39th International Technical Conference on Clean Coal & Fuel Systems 2014

The Clearwater Clean Coal Conference

Clearwater, Florida, USA
1 – 5 June 2014

ISBN: 978-1-63266-983-4
Table of Contents

Oxy-Fuel Technology I – Overview & Demonstrations
Dr. Klas Andersson, Chalmers University, SWEDEN

85. Research and Development of Oxyfuel Combustion in China
Chenguang Zheng, State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, PEOPLE’S REPUBLIC OF CHINA...1

9. Updated Overview of a Manufacturer’s Efforts to Commercialize Oxy-Combustion for Steam Power Plants
Armand Leavseur, James Kenny, John Marion, and David Turek, ALSTOM Power, Inc., USA...

Akhay Gopan, Benjamin M. Kumfer, and Richard L. Axelbaum, Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis; and Jeffrey Phillips, and David Thimsen, Electric Power Research Institute, USA...

12. CIUDEN’s Experiences in CCUS Full-chain
P. Otero, J.C. de Dios, I. Alvarez, J.A. Gutierrez, D. Fernandez-Poulussen, Fundación Ciudad de la Energía, SPAIN...

13. CFB Oxy-fuel Combustion under High Oxygen Levels
M. Gómez, J. Ramos, and I. Álvarez, Fundación Ciudad de la Energía, Ciuden, SPAIN; and R. Kuivalainen, Foster Wheeler Energia Oy, FINLAND...

Oxy-Fuel Technology II Fundamentals & Modeling
Prof. Terry Wall, University of Newcastle, Australia

59. Computational Study of the Pulverized Coal Combustion in the OP-650 Boiler Retrofitted to Oxy-fuel Conditions
Robert Lewtak, Bartosz Swiatkowski, and Pawel Kuczynski, Department of Thermal Processes, Institute of Power Engineering, POLAND...

26. An Assessment of Coal Devolatilization and Radiative Property Models in Oxy-Coal Combustion Simulations
Caitlyn Wolf and Gautham Krishnamoorthy, Department of Chemical Engineering, University of North Dakota, USA...

31. In-flame Reduction of NOx in Oxy-propane Combustion at High Inlet Oxygen Concentrations: The Importance of Soot-NOx, Interactions
Giovanni Nizzola, Thomas Ekvall, Fredrik Normann, Klas Andersson, and Filip Johnsson, Chalmers University of Technology, Department of Energy and Environment, SWEDEN........

78. Influence of the Steam on Single Particle Temperature during Oxy-fuel Combustion
Ewa Marek, and Bartosz Świątkowski, Department of Thermal Processes, Institute of Power Engineering, POLAND...
22. **Numerical Prediction of Oxy-Coal Combustion in a Full Scale Boiler Using a Non-gray Radiative Property Model**

 Muhammad Sami, and Stefano Orsino, ANSYS Inc., and Gautham Krishnamoorthy; Department of Chemical Engineering, University of North Dakota, **USA**; and Pravin Nakod, ANSYS Inc, **INDIA** ...

Oxy-Fuel Technology III – Experimental Studies

Dr. Stanley Santos,
IEA Greenhouse Gas R&D Programme, **ENGLAND**

5. **Reactions between NOx and Hg and Their Removal in CO2 Compression Units (CPUs) of Oxy-fuel Technology for CCS: Experiments with a Piston Compressor at Pressures to 30 Bar Fed with Synthetic Flue Gas**

 Rohan Stanger, Timothy Ting, and Terry Wall, Chemical Engineering, University of Newcastle, **AUSTRALIA** ...

70. **Oxy-combustion of Char from Fast Pyrolysis Produced in CO2 and N2 Atmosphere**

 Halina Pawlak-Kruciak, Michał Ostycharczyk, Jakub Długosz, and Eng. Jacek Zgóra, Department of Mechanical and Power Engineering, Wroclaw University of Technology, **POLAND** ...

 Sima Ajdari, Fredrik Normann, Klas Andersson, and Filip Johnsson, Department of Energy and Environment, Chalmers University of Technology, **SWEDEN** ...

