Table of Contents

[Plenary Session: 13P2-H] New Horizon of EMC Research

13P2-H1P. A New Paradigm in ICT and the Role of EMC Research
Masao Sakauchi
National Institute of Information and Communications Technology, Japan

13P2-H2P. EMC Applications of Electromagnetic Time Reversal
Farhad Rachidi
Swiss Federal Institute of Technology, Switzerland

[Keynote Session: 14A2-H] Overview of EMC Research Trends

14A2-H1K. EMC Research Trends in the USA
Robert Scully
NASA, USA/President of IEEE EMC Society

14A2-H2K. EMC Research Trends in Europe
Marcello D’Amore
Sapienza University of Rome, Italy

14A2-H3K. Overview of EMC related Issues in Japan and Vicinity
Liuji R. Koga
Okayama University, Japan

13A1-H1. Inductance Extraction of a Meander Line on a Coplanar Plane using Partial Element Method
B. Pu, K. Kim, W. Nah
Sungkyunkwan University, Korea

13A1-H2. Software-related EMI Model Reduction for Two-stage Pipeline Microcontroller
S.-Y. Yuan1, M. S. Lin2
1Feng Chia University, Taiwan, 2Bureau of Standards, Metrology and Inspection, Taiwan

13A1-H3. Analysis of Emission From a Slot Nearby a Microstrip Line on a Printed Circuit Board
T. Tobana, T. Sasamori, Y. Isota
Akita Prefectural University, Japan

V. Mordachev1, E. Sinkevich1, G. Slepyan2, A. Boag3, S. Maksimenko4, P. Kuzhir5, G. Miano6, M. Portnoi7, A. Maffucci8
1Belarusian State University of Informatics and Radioelectronics, Belarus, 2Tel-Aviv University, Israel, 3Belarusian State University, Belarus, 4University of Naples Federico II, Italy, 5University of Exeter, United Kingdom, 6University of Cassino and Southern Lazio, Italy

[13A2-H] Numerical Modeling (2)

13A2-H1. Numerical Modeling of ESD Events Including Both Charging and Discharging Processes with FDTD-SPICE Direct Linking Solver
K. Fujita
Fujitsu Limited, Japan

13A2-H2. Determination of EM Coupling on an Electrical Wiring Interconnection System Application of Condensation Approaches on Cable Models
M. Ridel, J. P. Parmantier
ONERA - the French Aerospace Lab, France

13A2-H3. EMC/EMI Problems and Diffraction Modeling: Finite Difference Time Domain vs. Method of Moments
L. Sevgic1, G. Apaydiniz2, M. A. Uslu1
1Dogus University, Turkey, 2Zirve University, Turkey

13A2-H4. Discrete Optimization of EMI Filter Using a Genetic Algorithm
M. Ferber1, R. Mrad2, F. Morel1, C. Volland1, G. Pilonnet1, A. Nagari2, J. Vasconcellos4
1Laboratoire Ampère (CNRS UMR5005), France, 2CPE INL (CNRS UMR5270), France, 3Advanced Audio Design, AMS BU ST Ericsson, France, 4Universidade Federal de Minas Gerais, Brazil

[13P1-H] Numerical Modeling (3)

13P1-H1. Three-Dimensional Dipole Source Identification Using Two Fixed Receiving Antennas and Its New Algorithm
A. Nishikata, Y. Wada, M. Tawada, Y. Takabe
Tokyo Institute of Technology, Japan

13P1-H2. Simulation Objects to be used as Unintentional Radiators
B. Menssen, F. Burghardt, H. Garbe
Leibniz Universität Hannover, Germany

13P1-H3. Study on Charge Oscillation-Induced (N/A) Low-Frequency Electric Field
K. Kikunaga, H. Yamashita, M. Egashira, K. Nonaka
National Institute of Advanced Industrial Science and Technology, Japan

L. M. Chen, D. Shi, Y. G. Gao
Beijing University, China

T. Uchida¹, N. Kuwabara¹, H. Sato²
¹Kyushu Institute of Technology, Japan, ²Daiwa Industries Ltd., Japan

13A1-A2. Inductive Coupling Matrix of a Multiconductor System for a Winding-on-Core Prototype
F. Abdallah, M. Alaküla
Lund University, Sweden

Y. Shiraki, Y. Sasaki, N. Oka
Mitsubishi Electric Corp., Japan

X. C. Zhang, M. Shoyama
Kyusyu University, Japan

[13A2-A] Power Electronics & Vehicles (2)

13A2-A1. Calculation of Interference between Railway Traction Inverters and Balises
S. Hatsukade¹, A. Yamanaka²
¹Railway Technical Research Institute, Japan, ²West Japan Railway Company, Japan

13A2-A2. Experimental Evaluation on Time Variation of Conducted Noise Spectrum for a PFC Converter
T. Ibuchi, R. Kamikomaki, T. Funaki
Osaka University, Japan

K. Shi¹, S. Tomioka², M. Shoyama¹
¹Kyushu University, Japan, ²TDK Lambda, Japan

13A2-A4. Impact of Thermal Aging on Emission of a Buck DC-DC Converter
A. Boyer, H. Huang, S. Bendhia
LAAS-CNRS, France

[13P1-A] EMC Management and Standards

13P1-A1. Research of Test Site Validation by using Reference Site Method Frequency Range of 9 kHz to 30 MHz Validation for Test Site by accroding to CISPR 16-1-4 Document
S. Lee¹, N. Kim¹, H. S. Keum¹, B. H. Kim¹, S. H. Choi¹, J. K. Yang¹
¹Chungbuk National University, Korea, ²Korea Radio Promotion Association, Korea, ³National Radio Research Agency, Korea

13P1-A2. Consideration for Evaluation Method of Proficiency Test Program on EMI Measurement
K. Osabe, T. Kato
Voluntary EMC Laboratory Accreditation Center Inc., Japan

13P1-A3. Use of FFT-based Measuring Instruments for EMI Compliance Measurements
J. Medler
Rohde & Schwarz GmbH & Co. KG, Germany

J. Medler¹, C. Reimer²
¹Rohde & Schwarz GmbH & Co. KG, Germany, ²Rohde & Schwarz International Operations GmbH, Germany

[Organized Session: 13A-B] Signal Integrity and Unintentional EM Radiation Related to Printed Circuit Boards

13A-B1. Generalized Debye Model for PCB Dielectrics and Conductors
A. E. Engin, E. Kozachenko
San Diego State University, USA

M. Shimazaki¹, H. Asai²
¹Mitsubishi Electric Corp., Japan, ²Research Institute of Electronics Shizuoka University, Japan

13A-B3. Application of the MREM Algorithms for Performance-Based Circuit Board Design
T. H. Hubing, C. Zhu
Clemson University, USA

