203

Cavitation and formation of foam-like structures inside exploding wires
Vasily V. Zhakhovsky, Sergei A. Pikuz, Svetlana I. Tkachenko, Pavel V. Sasorov, Tatiana A. Shelkovenko, Patrick F. Knapp, Charles C. Saylor, and David A. Hammer 1207

A new nickel EAM potential for atomistic simulations of ablation, spallation, and shockwave phenomena
Brian J. Demaske, Vasily V. Zhakhovsky, Carter T. White, and Ivan I. Oleynik 1211
Burnett-Cattaneo continuum theory for shock waves
Brad Lee Holian, Michel Mareshal, and R. Ravelo

The terahertz infrared spectrum of cyclotrimethylenetrinitramine: Targeting anharmonic modes for the fingerprinting and detection of RDX
William J Slough, Loredana Valenzano, and Warren Perger

Comparative analysis of decomposition reactions in gaseous and crystalline β-HMX
Onise Sharia and Maija M. Kuklja

Single two-zone elastic-plastic shock waves in solids
Vasily V. Zhakhovsky, Mikalai M. Budzevich, Nail Inogamov, Carter T. White, and Ivan I. Oleynik

Finite size effects at high speed frictional interfaces
J.E. Hammerberg, R. Ravelo, Timothy C. Germann, and B. L. Holian

Particle based multiscale modeling of the dynamic response of RDX
Joshua D. Moore, Sergei Izvekov, Martin Lisal, and John K Brennan

Multiscale modeling of energetic materials: Easy to say, harder to do
Betsy M Rice

A new method for large scale molecular dynamics simulations of shock-induced ejecta production
Olivier Durand and Laurent Soulard

Nonequilibrium molecular dynamics simulations of shock wave propagation in nanolayered Cu/Nb nanocomposites
Ruifeng Zhang, Jian Wang, XiangYang Liu, Irene J. Beyerlein, and Timothy C. Germann

Growth and collapse of nanovoids in tantalum monocrystals loaded at high strain rate
Yizhe Tang, Eduardo M. Bringa, B. Remington, and Marc Meyers

Shock compression and spallation of single crystal tantalum
Q. An, R. Ravelo, T. C. Germann, W. Z. Han, S. N. Luo, D. L. Tonks, and W. A. Goddard, III
Large-scale molecular dynamics simulations of shock induced plasticity in tantalum single crystals
 R. Ravelo, Qi An, Timothy C. Germann, and B. L. Holian 1263

Shock-induced phase transitions in metals: Recrystallization of supercooled melt and melting of overheated solids
 Mikalai M. Budzevich, Vasily V. Zhakhovsky, Carter T. White, and Ivan I. Oleynik 1267

Density functional theory (DFT) simulations of polyethylene: Principal Hugoniot, specific heats, compression and release isentropes
 Kyle R. Cochrane, Michael Desjarlais, and Thomas R. Mattsson 1271

Mechanisms of condensed-phase dissociation of nitramines: A density-functional study
 Igor V. Schweigert 1275

Effect of reactive chemistry on mechanisms of condensed phase detonation
 Mikalai M. Budzevich, Vasily V. Zhakhovsky, Carter T White, and Ivan I. Oleynik 1279

Molecular dynamics simulations of detonation on the roadrunner supercomputer
 Susan Mniszewski, Marc Cawkwell, and Timothy C. Germann 1283

Nonequilibrium molecular dynamics simulations of aluminum oxynitride
 N. Scott Weingarten, Iskander G Batyrev, and Betsy M Rice 1287

Comparative analysis of the data on shocked benzene properties obtained in MD simulations with different interatomic potentials
 Vladimir Dremov, Gennady Ionov, Filipp A Sapozhnikov, Ilya Derbenev, Jean-Bernard Maillot, Nicolas Pinot, and Laurent Soulard 1291

Self-consistent tight-binding molecular dynamics simulations of shock-induced reactions in hydrocarbons
 Marc Cawkwell, Edward Sanville, Susan Mniszewski, and Anders Niklasson 1295