7. **Sulfur Capture by Fly Ash in Air and Oxy-fuel Pulverized Fuel Combustion**

 Lawrence P. Belo, Liza K. Elliott, Kalpit V. Shah, Rohan J. Stanger, and Terry F. Wall, Chemical Engineering, The University of Newcastle, **AUSTRALIA**; and Jörg Maier, Günter Scheffknecht and Reinhold Spörl, IFK, University of Stuttgart, **GERMANY** ...

 Ewa Marek and Bartosz Świątkowski, Department of Thermal Processes, Institute of Power Engineering, **POLAND** ...

23. **Investigation of Oxygen Enriched Combustion for Application to a Novel Fuel-Staged Pressurized Oxy-Combustion Process**

 B. Dhungel, F. Xia, B. M. Kunfer, and R. L. Axelbaum, Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, **USA** ...

Oxy-Fuel Technology IV – Fundamentals & Modeling

Prof. Yiannis Levendis, Northeastern University

35. **Impact of CFD Enhancements for Modeling Coal-fired Boiler Oxy-Combustion Retrofits**

 Bradley Adams, and Brydger Van Otten, Reaction Engineering International, **USA** ...
18. Laboratory and Numerical Experiments of Coal Pyrolysis in Air and Oxy-fuel Combustion Conditions
 Aleksandra Milewska, and Jaroslaw Hercog, Department of Thermal Processes, Institute of Power Engineering, POLAND...1

19. Experimental and Numerical Investigation of Coal Char Combustion Process under Standard and Oxy-fuel Conditions
 Jaroslaw Hercog and Robert Lewtak, Department of Thermal Processes, Institute of Power Engineering, POLAND...1

Fundamentals of Combustion
Dr. Ashwani Gupta, University of Maryland

71. Gasification of Torrefied and Soft Wood Pellets in Air and CO₂
 K. Trehan, H. Molintas and A. K. Gupta, University of Maryland, Department of Mechanical Engineering, USA...

38. Rank-dependent Combustion Behavior of Pulverized Coals
 Yiannis A. Levendis and Reza Khatami, Mechanical and Industrial Engineering, Northeastern University, USA...

36. Strengthen Combustion Principle and Experiment of Positive Corona Charged Pulverized Coal
 Weijun Liu and Jianjie Han, Mechanical Engineering College, and Shuhua Zhang, School of Chemistry & Chemical Engineering, Shanghai University of Engineering Science (SUES), PEOPLE’S REPUBLIC OF CHINA...2

53. Reburning Characteristics of Syngas in a Bench-scale Combustion System
 Taeyoung Chae, Jaewook Lee, Garam Jo, Changkook Ryu, and Won Yang, Korea Institute of Industrial Technology, KOREA..

6. Physical, Chemical and Thermal Changes in the Transformation of Coal As It Heats
 W. Xie, R. Stanger, T.F. Wall, J.A. Lucas, M.R. Mahoney, Chemical Engineering University of Newcastle, AUSTRALIA..2

Air Toxics
Bradley Adams, Reaction Engineering International

2. Characterization of Pd/Al₂O₃ Sorbents for Elemental Mercury Capture at High Temperatures
 Wenhui Hou, Jinsong Zhou, Pan Qi, and Shulin You, State Key Laboratory of Clean Energy Utilization, Zhejiang University, PEOPLE’S REPUBLIC OF CHINA..2

33. Mercury Oxidation in Low Temperature Boiler Flue Gas
 Edward Levy, Xingchao Wang and Carlos Romero, Energy Research Center, Lehigh University, USA...2

72. Exorcising the Hg Demons at Coal Creek Station: Wet FGD Hg Capture
 Jared Pozarnsky, GRE Coal Creek Station, USA..2
30. **In Situ Desulfurization Performance of Limestone Purge from the Calcium-Looping Process during Circulating Fluidized Bed Combustion of Coal in a 150kWt Pilot Plant**
 Theodor Beisheim, Gerrit Hofbauer, Heiko Dieter, and Gunter Scheffknecht, Institute of Combustion and Power Plant Technology, IFK, University of Stuttgart, **GERMANY**..2

Improvements for Existing Power Plants
Dr. Nenad Sarunac, University of North Carolina

46. **Four Years of Operating Experience with DryFining™ Fuel Enhancement Process at Coal Creek Generating Station**
 Charles Bullinger and Mark Ness, Great River Energy, Coal Creek Station; Michael Briggs, NoDak Energy Services/The North American Coal Corporation; and Nenad Sarunac, University of North Carolina at Charlotte, **USA**...2

48. **The Case for Fuel Delivery System Upgrades on Utility Boilers**
 Robert E. Sommerlad, Consultant, Donald B. Pearson, Consultant, Grant E. Grothen, Burns & McDonnell, and Steven McCaffrey, Greenbank Energy Solutions, **USA**...