13A-B4. A Metamaterial-Inspired and Embedded Structure to Damp the Resonance of the Power/ Ground Planes
S. Kahng¹, K. Jang¹, J. Jeon¹, H. Oh²
¹Incheon National University, Korea, ²Innertron Ltd., Co., Korea
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13A-B5</td>
<td>Identifying Dominant Factor of Imbalance Component and EM Radiation from Differential-Paired Lines with Serpentine Equi-Length Routing</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Y. Kayano(^1), H. Inoue(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(^1)Akita University, Japan, (^2)The Open University of Japan, Japan</td>
<td></td>
</tr>
<tr>
<td>13A-B6</td>
<td>Modal Equivalent Circuit of Bend Discontinuity in Differential Transmission Lines</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Y. Toyota, S. Kan, K. Iokibe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Okayama University, Japan</td>
<td></td>
</tr>
<tr>
<td>13A-B7</td>
<td>Signal Integrity: Influence of Non-linear Driver, Different Bit Rates, and Estimation by Different Algorithms</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>S.-Y. Hsu, C.-C. Chou, T.-L. Wu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>National Taiwan University, Taiwan</td>
<td></td>
</tr>
<tr>
<td>[13P1-B] Chip, Package, PCB & Cables (1)</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>13P1-B1</td>
<td>Imbalance Control by Open Stub for Reduction of Common-Mode Conversion at Differential Transmission Line Bend</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>T. Matsushima, O. Wada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kyoto University, Japan</td>
<td></td>
</tr>
<tr>
<td>13P1-B2</td>
<td>Suppression of Mode Conversion by Decreasing Path Difference by using an Asymmetrically Tapered Bend in Differential Transmission Lines</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>S. Kan(^1), Y. Toyota(^1), K. Iokibe(^1), T. Watanabe(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(^1)Okayama University, Japan, (^2)Industrial Technology Center of Okayama Prefecture, Japan</td>
<td></td>
</tr>
<tr>
<td>13P1-B3</td>
<td>Weak-Coupled Cross-Sectional Differential-Paired Lines with Bend Discontinuities for SI and EMI Performances</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Y. Kayano(^1), M. Ohkoshi(^1), H. Inoue(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(^1)Akita University, Japan, (^2)The Open University of Japan, Japan</td>
<td></td>
</tr>
<tr>
<td>13A-S1</td>
<td>ULF Geomagnetic Anomalous Changes Related to Large Earthquakes : Case and Statistical Studies</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>K. Hattori, P. Han, M. Hirokawa, C. Yoshino</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chiba University, Japan</td>
<td></td>
</tr>
<tr>
<td>13A-S2</td>
<td>Physics of Electromagnetic Phenomena associated with the Rupture of a Finite Fault Model</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Q. H. Huang(^1), H. X. Ren(^2), D. Zhang(^1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(^1)Peking University, China, (^2)University of Science and Technology of China, China</td>
<td></td>
</tr>
<tr>
<td>13A-S3</td>
<td>Ultra-Low-Frequency Magnetic Field Depression for Three Huge Oceanic Earthquakes in Japan and in the Kurile Islands</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>A. Schekotov(^1), M. Hayakawa(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(^1)Russian Academy of Sciences, Russia, (^2)University of Electro-Communications, Japan</td>
<td></td>
</tr>
<tr>
<td>13A-S4</td>
<td>Detections of Electromagnetic Waves Excited by Earthquakes</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>M. Tsutsui</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kyoto Sangyo University, Japan</td>
<td></td>
</tr>
<tr>
<td>13A-S5</td>
<td>Stochastic Relation between the Line-of-sight VHF Propagation and Earthquakes excitement</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>K. Motojima, N. Haga</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gunma University, Japan</td>
<td></td>
</tr>
<tr>
<td>13A-S6</td>
<td>Seismo-Ionospheric Perturbations, and the Precursors to the 2011 Japan Earthquake</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>M. Hayakawa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of Electro-Communications, Japan</td>
<td></td>
</tr>
<tr>
<td>13A-S7</td>
<td>Preseismic Lithosphere-Atmosphere-Ionosphere Coupling Associated With Earthquake Preliminary Mission Analysis for Nano-Satellite Observation</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>M. Kamogawa, Y. Orihara, M. Nakamura, Y. Suto, S. Togo, R. Tanaka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tokyo Gakugei University, Japan</td>
<td></td>
</tr>
<tr>
<td>[13P1-S] Biological Effects, EMF Safety & EMC in Medical Applications and Safety (1)</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>13P1-S1</td>
<td>Analysis of Body Hair Movement in ELF Electric Field Exposure—For Mechanism of Seasonal Change in Perception Threshold—</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>H. O. Shimizu(^1), K. Shimizu(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(^1)Hokkaido Institute of Technology, Japan, (^2)Hokkaido University, Japan</td>
<td></td>
</tr>
<tr>
<td>13P1-S2</td>
<td>Effect of Two-times 24 hour Exposures to 60 GHz Millimeter-waves on Neurite Outgrowth in PC12VG Cells in Consideration of Polarization</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>T. Shiina(^1), Y. Suzuki(^1), Y. Kasai(^1), Y. Inami(^1), K. Wake(^1), M. Taki(^1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(^1)Tokyo Metropolitan University, Japan, (^2)National institute of Information and Communications Technology, Japan</td>
<td></td>
</tr>
<tr>
<td>13P1-S3</td>
<td>Effect of 915 MHz RFID Exposure on Changes of Body Temperature in Rats</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>H. S. Kim(^1), Y. H. Lee(^1), A. K. Lee(^2), H. D. Choi(^2), Y.-S. Lee(^3), J.-K. Pack(^4), N. Kim(^4), Y. H. Ahn(^4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(^1)Ajou University School of Medicine, Korea, (^2)Electronics and Telecommunications Research Institute, Korea, (^3)Ewha Woman’s University, Korea, (^4)Chungnam National University, Korea, (^5)Chungbuk National University, Korea</td>
<td></td>
</tr>
</tbody>
</table>
13P1-S4. Relationship between Spatial-Averaged SAR and Temperature Elevation in Human Head Models from 1–10 GHz

A. Hirata, S. Ohta, I. Laakso, O. Fujiwara
Nagoya Institute of Technology, Japan

[14A1-H] Numerical Modeling/ Biological Effects

14A1-H1. Estimation of the Electromagnetic Fields Excited by a Cellular Phone in a Typical Aircraft Cabin

M. Shirafune¹, T. Hikage¹, T. Nojima¹, S. Futatsumori², A. Kohmura², N. Yonemoto²
¹Hokkaido University, Japan, ²Electronic Navigation Research Institute, Japan

14A1-H2. Millimeter-Wave Power Absorbed into Rabbit Eye Due to Different Exposure Environments

J. Chakarothai¹, ², Y. Suzuki¹, M. Taki¹, M. Koijima¹, K. Sasaki¹, K. Wake¹, S. Watanabe²
¹Tokyo Metropolitan University, Japan, ²National Institute of Information and Communications Technology, Japan, ³Kanazawa Medical University, Japan

14A1-H3. Comparison of SAR in Human Body Radiated from Mobile Phone and Tablet Computer

A. Tateno¹, K. Tanaka¹, T. Nagaoka², K. Saito¹, S. Watanabe², M. Takahashi¹, K. Itô¹
¹Chiba University, Japan, ²National Institute of Information and Communications Technology, Japan