Shock loading and release of a small angle tilt grain boundary in CU
 Christian Brandl and Timothy C. Germann 1299
Evolution of metastable elastic shockwaves in nickel
Brian J. Demaske, Vasily V. Zhakhovsky, Carter T. White, and Ivan I. Oleynik 1303

Richtmyer-Meshkov instability examined with large-scale molecular dynamics simulations
Frank J. Cherne, Guy Dimonte, and Timothy C. Germann 1307

Molecular dynamics simulation of dynamic response of beryllium
Aidan P. Thompson, J. Matthew D. Lane, and Michael Desjarlais 1311

MATERIALS SCIENCE

The role of interfaces on dynamic damage in two phase metals
Ellen Cerreta, Saryu Fensin, Juan P. Escobedo, George Thompson Gray III, Adam Farrow, Carl P. Trujillo, and Mike F. Lopez 1317

Effects of grain boundary structure and distribution on the spall response of copper
Juan P. Escobedo, Darcie Dennis-Koller, Ellen Cerreta, and Curt A. Bronkhorst 1321

Controlled shock loading conditions for microstructural correlation of dynamic damage behavior
Darcie Dennis-Koller, J. Pablo Escobedo-Diaz, Ellen Cerreta, Curt A. Bronkhorst, Benjamin Hansen, Ricardo Lebensohn, Hashem Mourad, Brian Patterson, and Davis Tonks 1325

Akrology: Materials’ physics in extremes
Neil Bourne 1331

Shearing resistance of aluminum at high strain rates and at temperatures approaching melt
Stephen Grunschel, Rodney J. Clifton, and Tong Jiao 1335

Fabrication of ND-FE-B/ALPHA-FE nanocomposite magnets by shock compaction and heat treatment of mechanically milled powders
Christopher Wehrenberg, Brian Zande, S. G. Sankar, and Naresh Thadhani 1339
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock response of boron carbide based composites infiltrated with magnesium</td>
<td>Mathan Kafri, Moshe P. Dariel, Naum Frage, and Eugene Zaretsky</td>
<td>1343</td>
</tr>
<tr>
<td>Fabrication of tungsten-copper composites by hot-shock consolidation</td>
<td>Qiang Zhou, Pengwan Chen, and Xiang Gao</td>
<td>1347</td>
</tr>
<tr>
<td>A class of ejecta transport test problems</td>
<td>David M. Oro, J. E. Hammerberg, William T. Buttl er, Fesseha G. Mar iam, Christopher L. Morris, Chris Rousclup, and Joseph B. Stone</td>
<td>1351</td>
</tr>
<tr>
<td>Role of stored defects on the mechanical response of shock prestrained HT-9 Steel</td>
<td>Sara Perez-Bergquist, George Thompson Gray III, Stuart Maloy, Ellen Cerreta, and Osman Anderoglu</td>
<td>1355</td>
</tr>
<tr>
<td>The role of the structure of grain boundary interfaces during shock loading</td>
<td>Alejandro Gabriel Perez-Bergquist, Juan P. Escobedo, Carl P. Trujillo, Ellen Cerreta, George Thompson Gray III, Christian Brandl, and Timothy C. Germann</td>
<td>1359</td>
</tr>
<tr>
<td>Dynamic deformation and fragmentation response of maraging steel linear cellular alloy</td>
<td>Adam E. Jakus, David A. Fredenberg, Tammy McCoy, Naresh Thadhani, and Joe K. Cochran</td>
<td>1363</td>
</tr>
<tr>
<td>The conditions for dynamic recrystallization of metals in shock waves</td>
<td>Yuri Meshcheyakov, Svetlana Atroshenko, Alexander Divakov, and Natalia Naumova</td>
<td>1367</td>
</tr>
</tbody>
</table>
Theory and simulation of 1D TO 3D plastic relaxation in tantalum
Robert E. Rudd, A. J. Comley, James Hawreliak, Brian Maddox, Hye-Sook Park, and Bruce A Remington 1379

Surface shear strains induced by quasi-steady sweeping detonation waves
Lawrence Hull, Matthew Briggs, and James Faulkner 1383