51. **Investigations of the Ash Deposit for Coal Blending Using Pilot Scale Pulverized Coal Boiler**
 Seuk Cheun Choi, Taeyoung Chae, Jaewook Lee, Won Yang, and Kiseup Kang, Korea Institute of Science and Technology, **KOREA**...

104. **Recent and Future Activities of the ASME Research Committee on Energy, Environment, and Waste**
 Robert E. Sommerlad, Consultant, **USA**...3

Alternative Fuels from Coal & Biomass
Christopher Zygarlicke, Energy & Environmental Research Center

65. **Direct Coal Liquefaction through Wave Liquefaction™ Co-Processing with Various Hydrogen-Containing Gases**
 James J. Strohm, Benjamin Q. Roberts, George Skoptsov and Alan A. Johnson, H Quest Vanguard, Inc.; and Tricia D. Smurthwaite and J. Timothy Bays, Pacific Northwest National Laboratory, **USA**...3

42. **Gasification, Warm-gas Cleanup, and Liquid Fuel Production with Illinois Coal and Biomass Blends**
 Joshua J. Stanisowski, Scott G. Tolbert, Tyler J. Curran, Michael J. Holmes, Energy & Environmental Research Center, University of North Dakota, **USA**...3

14. **Coal Electrolysis Integrated Solvent Extraction System for Hydrogen Production**
 Santosh Vijapur and Gerardine G. Botte, Center for Electrochemical Engineering Research, Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, **USA**...3

45. **Core-Shell Fischer-Tropsch Catalyst for Combined Liquid Fuel Synthesis and Upgrading**
109. Polygeneration for Liquids and Chemicals from Low-Rank Coal Utilization
Christopher J. Zygarlicki, Energy & Environmental Research Center, University of North Dakota, USA

Low Rank Coal Utilization I
Prof.-Dr. Klaus R. G. Hein, Energy & Environment, GERMANY

87. Japanese Roadmap of Clean Coal Technology
M. Harada and K. Makino, Japan Coal Energy Center, JAPAN

73. How to Utilize Low Grade Coals
Sebastian Rehfeldt, Christian Bergins, and Alfons Leisse, Mitsubishi Hitachi Power Systems Europe GmbH, GERMANY; and Song Wu, Mitsubishi Hitachi Power Systems America – Energy and Environment, Ltd., USA

60. Preliminary Assessment of Three Naturally Occuring Iron Ores for Chemical Looping Combustion of a Victorian Brown Coal
Tove Karlsson and Henrik Leon, Department of Environmental Inorganic Chemistry, Chalmers University, SWEDEN; Sharmen Rajendran, and Sankar Bhattacharya, Department of Chemical Engineering, Monash University, AUSTRALIA; and Jinchen Ma, State Key Laboratory of Coal Combustion, Huazhong University of Science & Technology, CHINA

Frank Lüttschwager, and Michael Müller, Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, GERMANY

Low Rank Coal Utilization II
Prof.-Dr. Klaus R. G. Hein, Energy & Environment, GERMANY

77. Energy Solutions for Victoria and Beyond- Opportunities for Fossil Fuels in a Carbon Constrained World – An Australian Perspective
Dr. Len Humphreys and Dr. Bill Rowlands, Ignite Energy Resources, AUSTRALIA

61. Liquid CO₂ Slurry (LCO₂) For Feeding Low Rank Coal (LRC) to Gasifiers – Overview
John Dooher, Adelphi University and Dooher Institute of Physics and Energy; Jose Marasigan, Electric Power Research Institute; and Harvey N. Goldstein, Worley Parsons, USA