T. Nagaoka¹, T. Niwa¹, S. Watanabe¹
¹National Institute of Information and Communications Technology, Japan, ²Tokai University School of Medicine, Japan

[14P1-H] Biological Effects, EMF Safety & EMC in Medical Applications and Safety (2)

14P1-H1. A Study on Exposure Level Measurement of the IH Cooker

K. Saito¹, Y. Kamimura²
¹Tohoku Gakuin University, Japan, ²Utsunomiya University, Japan

14P1-H2. Exposure Assessment for a Wireless Multi-phone Charger

W. G. Kang¹, A. I. Zhibanov², H. Y. Jun², Y. H. Park¹, J. K. Pack¹
¹Chungnam National University, Korea, ²Electromagnetic Environment Research Center, Korea, ³SAMSUNG Electronics, Korea

14P1-H3. Computational Dosimetry for Wireless Charging of an Electrical Vehicle

I. Laakso, A. Hirata, O. Fujiwara
Nagoya Institute of Technology, Japan

C. Li¹, ², T. Wu³
¹University of Science and Technology Beijing, China, ²China Academy of Telecommunication Research, China

14P1-H5. Dosimetry for Two modes of Resonance-based Wireless Power Transfer System

S. W. Park¹, E. H. Kim¹, K. Wake², S. Watanabe³
¹Korea Automotive Technology Institute, Korea, ²National Institute of Information and Communications Technology, Japan

14P1-H6. Electromagnetic Interference with Medical Devices from Third Generation Mobile Phone Including LTE

S. Ishihara¹, J. Higashiyama¹, T. Onishi¹, Y. Tarusawa¹, K. Nagase²
¹NTT DOCOMO, INC., Japan, ²Kanazawa University Hospital, Japan

[Organized Session: 14P2-H] Active Implantable Medical Device EMI

14P2-H1. A New Improved Electrode for the Human Body Model: Application for EMI Assessment of Active Implant Medical Devices

H. Fujimoto¹, T. Toyoshima¹, T. Hikage², T. Nojima²
¹Medtronic Japan Co., Ltd., Japan, ²Hokkaido University, Japan

14P2-H2. Implantable Cardiac Pacemaker EMI Triggered by HF-band Wireless Power Transfer Coils

T. Hikage, M. Shirafune, T. Nojima
Hokkaido University, Japan

14P2-H3. Study of Effects of Commercial Shielding Products Attached to Mobile Phone on Human Body with Implanted Medical Device

Y. L. Diao, W. N. Sun, K. H. Chan, S. W. Leung, Y. M. Siu
City University of Hong Kong, Hong Kong

14P2-H4. Platform for the Modeling of In Vivo Effects Relevant to Implant EM Exposure Safety

E. Neufeld, N. Kuster
IT’IS Foundation, Switzerland

14P2-H5. Reconsideration of EMI Phenomenon in Active Implantable Medical Devices in the Age of MR Conditional Devices

T. Toyoshima
USCI Holdings, Inc., Japan
14P2-H6. Safety Assessment of AIMDs under MRI Exposure: Tier3 vs. Tier4 Evaluation of Local RF-induced Heating
E. Cabot1, E. Zastrow 1, 2, N. Kuster1, 2
1 IT’IS Foundation, Switzerland, 2 ETH Zurich, Switzerland

14P2-H7. Piece-wise Excitation System for the Characterization of Local RF-Induced Heating of AIMD during MR Exposure
E. Zastrow 1, 2, M. Capstick1, E. Cabot1, N. Kuster1, 2
1 IT’IS Foundation, Switzerland, 2 ETH Zurich, Switzerland

14A-A1. Main Objective of this Organized Session “Improving the measurement uncertainty of EMI testing”
K. Osabe
Voluntary EMC Laboratory Accreditation Center Inc., Japan

14A-A2. Reducing the Standard Compliance Uncertainty by using Ferrite Type CMADs during Radiated Disturbance Measurements Acc. to CISPR 16-2-3
J. Medler
Rohde & Schwarz GmbH & Co. KG, Germany

D. M. Lauder1, R. C. Marshall2
1 University of Hertfordshire, United Kingdom, 2 Richard Marshall Limited, United Kingdom

14A-A4. Improvement of Radiated Emission Measurement Reproducibility by VHF-LISN - Interim Results of International Inter-Laboratory Comparison -
S. Okuyama1, K. Tanakajima2, K. Osabe1, H. Muramatsu4
1 NEC AccessTechnica, Ltd., Japan, 2 Intertek Japan K.K., Japan, 3 Voluntary EMC Laboratory Accreditation Center Inc., Japan, 4 VCCI Council, Japan

14A-A5. A Case Study on the Consistency Improvement in Radiated-Emission Testing by Using LISN
Y. Tang1, J. Chen1, C. Lee1, C. Chiu1
1 Bureau of Standards, Metrology and Inspection (BSMI), Taiwan, 2 Electronics Testing Center, Taiwan, 3 Da-Yeh University, Taiwan

Z. Chen
ETL-Lindgren, USA

14P1-A2. Effects of Incident Directions on Reflection Coefficients of Pyramidal Electromagnetic Wave Absorber
T. Aoyagi1, K. Kurihara2, T. Takizawa2, Y. Hirai2
1 Tokyo Institute of Technology, Japan, 2 TDK Corp., Japan

14P1-A3. Propagation Characteristics of Data Communication System for Protection and Disaster Relief Operations Using TV White Space
M. Noda, T. Yukimatsu, T. Kinoshita, M. Shida Hitachi, Ltd., Japan

14P1-A4. Electromagnetic Wave Source Visualization System with Luneburg Lens
Hitachi Ltd., Japan

14P1-A5. Loop Antenna Calibration Methods in Low-frequency
M. Ishii1, K. Fujii2
1 National Institute of Advanced Industrial Science and Technology, Japan, 2 National Institute of Information and Communications Technology, Japan
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D. Novotny</td>
</tr>
<tr>
<td></td>
<td>National Institute of Standards and Technology, USA</td>
</tr>
</tbody>
</table>

[Organized Session: 14P2-A] EM Information Leakage

Y. Hayashi, N. Homma, T. Mizuki, T. Aoki, H. Sone
Tohoku University, Japan

14P2-A2. Analysis on Equivalent Current Source of 302 AES-128 Circuit for HD Power Model Verification
K. Iokibe¹, K. Maeshima¹, T. Watanabe², H. Kagotani¹, Y. Nogami¹, Y. Toyota¹
¹Okayama University, Japan, ²Industrial Technology Center of Okayama Prefecture, Japan

14P2-A3. Correlation Power Analysis using Bit-Level Biased Activity Plaintexts against AES Cores with Countermeasures
D. Fujimoto¹, N. Miura¹, M. Nagata¹, Y. Hayashi³, N. Homma¹, T. Aoki², Y. Hori², T. Katashita¹, K. Sakiyama¹, T. Le³, J. Bringer³, P. Bazargan-Sabet⁶, S. Bhasin⁷, J. Danger⁷
¹Kobe University, Japan, ²Tohoku University, Japan, ³National Institute of Advanced Industrial Science and Technology, Japan, ⁴The University of Electro-Communications, Japan, ⁵Morpho, France, ⁶Pierre-and-Marie-Curie University, France, ⁷Telecom ParisTech, France