Laser compression of nanocrystalline tantalum
Chia-Hui Lu, Brian Maddox, B. Remington, Eduardo M. Bringa, Megumi Kawasaki, Terence Langdon, Hye-Sook Park, Bimal Kad, and Marc Meyers 1387

Laser compression of monocrystalline tantalum
Chia-Hui Lu, B. Remington, Brian Maddox, Bimal Kad, Hye-Sook Park, S. T. Prisbrey, Rain Luo, and Marc Meyers 1391

Electron backscatter diffraction of a pre- and post-deformation Ti-6Al-4V Taylor impact specimen
Euan Wielewski, Joshua Eggleston, Clive Richard Siviour, and Nik Petrinic 1395

Shock response and structure of yttria-doped tetragonal zirconia
Vladimir V. Milyavskiy, Andrey S. Savinykh, Felix Akopov, Leonora Borovkova, Evgeny Lukin, Nellia Popova, Georgy Valiano, Tatiana Borodina, and Vadim Ziborov 1399

Ti-Si photocatalyst for producing hydrogen synthesized by shock wave
Jianjun Liu, Hongling Zhang, Pengwan Chen, Naifu Cui, and Xiang Gao 1403

Characterization of shock-loaded nanocrystalline silicon powder
Hiroaki Kishimura and Hitoshi Matsumoto 1407

Quasi-isentropic compression of gaseous helium in pressure range from 130 to 460 GPa
Mikhail Zhernokletov, Vladimir Arinin, Viktor Buzin, Yulia Grigorieva, Nikolay Davydov, and Viktor Khustalev 1411

PHYSICS & CHEMISTRY AT HIGH PRESSURE STATIC AND LOW RATE STUDIES

Chemical bonding evolution towards phase transitions for nitrogen-rich high energy density solids under high pressure
Anguang Hu and Fan Zhang 1417

xxxviii
Pressure-induced polymerization in substituted acetylenes
Raja Chellappa, Dana M. Dattelbaum, S. A. Sheffield, and
David L Robbins 1421

The high pressure characterization of energetic materials:
Dihydrazinium 5, 5'- azotetrazolate dihydrate
Jennifer Ciezak Jenkins 1425

PARTICULATE / POROUS MATERIALS

Measurements of the shock response of porous structures formed by
selective laser melting
Ernest Joseph Harris, Ron Winter, Matthew Cotton, Mark Swan,
and John Richard Maw 1431

Shock compression of hydrocarbon polymer foam using molecular
dynamics
J. Matthew D. Lane, Gary S. Grest, Aidan P. Thompson,
Kyle R. Cochrane, Michael Desjarlais, and Thomas R. Mattsson 1435

Release states in aluminum foam
Warren Russell Maines, John P. Borg, William D Reinhart,
Christopher Neel, Mike E. Nixon, and Lalit Chhabildas 1439

The effect of particle size on the shock compaction of a quasi-mono-
disperse brittle granular material
William Neal, David James Chapman, and William Proud 1443

Propagation of rarefaction pulses in particulate materials with
strain-softening behavior
Eric B Herbold and Vitali F Nesterenko 1447

Shear stress behavior in mesoscale simulations of granular materials
Don Fujino, Ilya Lomov, Tarabay Antoun, and Efrem Vitali 1451

Shear stress measurements during high-speed impacts with sand and
glass beads
William Cooper 1455

Shock-induced formation of a disordered solid from a dense particle
suspension
Oren E Petel, David Frost, Andrew Higgins, and Simon Ouellet 1459
Intense shock compression of porous solids: Application to WC and Ta$_2$O$_5$
 Gregg Fenton, Dennis Grady, and Tracy Vogler 1463

Mesoscale simulations of granular materials with peridynamics
 Christopher J. Lammi and Tracy Vogler 1467

Application of a generalized multiphase Riemann solver to a finite-volume method with nozzling sources
 Michael Crochet, Keith Gonthier, and Joel E. Tohline 1471

Heating in microstructures of HMX/Estane PBX during dynamic deformation
 Ananda Barua and Min Zhou 1475