74. The Spontaneous Combustion Behaviour of Victorian Brown Coal and Some Dewatered Products
Alan L. Chaffee, Jamileh Taghavi Moghad-dam, Mohammad Reza Parsa, Monash University, AUSTRALIA; Junjie Liao, Taiyuan University of Technology, PEOPLE’S REPUBLIC OF CHINA; Yoshimitsu Tsukasaki, Nippon Steel and Sumitomo Metal Corporation, and Akimasa
95. **Heat Exchanger Condensing Flue Gases in Coal-fired Power Plant – Analysis of Experiments**
P. Szulc, T. Tietze, J. Lichert, K. Polko, and K. Wójc, Wrocław University of Technology, **POLAND**

Multi-Emissions Control
Chris Smyrniotis, Fuel Tech, Inc.

39. **Separation in Centrifugal Fields**
J.J.H. Brouwers (Romico Hold B.V.), H. P. van Kemenade and R.J. van Benthum, Eindhoven University of Technology, **THE NETHERLANDS**

8. **HClear™ Program: A Solution Based Alternative to Dry Sorbent Injection for HCl Abatement**
Chris R. Smyrniotis, Kent W. Schulz, Emil P. Rivera, Dr. Dev Gavaskar and Dr. Ian Saratovsky
Fuel Tech, Inc., **USA**

100. **Corrosion & Slagging Challenges with Biomass Fuels**
Christopher R. Smyrniotis, Kent Schulz and Christopher Forte, Fuel Tech, Inc. **USA**

93. **ZrO₂-CuO Sorbents for High Temperature Air Separation**
Mehdi Alipour, Deepak Pudasainee, John A. Nychka, and Rajender Gupta, Department of Chemical & Materials Engineering, University of Alberta, Alberta, **CANADA**

Biomass Co-Utilization I
Les Marshall, Ontario Power Generation, **CANADA**

3. **Testing of Steam Treated Wood Pellets at Thunder Bay Generating Station**
Les Marshall, Ontario Power Generation, **CANADA**

16. **New Results of the SECTOR Project: Production of Solid Sustainable Energy Carriers from Biomass by Means of Torrefaction**
Michiel Carbo, Jaap Kiel, ECN, **THE NETHERLANDS**; Daniela Thrän, UFZ and Janet Witt DBFZ, **GERMANY**

96. **Summary of a Combustion Field Test of Torrefied Wood at Gulf Power's Plant Scholz**
Doug Boylan, Southern Company, Bill Zemo, Alabama Power, Keith Roberts and Jeff Wilson, Southern Company, Denym Burlock, Ontario Power Generation, **CANADA**, and Dave O’Connor, EPRI, **USA**

101. **Fly Ash Characteristics and Potential Utilization in Construction Applications from Wood Co-firing and Pure Combustion in an Industrial Scale Pulverized Fuel Boiler**
A. Fuller, J. Maier, and G. Schefknecht, Institute of Combustion and Power Plant Technology, Universität Stuttgart, **GERMANY**

68. **Torrefaction of Biomass in Special Construction Quasi-Auto-Thermal Reactor**
Halina Pawlak-Kruczek, Michał Czerep, Jacek Zgóra and Paweł Kruczek, Department of Mechanical and Power Engineering, Wrocław University of Technology, POLAND

Biomass Co-Utilization II
Les Marshall,
Ontario Power Generation, CANADA

24. CFD Modeling of Biomass Combustion for A 500mw Coal-fired Boiler Conversion
 Baiyun Gong, Guisu Liu, and Brian Smith, Mobotec LLC, USA

52. Approaches to Biomass Co-firing in a Pulverized Coal Boiler
 Tae Young Mun, Jeung Woo Lee, and Won Yang, Korea Institute of Industrial Technology, KOREA

62. Biomass Firing for Utility Applications #ІІ АООІІ ІЕ "ІІ АОО
 Armand A. Levasseur, James Kenny, Paul Chapman and Yen-Ming Chen, ALSTOM Power, Inc., USA

Post Combustion CO₂ Capture I
Lisa M. Rimpf, The Babcock & Wilcox Company, and
Erik Meuleman, CSIRO Energy Technology, AUSTRALIA

76. Membrane Technology for CO₂ Capture from Power Plants
 Xiaotong Wei, Ph.D., Membrane Technology and Research, Inc., USA