14P2-A4. NICV: Normalized Inter-Class Variance for Detection of Side-Channel Leakage
S. B. Bhasin¹, J. Danger¹, S. Guilley¹, Z. Najm¹
¹TELECOM-ParisTech, France, ²Secure-IC S.A.S., France

14P2-A5. Chosen-message Electromagnetic Analysis on Embedded OS
H. Uno, S. Endo, Y. Hayashi, N. Homma, T. Aoki
Tohoku University, Japan

S. Bhasin¹, P. Maistr², F. Regazzoni³
¹Telecom ParisTech, France, ²University Grenoble, France, ³ALaRI - University of Lugano, Switzerland

F. Xiao, Y. Kami
The University of Electro-Communications, Japan

S.-H. Huang¹, C.-W. Kuo¹, C.-C. Wang², T. Kitazawa³
¹National Sun Yat-Sen University, Taiwan, ²Advanced Semiconductor Engineering Inc., Taiwan, ³Ritsumeikan University, Japan

M. H. Lu¹, C. Wang², C. Kuo¹, T. Kitazawa³
¹National Sun Yat-Sen University, Taiwan, ²Advanced Semiconductor Engineering Inc., Taiwan, ³Ritsumeikan University, Japan

O. V. Tereshchenko¹, F. J. K. Buesink¹, F. B. J. Leferink²
¹University of Twente, The Netherlands, ²Thales Nederland B.V., The Netherlands

[14A2-B] Chip, Package, PCB & Cables (3)

14A2-B1. Forward Wave Analysis for EMC Power Supply Design above 1 GHz
U. Paoletti, Y. Komiya, T. Suga, H. Osaka
Hitachi, Ltd., Japan

14A2-B2. Reduction Technique for Power Supply Noise of Analog-Digital Mixed Circuit Boards -Adjustment of Attached Resistor Method-
S. Baba, S. Sasaki
Saga University, Japan

14A2-B3. A Low Cost Capacitor Approach for Suppressing Resonance in Power Distribution Networks
K. Yamanaga¹, H. Yamamoto¹, T. Sato²
¹Murata Manufacturing Co., Ltd., Japan, ²Kyoto University, Japan

14A2-B4. The Analysis of EMI Noise Coupling Mechanism for GPS Reception Performance Degradation from SSD/USB Module
H.-N. Lin¹, C.-C. Lu¹, H.-Y. Tsai¹, T.-W. Kung²
¹Feng-Chia University, Taiwan, ²Bureau of Standards, Metrology & Inspection, M.O.E.A, Taiwan

[Organized Session/Workshop: 14P1-B] IC Chip Level EMC for Telecommunication

14P1-B1W. Through Silicon Via (TSV) Noise Coupling Effects on RF LC-VCO in 3D IC
J. Lim, J. Cho, M. Lee, B. Bae, J. Kim
Korea Advanced Institute of Science and Technology, Korea
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>14P1-B2W</td>
<td>Measurements and Simulation of RF Noise Coupling and Its Impacts on LTE Wireless Communication Performance</td>
<td>M. Nagata¹, S. Shimazaki¹, N. Azuma¹, N. Miura¹, S. Muroga², Y. Endo², S. Tanaka², M. Yamaguchi²</td>
<td>¹Kobe University, Japan, ²Tohoku University, Japan</td>
</tr>
<tr>
<td>14P1-B3W</td>
<td>Development of Micro Magnetic Field Probe to Evaluate Near Field on RFIC Chip</td>
<td>Y. Endo¹, M. Yamaguchi¹, Y. Shigeta¹, M. Onishi¹, K. Arai¹, S. Muroga¹</td>
<td>¹Graduate School of Engineering, Tohoku University, Japan, ²New Industry Creation Hatchery Center, Tohoku University, Japan</td>
</tr>
<tr>
<td>14P1-B4</td>
<td>On-Chip Magnetic Thin-Film Noise Suppressor for IC Chip Level Digital Noise Coutermeasure</td>
<td>M. Yamaguchi¹, Y. Endo¹, S. Tanaka¹, T. Ito¹, S. Muroga¹, N. Azuma¹, M. Nagata²</td>
<td>¹Tohoku University, Japan, ²Kobe University, Japan</td>
</tr>
<tr>
<td>14P1-B5</td>
<td>Evaluation and Analysis of Electromagnetic Noise Coupling in a Board with a Mixed Signal IC</td>
<td>K. Tsukamoto, M. Iwanami, E. Hankui</td>
<td>NEC Corporation, Japan</td>
</tr>
</tbody>
</table>

[Organized Session: 14P2-B] 3D-IC and Packages

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>14P2-B1</td>
<td>In-Stack Monitoring of Signal and Power Nodes in Three Dimensional Integrated Circuits</td>
<td>Y. Araga, R. Miura, N. Ueda, N. Miura, M. Nagata</td>
<td>Kobe University, Japan</td>
</tr>
<tr>
<td>14P2-B3</td>
<td>Measurement and Analysis of Wireless Power Distribution Network using Magnetic Field Resonance in 3D Package and IC</td>
<td>E. S. Song, D. Jung, Y. Kim, J. Kim</td>
<td>KAIST, Korea</td>
</tr>
<tr>
<td>14P2-B4</td>
<td>Crosstalk Reduction in TSV Arrays with Direct Ohmic Contact between Metal and Silicon-substrate</td>
<td>D. C. Yang¹, E. P. Li¹, J. L. Li¹, X. C. Wei¹, J. Y. Xie², M. Swaminathan²</td>
<td>¹Zhejiang University, China, ²Georgia Institute of Technology, USA</td>
</tr>
<tr>
<td>14P2-B5</td>
<td>Design of Compact and Low-EMI Waveguide Structures based on Through Glass Vias</td>
<td>X. C. Wei, X. Wang, D. Yang, J. Li, X. Wei</td>
<td>Zhejiang University, China</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>14P2-B6</td>
<td>Designing Test Patterns for Effective Measurement of Typical TSV Pairs in a Silicon Interposer</td>
<td>Q. Wang¹, K. Shringarpure¹, J. Fan¹, C. Hwang¹, S. Pan¹, B. Achkir¹</td>
<td>¹Missouri University of Science and Technology, USA, ²Samsung, Korea, ³Cisco Systems, Inc., USA</td>
</tr>
</tbody>
</table>