On predicting the shock densification response of heterogeneous powder mixtures
 Naresh Thadhani and Anthony Fredenburg 1479

One-dimensional strain initiated by rapid compaction of heterogeneous granular mixture consisting of Cu, Fe, SiO$_2$, C, MoS$_2$, Sn
 Cullen Braun and John P. Borg 1483

Shock consolidation response of CeO$_2$ powders
 Anthony Fredenburg, Darcie Dennis-Koller, and Dana M. Dattelbaum 1487

The influence of particle morphology on the dynamic densification of metal powders
 Daniel E. Eakins and David James Chapman 1491

Lateral stress measurements in dense suspensions
 Oren E Petel, David Frost, Andrew Higgins, and Simon Ouellet 1495

Simulations of shear mixing of bidisperse cohesive particles with a large size range
 Lee Randall Aarons 1499

Shock-precursor waves in brittle granular materials
 William Neal, David James Chapman, and William Proud 1503
Riemann solver for the Nigmatulin model of two-phase flow
Kaushik Balakrishnan, John B. Bell, Allen L. Kuhl, and W. Michael Howard

PHASE TRANSITIONS

A multi-scale strength model with phase transformation
Nathan Barton, Athanasios Arsenlis, Moono Rhee, Jaime Marian,
Joel V. Bernier, Meijie Tang, and Lin Yang

Release wave propagation in shocked molybdenum approaching melt conditions
Geremy Kleiser, Lalit Chhabildas, William Reinhardt, and
William Anderson

Rayleigh-Taylor strength experiments of the pressure-induced $\alpha \rightarrow \varepsilon \rightarrow \alpha'$ phase transition in iron
Jonathan L Belof, R. M. Cavallo, Russel T Olson, Robert S King,
George Thompson Gray III, David Holtkamp, Shuh-Rong Chen, R. E.
Rudd, Nathan Barton, Athanasios Arsenlis, B. Remington, Hye-Sook Par
S. T. Prisbrey, Peter Vitello, Grant Bazan, Karnig O Mikaelian,
A. J. Comley, Brian Maddox, and M. J. May

Laser-driven quasi-isentropic compression experiments and numerical studies of the iron
alpha-epsilon transition in the context of planetology
N. Amadou, Erik Brambrink, Alessandra Benuzzi-Mounaix, T. Vinci,
Thibaut de Resseguer, S. Mazevet, G. Morard, F. Guyot, Norimasa
Ozaki, Kohei Miyanishi, and M. Koenig

Porous silicon nitride under shock compression
Vladislav Yakushev, Alexander Utkin, and Andrey Zhukov

Measurements of sound velocities in zinc and titanium alloy by optical method
Alexey Kovalev, Mikhail Zhernokletov, Alexander Mezhevov, Mikhail
Novikov, Sergey Kirshanov, and Liliya Kanunova

Phase change in 080M40 plain carbon steel
James Michael De’Ath, William Proud, Jeremy Millett, and Gareth
James Appleby-Thomas
Analysis and modeling of laser ramps and shocks in titanium and zirconium with phase transitions
Olivier Heuze and Damian Swift 1541

Laser shock-induced melting and fragmentation in metals
Didier Loison, Thibaut de Rességuiér, André Dragon, Émilien Lescoute, Michel Boustie, and Laurent Berthe 1545

Modeling high strain rate viscoplastic deformations combined with phase changes
Frank Montheillet and Gilles A. Roy 1549

High-temperature phase transformations: The properties of the phases under shock loading
Eugene Zaretsky 1553

An equation of state for Ti-6Al-4V
Geoffrey Cox 1559

Equilibrium conditions at a solid-solid interface
JeeYeon Plohr 1563

Study on the kinetics of γ and α phase transition in cerium material
Hu Xiaomian, Pan Hao, and Dai Chengda 1567

SPECTROSCOPY & OPTICAL STUDIES

Nitro stretch probing of a single molecular layer to monitor shock compression with picosecond time resolution
Christopher Berg, Alexei Lagutchev, Yuanxi Fu, and Dana Dlott 1573