63. High Temperature CO₂ Membrane Separation: Enabling New Carbon Capture and Coal Conversion Strategies
 Jennifer Wade, School of Earth Sciences and Environmental Sustainability, Northern Arizona University; and Klaus Lackner, Earth and Environmental Engineering, Columbia University, USA

40. Carbon Capture by Hybrid Separation Processes
 R.J. van Benthum, H.P. van Kemenade, and J.J.H. Brouwers (Romico Hold B.V.), Eindhoven University of Technology, THE NETHERLANDS

37. Amino Acid Salts Promoted Aqueous Ammonia Solutions for Post-Combustion Capture of CO₂
 Nan Yang, Hai Yu, Paul Feron, and William Conway, CSIRO, and Marcel Maeder, Department of Chemistry, School of Environmental and Life Sciences, University of Newcastle, AUSTRALIA; and Dongyao Xu, School of Chemical and Environmental Engineering, China University of Mining and Technology, PEOPLE’S REPUBLIC OF CHINA

41. Post-combustion Carbon Dioxide Capture Process Using PEEK Hollow Fiber Membrane Contactors
 Shiguang Li, S. James Zhou, Travis Pyrzynski, and Howard Meyer, Gas Technology Institute; and Yong Ding and Ben Bikson, PoroGen Corporation, USA

102. Opportunities for Utilization of CO₂, But Not Without the Hurdles
 Henk Pagnier, Erin Schols (néé Kimball), and Earl Goetheer, TNO, THE NETHERLANDS
Post Combustion CO$_2$ Capture II
Lisa M. Rimpf, The Babcock & Wilcox Company, and Erik Meuleman, CSIRO Energy Technology, Australia

20. Pilot Plant Experience Using Concentrated Piperazine
Aaron Cottrell, CSIRO, AUSTRALIA...

83. Update on H3-1 Solvent Development for Post-Combustion CO$_2$ Capture
Sandhya Esaran and Song Wu, Mitsubishi Hitachi Power Systems America – Energy and Environment, Ltd.; Frank Morton, Southern Company Services, USA; and Hirofumi Kikkawa and Eiji Miyamoto, Babcock-Hitachi K. K., JAPAN..

21. Integrated Capture of CO$_2$ and SO$_2$ from Coal-Fired Power Stations – Pilot Plant and Economic Assessment Results
Dr. Erik Meuleman, Pauline Pearson, James Jansen, Eric Curtis, and Andreas Monch, CSIRO; and Graeme Puixty and Paul Feron, CSIRO Energy Technology, AUSTRALIA.................................

94. Steam Regeneration of PEI Impregnated Silica Sorbents for Post Combustion CO$_2$ Capture: Preliminary Results
Navjot Kaur Sandhu, Deepak Pudasainee, Rajender Gupta, University of Alberta; and Partha Sarkar, Alberta Innovates – Technology Futures, CANADA..

103. Post Combustion Capture: Solvent Management Key to Operational Success
Henk Pagnier and Earl Goetheer, TNO, THE NETHERLANDS..........................

Combustion Technologies and Issues
Alan Paschedag, Foster Wheeler, and J.J. Letcavits, American Electric Power

Li Zhou, School of Chemical Engineering and Technology, Tianjin University, PEOPLE’S REPUBLIC OF CHINA...

17. Progress in Flameless Pulverized Coal Burner Design (300 kWth) Based on CFD Simulations and Experimental Investigations
Max Weidmann, Simon Grathwohl, Heiko Dieter, and Günter Scheffknecht, Institute of Combustion and Power Plant Technology (IFK), University of Stuttgart, GERMANY; and Dr. Guillaume Boutin and Dr. David Honoré, Normandie Université, FRANCE..............................

32. Mitigating Alkali Related Slagging and Fouling Problems in Utility Boilers with Engineered Combustion Additives
Dr. Murielle Perronnet, Tom Landon, and David Osby, Imerys, USA.................................