[Workshop: 14A-S] Recent Lightning Current Data from Instrumented Towers

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>14A-S1W</td>
<td>Introduction to Lightning Current Measurements</td>
<td>M. Rubinstein¹, F. Rachidi²</td>
<td>¹University of Applied Sciences of Western Switzerland, Switzerland, ²Swiss Federal Institute of Technology, Lausanne, Switzerland</td>
</tr>
<tr>
<td>14A-S2W</td>
<td>Lightning Measurements at the Gaisberg Tower in Austria</td>
<td>G. Diendorfer</td>
<td>Austrian Electrotechnical Association (OVE), Dept. ALDIS, Austria</td>
</tr>
<tr>
<td>14A-S3W</td>
<td>Lightning Observations at Tokyo Skytree</td>
<td>T. Shindo</td>
<td>CRIEPI, Japan</td>
</tr>
<tr>
<td>14A-S4W</td>
<td>The Peissenberg Tower in Germany</td>
<td>F. Heidler</td>
<td>University of the Federal Armed Forces, Munich, Germany</td>
</tr>
<tr>
<td>14A-SSW</td>
<td>Säntis Tower in Switzerland</td>
<td>M. Paolone¹, M. Ruinstein², F. Rachidi¹</td>
<td>¹Swiss Federal Institute of Technology, Lausanne, Switzerland, ²University of Applied Sciences of Western Switzerland, Switzerland</td>
</tr>
</tbody>
</table>

[14P1-S] High Power & High Voltage EMC

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>14P1-S1</td>
<td>Calculation of Electromagnetic Fields Inside a Building with Layered Reinforcing Bar Struck by Lightning Using the FDTD Method</td>
<td>A. Tatematsu¹, F. Rachidi², M. Rubinstein²</td>
<td>¹Central Research Institute of Electric Power Industry, Japan, ²Swiss Federal Institute of Technology, Lausanne, Switzerland, ³University of Applied Sciences Western Switzerland, Switzerland</td>
</tr>
<tr>
<td>14P1-S2</td>
<td>The Most Powerful Lightning Discharges in Winter Thunderstorms in Japan Sea Coast</td>
<td>T. Wu, S. Yoshida, T. Uschio</td>
<td>Osaka University, Japan</td>
</tr>
</tbody>
</table>

VII
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14P1-S3</td>
<td>Lightning Surge Voltage Characteristics between the Ports of Telecommunications Equipment for FTTH Service</td>
<td>394</td>
</tr>
<tr>
<td>14P1-S4</td>
<td>VHF Radio Observations of Lightning Discharges on JEM-GLIMS</td>
<td>398</td>
</tr>
<tr>
<td>14P1-S5</td>
<td>Current Intentional EMI studies in Europe with a Focus on STRUCTURES</td>
<td>402</td>
</tr>
<tr>
<td>14P2-S1</td>
<td>Electromagnetic Radiated Emissions from a Wireless Power Transfer System using a Resonant Magnetic Field Coupling</td>
<td>406</td>
</tr>
<tr>
<td>14P2-S2</td>
<td>Short Range Wireless Power Charging on Small Electric Vehicles</td>
<td>410</td>
</tr>
<tr>
<td>14P2-S3</td>
<td>Harmonic Current Reduction Method of Hand-Held Resonant Magnetic Field Charger (HH-RMFC) for Electric Vehicles</td>
<td>414</td>
</tr>
<tr>
<td>14P2-S4</td>
<td>Various Approaches to Problems of Multicriterion Optimization Processes of Electric Power Systems</td>
<td>418</td>
</tr>
</tbody>
</table>

[14P2-S] Power System EMC

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15A-H1</td>
<td>Magnetic Shielding of Wireless Power Transfer Systems</td>
<td>422</td>
</tr>
<tr>
<td>15A-H2</td>
<td>Low Frequency Electromagnetic Compatibility of Wirelessly Powered Electric Vehicles</td>
<td>426</td>
</tr>
<tr>
<td>15A-H3</td>
<td>Applicability of Quasistatic Approximation for Exposure Assessment of Wireless Power Transfer</td>
<td>430</td>
</tr>
<tr>
<td>15A-H4</td>
<td>Analysis of Power Dissipation and Temperature Rise of an Inductive Link for Retinal Implants</td>
<td>434</td>
</tr>
<tr>
<td>15A-H5</td>
<td>Undesired Emission from Coupled-Resonant Wireless Power Transfer Antenna for Fundamental and Harmonics Frequency</td>
<td>438</td>
</tr>
<tr>
<td>15A-H6</td>
<td>Investigation and Analysis on EMC Reduction with Impedance Matching Technique in Wireless Power Transfer System</td>
<td>442</td>
</tr>
<tr>
<td>15A-H7</td>
<td>Coexistence of Wireless Power Transfer via Microwaves and Wireless Communication for Battery-less ZigBee Sensors</td>
<td>445</td>
</tr>
<tr>
<td>15A-H8</td>
<td>Induced Field and SAR in Human Body Model Due to Wireless Power Transfer System with Induction Coupling</td>
<td>449</td>
</tr>
</tbody>
</table>

[Organized Session/Workshop: 15P-H] Automotive EMC

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15P-H1</td>
<td>Application of the Imbalance Difference Method to the EMC Design of Automotive ECUs</td>
<td>453</td>
</tr>
</tbody>
</table>
M. Kawakami1, T. Nambu1, K. Murano2, Y. Kami1, F. Xiao1
1University of Electro-Communications, Japan, 2Tokai University, Japan

[15P2-A] Biological Effects, EMF Safety & EMC in Medical Applications and Safety (3)

15P2-A1. Design a Dual-Band High-impedance Surface Structure for Electromagnetic Protection in WLAN Applications
M. S. Lin1, Y. H. Huang2, C.-I G. Hsu1
1National Yunlin University of Science & Technology (NYUST), Taiwan

T. Iwamoto1, 2, T. Arima1, K. Wake3, K. Fujii2, S. Watanabe2
1Tokyo University of Agriculture and Technology, Japan, 2National Institute of Information and Communications Technology, Japan

15P2-A3. A Dispersion Modeling Approach for (N/A) Designing Broadband Tissue-Simulating Fluids
K. Quéléver1, 2, B. Derat1, O. Meyer3, T. Coradin2, C. Bonhomme2
1ART-FI SAS, France, 2Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, Collège de France, Paris, France, 3Laboratoire de Génie Electrique de Paris Sorbonne Universités, UPMC Univ Paris 06, Supélec, Univ Paris Sud 11, CNRS UMR 8507, LGEP Gif-sur-Yvette, France

Y. Terai1, Y. Toyota1, K. Iokibe1, T. Watanabe2
1Okayama University, Japan, 2Industrial Technology Center of Okayama Prefecture, Japan

Y. Ji, K. Mouthaan, N. Venkatayalu
National University of Singapore, Singapore

15A1-B3. Estimation of Common Mode Current on Coaxial Cable with Twisted Wire Pair
T. Takahashi1, L. Niu2, T. Hubing2
1Takushoku University, Japan, 2Clemson University, USA

15A1-B4. Evaluation of Practical Model of an On-board Type Common Mode Choke Coil for 3D EMC Simulation
F. Nakamoto, Y. Sasaki, Y. Watanabe, C. Miyazaki, N. Oka
Mitsubishi Electric Corp., Japan

[15A2-B] Chip, Package, PCB & Cables (5)