Irreversible phase transitions in doped metal oxides for use as temperature sensors in explosions
Hergen Eilers, Ray Gunawidjaja, Thandar Myint, James Lightstone, and Joel Carney 1577

Coherent anti-Stokes Raman scattering of laser shock compressed α-quartz
Cindy Bolme, Raymond Smith, Shawn McGrane, David Moore, and G. W. Collins 1581
Raman spectroscopy study of laser-shocked tatb-based explosives
Philippe Hebert, Viviane Bouyer, Michel Doucet, Joël Rideau, and Louis-Pierre Terzulli 1585

Crystallization behavior of vapor-deposited hexanitroazobenzene (HNAB) films
Robert Knepper, Alexander S. Tappan, Mark A. Rodriguez, M. Kathleen Alam, Laura Martin, and Michael P. Marquez 1589

Microscopic states of shocked polymers
Kathryn Brown, Rusty Conner, Yuanxi Fu, Hiroki Fujiwara, and Dana Dlott 1593

Interferometric analysis of cylindrically focused laser-driven shock waves in a thin liquid layer
David Veysset, Alex Maznev, Gagan Saini, Steven Kooi, Thomas Pezeril, and Keith Nelson 1597

Particle velocity history of pentaerythritol tetranitrate shocked along [110] crystal orientation by laser-accelerated miniature flyer impact
Kunihiko Wakabayashi, Tomoharu Matsumura, Yoshio Nakayama, and Mitsuo Koshi 1601

Thermal relaxation of CsI shocked to 45 GPa, with a LiF window, and optical characterization of LiF shocked to 85 GPa
David A. Boness 1605

POST-SHOCK TURBULENCE

Modeling turbulent mixing
Baolian Cheng, James Glimm, David H. Sharp, and Hyunkyung Lim 1611

Jetting instabilities of particles from explosive dispersal
Robert Ripley, Laura Donahue, and Fan Zhang 1615

The role of vorticity and turbulence on the instability of a dense solid particle flow
Fue-Sang Lien, Tao Xu, and Fan Zhang 1619

Development of instabilities in explosively dispersed particles
Y. Gregoire, David Frost, and Oren Petel 1623
Interaction of a planar shock with an isotropic field of sound waves
Juan Gustavo Wouchuk Schmidt, Cesar Huete Ruiz de Lira, and Alexander L. Velikovich 1627

Instabilities and turbulence originating from relaxation phenomena behind shock waves
Matei I. Radulescu and Nick Sirmas 1631

Importance of unsteady force and heating to particle interaction with shock/detonation waves
Yue Ling, Andreas Haselbacher, and S. Balachandar 1635

Simulations of heterogeneous detonations and post-detonation turbulent mixing and afterburning
Kalyana Chakravarthi Gottiparthi and Suresh Menon 1639

Application of the Meshless Local Petrov-Galerkin (MLPG) method to Rayleigh-Taylor instability
Bryan Susi and Beth Smith 1643

Shock-driven mixing: Experimental design and initial conditions
Gavin Friedman, Katherine Prestridge, Ricardo Mejia-Alvarez, and Megan Leftwich 1647

Vortex deposition in shock-accelerated gas with particle/droplet seeding
Peter Vorobieff, Michael Anderson, Joseph Conroy, Ross White, C. Randall Truman, and Sanjay Kumar 1651

Interaction of a planar shock with a dense field of particles
Justin Lawrence Wagner, Steven J. Beresh, Sean P. Kearney, Wayne M. Trott, Jaime N. Castaneda, Brian O. Pruett, and Melvin Baer 1655

Meso-scale simulations of strain-induced reaction mechanisms in Ti/Al/B heterogeneous systems
Manny Gonzales, Ashok Gurumurthy, Arun Gokhale, and Naresh Thadhani 1659

Mix and instability growth from oblique shock
John D. Molitoris, Jan Batteux, Raul Garza, Joseph Tringe, P. Clark Souers, and Jerry W. Forbes 1663

Author Index

Subject Index

xliv