34. Impact of Bromine Addition on Low-Temperature Corrosion in Air and Oxy-fired Coal Combustion
Bradley Adams, Kevin Davis, and Timothy Shultz, Reaction Engineering International, USA; and William Cox, Corrosion Management Ltd., UNITED KINGDOM.................................
81. Investigations into Clinker Formation and Variations in Deposit Characteristics with Time in a Large-Scale PC-Fired Boiler
H.B. Vuthaluru, School of Chemical and Petroleum Engineering, Curtin University, and
D.H. French, CSIRO Energy Technology, AUSTRALIA...

106. Proactive Spontaneous Combustion Management Control During Coal Handling and Storage Using an Anti-oxidant
B. Basil Smith, School of Mechanical and Mining Engineering, The University of Queensland;
and M. Scott Smith, GE Power & Water, Water & Process Technologies, AUSTRALIA........

Coal Preparation
Dr. Francois Botha, Illinois Clean Coal Institute

75. Ash Removal During the Coal Milling Process
Rod Truce, Hansom Environmental Products; and Frank Kidman, Synergy, AUSTRALIA; and
John Cover, Southern Research Institute, USA...

82. Ignition of Solid Pulverized Fuel by Heated Surfaces
Sebastian Rehfeldt and Alfons Leisse, Mitsubishi Hitachi Power Systems Europe GmbH,
GERMANY; and Alessandro Saponaro, Centro Combustione Ambiente s.r.l., ITALY.........

98. Coal Beneficiation by Selective Oil Agglomeration Using Bio-Oils
Olev Trass, Chemical Engineering and Applied Chemistry, University of Toronto; and Ali Zarei
and Mike McLaren, Converde Energy Inc., CANADA..

99. Effect of Coal Ash Content on Dry Coal Beneficiation Performance
Ebrahim Azimi, Jozef Szymanski, Department of Civil and Environmental Engineering, and
Shayan Karimipour, Moshfiquar Rahman and Rajender Gupta, Department of Chemical &
Materials Engineering, University of Alberta, CANADA..

Chemical Looping I – Carriers & Kinetics
Dr. Ronald Breault, National Energy Technology Laboratory,
U.S. Department of Energy

43. Single Fluidized Bed Reactor Test of on Chemical Looping Combustion of Methaen I with Iron
and Copper Oxygen Carriers
Hanjing Tian, Ph.D., (URS), Ranjani V. Sirwardane, Ph.D., James Fisher, Ph.D., and Thomas
Simonyi, U.S. Department of Energy, National Energy Technology Laboratory, USA.........

29. Oxygen Carriers for Chemical-looping Combustion of Solid Fuels – From CLC to CLOU
Tobias Mattisson, and Anders Lyngfelt, Department of Energy and Environment, Division of
Energy Technology, and Henrik Leion, Department of Chemical and Biological Engineering,
Chalmers University of Technology, SWEDEN...

91. Kinetics Analysis of Reduction of Hematite Oxygen Carrier with CH4, CO and H2 and Oxidation
with Air for Chemical Looping Combustion
Esmail R. Monazam, Ronald W. Breault and Ranjani Sirwardane, National Energy
Technology Laboratory, U.S. Department of Energy, USA..
97. Operation of a 10 kW CLC Reactor at Western Kentucky University
 Dr. Yan Cao, Professor of Chemistry and Director of ICSET, Western Kentucky University,
 USA

Chemical Looping II – System Performance Results
Dr. Ronald Breault, National Energy Technology Laboratory,
U.S. Department of Energy

89. Alstom’s Chemical Looping Technology Program Update
 Herbert E. Andrus, Jr., and Iqbal F. Abdullally, ALSTOM Power, Inc., USA; and Corinne Beal,
 ALSTOM Boiler France, S.A., FRANCE

58. Parametric and Dynamic Studies of an Iron-Based 25 kWth Coal Direct Chemical Looping Unit
 Using Sub-bituminous Coal
 Samuel Bayham, Omar McGiveron, Andrew Tong, Cheng Chung, Tien-Lin Hsieh, Dikai Xu,
 Dawei Wang, Liang Zeng, and Liang-Shih Fan, William G. Lowrie Department of Chemical and
 Biomolecular Engineering, Ohio State University, USA

86. Operating Experience of a Chemical Looping Circulating Fluidized Bed Combustor
 Justin Weber, Douglas Straub, Ronald Breault and George Richards, National Energy
 Technology Laboratory, U.S. Department of Energy, USA