T. Murakami1, M. Maeda1, Y. Mabuchi2, T. Matsushima1, T. Hisakado1, O. Wada1
1Kyoto University, Japan, 2Hitachi, Ltd., Japan

15A2-B2. Parasitic Inductive Coupling of Integrated Circuits with their Environment
D. Ioan1, G. Ciuprina1, W. Schilders2
1Polytecnic University of Bucharest, Romania, 2T. U. Eindhoven, The Netherlands

15A2-B3. High Spatial Resolution On-chip Active Magnetic Field Probe for IC Chip-Level Near Field Measurements
Y. Shigeta1, N. Sato1, K. Arai1, M. Yamaguchi1, S. Kageyama2
1Tohoku University, Japan, 2Toppan Technical Design Center Corp., Japan

15A2-B4. Investigation on Realizing 1 Ω Current Probe Complied with IEC 61967-4 Direct Coupling Method
Y.-C. Chang1, 2, P.-Y. Wang2, S. S. H. Hsu2, Y.-T. Chang3, C.-K. Chen1, H.-C. Cheng1, D.-C. Chang1
1National Applied Research Laboratories, Taiwan, 2National Tsing Hua University, Taiwan, 3Bureau of Standards, Metrology & Inspection, M.O.E.A., Taiwan
[Organized Session/Workshop: 15P-B] EMC Topics Related to Smart Grid

15P-B1. EMI in the Frequency Range 2 - 150 kHz (N/A)
G. F. Bartak¹, A. Abart²
¹Consultant, Austria, ²Netz OÖ Gmbh, Austria

15P-B2. Electromagnetic Interference Examples of 581 Telecommunications System in the Frequency Range from 2kHz to 150kHz
K. Murakawa, H. Hirasawa, H. Ito, Y. Ogura
NTT EAST, Japan

15P-B3. CISPR Limits for the Conducted 585 Disturbances of DC Ports of PV-GCPCs
Y. Yoshioka
Fuji Electric Co., Ltd., Japan

15P-B4. EMC Issues around Traction Power Supply System
H. Hayashiya
East Japan Railway Company, Japan

15P-B5. Lightning Strike Fault Risk on Wind Power Generation System
T. Shindo
Central Research Institute of Electric Power Industry, Japan

15P-B6. Geomagnetic Storm Impacts on the High-Voltage Power Grid: Current Understanding and Mitigation Concepts
W. Radasky
Metatech Corporation, USA

15P-B7. EMC Issues on Wireless Power Transfer
S. Obayashi¹, H. Tsukahara²
¹Toshiba Corp., Japan, ²Nissan Motor Co., Ltd., Japan

15P-B8W. EMC Standards for Charging System of Electric Vehicle
H. Tsukahara
Nissan Motor Co., Ltd., Japan

[Workshop: 15A-S] Recent Trend of EMC on Smart Grid

15A-S1W. Recent Trend of EMC on Smart Grid in the USA
W. Radasky
Metatech Corporation, USA

15A-S2W. Recent Trend of EMC on Smart Grid in EU
H. Rochereau
EDF, France

15A-S3W. Recent Trend of EMC on Smart Grid in Japan
M. Tokuda
The University of Tokyo, Japan

15A-S4W. Recent Trend of EMC on Smart Grid in Korea
H. Ahn
KESRI (Korea Electrical Engineering & Science Research Institute), Korea

15A-S5W. Recent Trend of EMC on Smart Grid in China
J. Zheng
STIEE: Shanghai Testing & Inspection Institute for Electrical Equipment, China

15A-S6W. Recent Trend of EMC on Smart Grid in IEC
H. Ohsaki
The University of Tokyo, Japan

[Organized Session: 15P1-S] Electromagnetic Noise Radiation and EMI Effects Caused by ESD

15P1-S1. Frequency Analysis of Transient Electromagnetic Wave Caused by Low Voltage ESD in Spherical Electrode
K. Kawamata¹, S. Minegishi¹, O. Fujiwara²
¹Tohoku Gakuin University, Japan, ²Nagoya Institute of Technology, Japan

15P1-S2. ESD Study on Discharge Current and Radiated Electromagnetic Wave with Conductive Polycarbonate Composite Resin
T. Ohtsu¹, H. Doyama¹, K. Sagisaka¹, T. Shirayama²
¹Suzuka National College of Technology, Japan, ²Yukadenishi Co., Ltd., Japan

15P1-S3. Characteristics of Small Gap Discharge Event and their EMI Effects
M. Honda¹, S. Isofuku²
¹Impulse Physics Laboratory, Inc., Japan, ²Tokyo Electronics Trading Co., Ltd., Japan

15P1-S4. The Distinction among Electromagnetic Radiation Source Models Based on Directivity with Support Vector Machines
Z. Liu¹, D. Shi², Y. G. Gao¹, Y. Q. Shen², J. J. Bi³, Z. L. Tan³
¹Beijing University, China, ²Telecommun. Metrol. Center, China, ³Key Lab. of Electromagn. Environ. Effect, Shijiazhuang Mech. Eng., China
[16A1-H] Biological Effects, EMF Safety & EMC in Medical Applications and Safety (4)

 Y. Miyaji¹, M. Shimada¹, Y. Mizuno¹, K. Naito³
 ¹Nagoya Institute of Technology, Japan, ²N. S. Co., Ltd., Japan

 B. H. K. Chia
 Sarawak Energy Berhad, Malaysia

 D. T. Le¹, L. Hamada¹, S. Watanabe¹, T. Onishi²
 ¹Gangwon National Institute of Information and Communications Technology (NICT), Japan, ²NTT DOCOMO, INC., Japan

[Organized Session: 16A2/P1-H] Recent Trends of Standardization Activities and Evaluation Techniques for the Electromagnetic Exposure to the Human Body

16A2-H1. Research in ITU-T SG5 about Method for Evaluating of Human Exposure Levels when Installing a New Wireless Installation
 B. C. Kim, H. Choi
 ETRI, Korea

16A2-H2. Low-EMF Future Networks: the LEXNET EU Project
 J. Wiart¹, E. Conil¹, N. Varsier¹, T. Sarrebourse¹, A. Hadjem², L. Martens², G. Wermeeren², Y. Yoann Corre³
 ¹Orange Labs / WHIST lab, France, ²Iminds / Ghent University, Belgium, ³SIRADEL, France

16A2-H3. EMF Regulation Changes and Some Related Studies of Human Exposure to Electromagnetic Fields in S. Korea
 D. G. Choi¹, K. H. Kim¹, S. Y. Chung¹, Y. M. Gimm²
 ¹National Radio Research Agency, Korea, ²Dankook University, Korea

16A2-H4. Simulated Near-Field Gain and E-Field Intensity of Insulated Loop Antenna in the Liquid at 30 MHz
 N. Ishii¹,², R. Takezawa¹, L. Hamada¹, S. Watanabe³
 ¹Niigata University, Japan, ²National Institute of Information and Communications Technology, Japan

16A2-H5. An Ultra Wideband Alternative to Dipoles for SAR System Verification
 B. Derat¹, A. Lages¹, L. Aberbour¹, T. Julien¹, D. Manteuffel²
 ¹ART-Fi, France, ²CAU Kiel, Germany

[Organized Session: 16A2/P1-H] Recent Trends of Standardization Activities and Evaluation Techniques for the Electromagnetic Exposure to the Human Body

16P1-H1. Design of Electric Field Meter to Assess Human Exposure in Environment with Mobile Base Station
 J. Higashiyama, Y. Tarusawa
 NTT DOCOMO, INC., Japan

 N. Kuster, M. G. Douglas
 IT’IS Foundation / ETH Zurich Switzerland
[16P3-H] Photonics-applied Electromagnetic Measurement for EMC

16P3-H1. Development of Optical Electric Field Sensors for EMC Measurement
B. G. Loader1, M. J. Alexander1, R. Osawa2
1National Physical Laboratory, United Kingdom,
2Seiko-Giken, Japan

16P3-H2. Metal-free Electric-field Probe based on Photonics and its EMC Applications
H. Togo
NTT Microsystem Integration Laboratories, Japan

16P3-H3. Active Electro-Optical Probe System for B1-Field Polarization Mapping in Magnetic Resonance Imaging Systems
S. N. Kuehn1, B. Kochali2, N. Kuster1
1IT’IS Foundation / ETH Zurich, Switzerland,
2Schmid&Partner Engineering AG, Switzerland

16P3-H4. Antenna Measurement by Simple Optical Link System Using Radio on Fiber Technologies
S. Kurokawa1, M. Hirose1, M. Ameya1, Y. Toba2
1National Institute of Advanced Industrial Science and Technology, Japan, 2SEIKOH GIKEN Co.,Ltd., Japan

16P3-H5. Shielding Effectiveness Evaluation of Enclosure with Apertures Using Electro-Optic Sensor
N.-W. Kang1, D.-J. Lee1, W. Kang2, Y.-S. Chung3
1Korea Research Institute of Standards and Science, Korea, 2Kwangwoon University, Korea

[16A1-A] EMC Measurements (4)

16A1-A1. Apertures Coupling for Electrical Field Calculation in Ariane 5 Launcher Cavities
Experimental Characterization of Apertures’ Effective Coupling Cross Section in Oversized Complex Cavities
A. Bertrand, M. Ramos
Airbus Defence and Space, France

V. Rodriguez
ETS-Lindgren Inc., USA

16A1-A3. Influence of Reverberation Chamber Loading on Extreme Field Strength
R. A. Vogt-Ardatjew1, S. G. van de Beek1, F. B. J. Leferink1,2
1University of Twente, The Netherlands, 2Thales Nederland B.V., The Netherlands

[16A2-A] Communication System EMC (1)

16A2-A1. Representation and Analysis of Radio Receivers’ Susceptibility and Nonlinearity by the Use of 3D Double-Frequency Characteristics
E. Sinkevich, V. Mordachev, D. Petrachkov
Belarusian State University of Informatics and Radioelectronics, Belarus

16A2-A2. Measurement of Radio Receivers’ Front-End Nonlinearity by the Frequency Slipping Technique
E. Sinkevich, V. Mordachev
Belarusian State University of Informatics and Radioelectronics, Belarus

16A2-A3. A Novel LTE MIMO Antenna with Decoupling Element for Mobile Phone Application
J. Chou1, D. Lin2, C. Wu3, H. Li1
1National Taiwan University, Taiwan, 2National Taipei University of Technology, Taiwan

[16P1-A] Communication System EMC (2)

S. J. Ambroziak, R. J. Katulski
Gdansk University of Technology, Poland

16P1-A2. Technical Requirements for Portable TVWS Devices
I. Gepko
Ukrainian State Centre of Radio Frequencies, Ukraine

16P1-A3. Concept of Compatibility Region for the Evaluation of IR UWB Electromagnetic Compatibility
R. J. Katulski, J. Sadowski
Gdansk University of Technology, Poland

T. Maekawa1, K. Ogawa2
1Panasonic Corp., Japan, 2Toyama University, Japan

[16P2-A] Recent Topics of EMC Standardization - Role of ACEC -

16P2-A1T. What is ACEC?
W. Radasky
Metatech Corporation, USA
16P2-A2T. IEC International Special Committee on Radio Interference (CISPR) Report
Don HEIRMAN Consultants, USA

16P2-A3T. Recent Trend of TC 77 and its Subcommittees
H. Ohsaki
The University of Tokyo, Japan

16P2-A4T. Recent Topics in EMC: Emission Standardization in 2-150 kHz Frequency Band
H. Rochereau
EDF, France

16P2-A5T. Recent Topics in EMC: E-mobility
J. Delaballe
Consultant for Schneider Electric, France

16P2-A6T. Recent Topics in EMC: Medical Electronics
R. Sitzmann
Siemens AG, Germany

16P2-A7T. Recent Topics in EMC: Human Exposure to RF
D. Heirman
Don HEIRMAN Consultants, USA

[16A1-B] Immunity / Susceptibility, ESD and Transients (1)

L. B. Chang1, C. Shih1, T. Huang1, C. Tien2, P. Kuei2
1Chang Gung University, Taiwan, 2National Defense University, Taiwan

16A1-B2. Improvement of ESD Robustness in Gallium Nitride-based Flip-Chip HEMT by Introducing Metal-Insulator-Metal Capacitor
P. Kuei1, N. Cheng1, Y. Ferng1, A. Das1, S. Lin3, C. Lin1, L. Chang1, Y. Chen2
1National Defense University, Taiwan, 2National Central University, Taiwan, 3Chang Gung University, Taiwan

16A1-B3. A Case Study on ESD Immunity Test for a Small-Type Control Board
C. Ji1, D. Anzai1, J. Wang1, I. Mori2, O. Fujiwara1
1Nagoya Institute of Technology, Japan, 2Suzuka National Collage of Technology, Japan

16A1-B4. Assessing the Effect of Discharge Gap Shape on High-Speed Electrostatic Discharge Events
M. Masugi1, Y. Okugawa2, Y. Akiyama1, N. Hirasawa1, K. Murakawa1
1Ritsumeikan University, Japan, 2NTT corp., Japan,

[16A2-B] Immunity / Susceptibility, ESD and Transients (2)

16A2-B1. Measurement of Spark Length for Air Discharges of Electrostatic Discharge Generators
Y. Taka1, O. Fujiwara2
1Kushiro National College of Technology, Japan, 2Nagoya Institute of Technology, Japan

T. Ishida1, Y. Tozawa1, M. Takahashi1, O. Fujiwara2, S. Nitta2
1Noise Laboratory Co.,LTD., Japan, 2University of Electro-Communications, Japan

16A2-B3. Statistical Measurement of Burst Discharge Currents through Fingertip from Charged Human
Y. Kagawa1, I. Mori2, Y. Taka3, O. Fujiwara1
1Nagoya Institute of Technology, Japan, 2Suzuka National College of Technology, Japan, 3Kushiro National College of Technology, Japan