57. Coal-Direct Chemical Looping Combustion: Process and Reactor Level Simulations and
 Optimization of Carbon Capture
 Ramesh K. Agarwal, Zheming Zhang and Ling Zhou, Washington University in St. Louis,
 USA

Chemical Looping III – Reactor & System Performance
Dr. Ronald Breault, National Energy Technology Laboratory,
U.S. Department of Energy

84. Update on NETL’s Industrial Carbon Management Initiative: A Review of 2013 Activities
 Ronald W. Breault and George Richards, U.S. Department of Energy, National Energy
 Technology Laboratory; and Stephen Carpenter, URS Corp., USA

69. CO2 Capture Effectiveness by Calcium Looping with Regenerated Calcium Sorbents
 Halina Pawlak-Kruczek, Rafał Łuzny, and Marcin Baranowski, Mechanical Power Engineering
 Faculty, Wrocław University of Technology; and Andrzej Solecki, Institute of Geological
 Sciences, University of Wrocław, POLAND

49. Advancements in the CFD Modeling of Clean Coal Technologies
 James M. Parker, Scott E. Thibault, and Ken A. Williams, CPFD Software, LLC, USA

90. Fixed Bed Reduction of Hematite Analysis and Mechanism Development and Verification
 Using CFD
 Dr. Ronald Breault, Esmail Monazam, and Justin Weber, National Energy Technology
 Laboratory, U.S. Department of Energy, USA
92. **Chemical Looping Combustion of Ash Free Coal with CuO as an Oxygen Carrier**
Azar Shabani, Moshfiquur Rahman, Deepak Pudasainee, Arunkumar Samanta, Rajender Gupta,
Department of Chemical & Materials Engineering, University of Alberta; and Partha Sarkar,
Environment & Carbon Management Division, Alberta Innovates - Technology Futures,
CANADA

Gasification Technologies
Massood Ramezan, Leonardo Technologies, Inc.

64. **Reducing the Carbon Footprint of Coal-to-Liquids Technologies Through Coal–Biomass Gasification**
Mike Holmes, Energy & Environmental Research Center, **USA**

44. **Partial Oxidation of Methane using Mixed-Conductor Enhanced Redox Catalysts**
Nathan Galinsky, Arya Shafieefarhood, and Fanxing Li, Department of Chemical and
Biomolecular Engineering, North Carolina State University, **USA**

11. **Comprehensive Greenhouse Gas Evaluation of Underground Coal Thermal Treatment for Production of Syngas and Liquid Fuels**
Kerry E. Kelly, D. Wang, O. Diaz, E.G. Eddings and D.W. Pershing, Department of Chemical and
Engineering and Institute for Clean & Secure Energy, University of Utah, **USA**

50. **Biomass Char Gasification: Study on Reaction Kinetics Using a High-Pressure Thermogravimetric Analyzer**
Andreas Mueller, Philipp Stoessner, and Thomas Kolb, Karlsruhe Institute of Technology (KIT),
GERMANY

Advanced Modeling
Dr. Edmundo Vasquez, Clyde Bergemann

27. **Complex Model of a Large Scale Circulating Fluidized Bed Boiler**
W.P. Adamczyk, R.A. Bialecki, A. Klimanek, P. Kozolub, and M. Klajny, Institute of Thermal Technology, Silesian University of Technology; and G. Wecel, Foster Wheeler Energia Polska Sp., **POLAND**

Jinliang Ma (URS Corporation), and David Miller, National Energy Technology Laboratory;
and Alex Dowling, John Eason, Lorenz Biegler, Carnegie Mellon University, Department of
Chemical Engineering, **USA**

105. **CFD Based Assessment of Heat Balance Impacts of Wall Cleaning, Combustion Modifications, and Surface Modifications in Coal-Fired Boilers**
Marc Cremer and Andrew Chiodo, Reaction Engineering International, **USA**
 P. Kumar Sahu, O. Ajuwon, P. Nikrityuk, and R. Gupta, Dep. Chemical and Materials Engineering, University of Alberta, CANADA..

110. Technology to Mitigate Syngas Cooler Plugging and Fouling
 Michael Bockelie, Reaction Engineering International, USA...