16A2-B4. EMI Evaluation Based on Electromagnetic and Circuit Analysis for Human Body Communication Systems
D. Anzai, J. Wang
Nagoya Institute of Technology, Japan

[16P1-B] Shielding, Grounding & Materials (1)

16P1-B1. A Study on Measurement Method of Shielding Effectiveness using Loop Antenna in Low-frequency
M. Ishii, Y. Yamazaki
National Institute of Advanced Industrial Science and Technology, Japan

16P1-B2. Study on Grounding Condition of Shield Sheath in Shielded Twisted Pair Cable
Y. Watanabe, T. Uchida, Y. Sasaki, N. Oka, H. Ohashi
Mitsubishi Electric Corporation, Japan

16P1-B3. Electromagnetic Field Distribution in Areas surrounded by Many Wires
H. Echigo, K. Aizawa
Tohoku Gakuin University, Japan

16P1-B4. Reflection and Transmission of Laminated Structures Consisting a Wire Grid and a Dipole Array Sheet and Dielectric Layer
S. Yamamoto1, K. Suezaki1, K. Hatakeyama1, I. Tsujioka2
1University of Hyogo, Japan, 2Hiroshima University, Japan
16P1-B5. Optimized Shielding Pattern of RF Faraday Cage
N. Ohmura1, Y. Okano2, S. Ogino1
1Microwave absorbers Inc., Japan, 2Tokyo City University, Japan

16P1-B6. EM-Wave Absorber Composed of Periodic Patch Antennas Designed for Both H- and V-polarized Waves at 2.4GHz Band
H. Okawa, A. Nishikata
Tokyo Institute of Technology, Japan

[16P2-B] Shielding, Grounding & Materials (2)

16P2-B1. Effect of Height and Width of Pyramid on Temperature Distribution Characteristics of Pyramidal Radiowave Absorbers
S. Imai1, K. Taguchi1, T. Kashiwa1, T. Tabata2, K. Kubo1, E. Satou1
1Kitami Institute of Technology, Japan, 2E&C Engineering Co., Ltd., Japan

S. T. Op ’t Land1, O. V. Tereshchenko2, M. Ramdani1, F. B. J. Leferink2, R. Perdriau1
1Groupe ESEO, France, 2University of Twente, The Netherlands

16P2-B3. Analysis of the Permeability Spectra of Fe-Al-Si Granular Composite Materials
T. Tsutaoka1, H. Kinoshita1, T. Kasagi2, S. Yamamoto3, K. Hatakeyama3, M. Y. Koledintseva4
1Hiroshima University, Japan, 2Tokuyama College of Technology, Japan, 3University of Hyogo, Japan, 4Missouri University of Science & Technology, USA

16P2-B4. Effect of Demagnetizing Field on Frequency Dispersion of Complex Permeability
S. Muroga, M. Yamaguchi
Tohoku University, Japan

16P2-B5. Multilayer Ground Determination from Apparent Resistivities and Impact on Grounding Resistances
G. P. Papaiz-Garbini1, L. Pichon2, M. Cucchiaro1, N. Haddad1
1SNCF Engineering, Electromagnetic Compatibility Service, France, 2LGEP, France

16A1-S1. Numerical Calculation of Electromagnetic Scattering from Multiple Objects by Superposition Solution Combined with MoM — Multilevel Algorithm —
M. Tanaka
Gifu University, Japan

16A1-S2. Scattering Analysis of the Microstrip Array Antenna by Using the PMCHWT-CBFM
T. Tanaka, Y. Nishioka, Y. Inasawa, H. Miyashita
Mitsubishi Electric Corp., Japan

16A1-S3. A Subgridding Technique for the CIP Method
Y. Ando1, T. Hirota2
1The University of Electro-Communications, Japan, 2Simulatio Co. Ltd., Japan

16A1-S4. Estimation of Induced EMF Value in Ground Wire During Ice-Melting Procedure
K. Netreba1, N. Korovkin1, S. Vinogradov1, V. Goncharov1, M. Hayakawa2, A. Repin3, A. Shershnev4, N. Silin5
1St. Petersburg State Polytechnic University, Russia, 2The University of Electro-Communications, Japan, 3Advanced Wireless Communications Research Center and Research Station on Seismo Electromagnetics, Japan, 4Joint-Stock Company High Voltage Direct Current Power Transmission Research Institute, Russia, 5Far Eastern Federal University, Russia

16A1-S5. Pulse Responses in the Dispersion Media
R. Ozaki, T. Yanaka, N. Sugizaki, T. Yamasaki
Nihon University, Japan

16A1-S6. Efficient Reflection/transmission Coefficient by Two-layered Dielectric Slab for Accurate Propagation Analysis
R. Sato1, H. Shirai2
1Niigata University, Japan, 2Chuo University, Japan

[16A2-S] Numerical Modeling (4)

16A2-S1. Comparison of Steady-State Genetic Algorithm and Asynchronous Particle Swarm Optimization on Inverse Scattering of a Partially Immersed Metallic Cylinder
C. H. Sun1, C. H. Chen2, C. H. Huang3, C. L. Li1, E. N. Chiu1, S. L. Lee1
1National Taiwan University of Science and Technology, Taiwan, 2Taipei College of Maritime Technology, Taiwan, 3Tamkang University, Taiwan
16A2-S2. Inverse Scattering Problem of a Two-Dimensional Dielectric Cylinder in Slab Medium
C. H. Chen1, C. H. Huang1, C. H. Sun1, C. L. Li1, P. R. Lai1, G. C. Wang1
1Taipei College of Maritime Technology, Taiwan, 2National Taiwan University of Science and Technology, Taiwan, 3Tamkang University, Taiwan

16P1-S1. Acceleration of Various Direct/Iterative Solvers for MoM by GPU and its Computational Cost
K. Konno1, Q. Chen1, H. Katsuda2
1Tohoku University, Japan, 2NTT Network Innovation Laboratories, Japan

16P1-S2. High Performance Computing Techniques for Efficient 3D Full-Wave Simulation of EMC Problems
I. Hänninen, F. Wolfheimer, A. Barchanski, D. Kostka
CST AG, Germany

16P1-S3. GPU Acceleration on Computational Dosimetry for Rabbit Eyes Exposed to Millimeter Waves
Y. Suzuki1, A. Koike1, M. Takamura1, M. Taki1, M. Kojima2, K. Sasaki3, J. Chakarothai2, K. Wake1, S. Watanabe1
1Tokyo Metropolitan University, Japan, 2Kanazawa Medical University, Japan, 3National Institute of Information and Communications Technology, Japan

16P1-S4. GPU Calculation Algorithm for Radiation from MMIC Passive Components
N. Morita
M Wave Solver Lab., Japan

[Organized Session: 16P2-S] Aerospace EMC

16P2-S1. Electromagnetic Interference Control Techniques for Spacecraft Harness
A. Junge1, J. Wolf1, N. Mora2, F. Rachidi2, P. Pelissou1
1ESA - ESTEC, The Netherlands, 2EPFL, Switzerland, 3Astrium SAS, France

16P2-S2. EMC Issues on Bepicolombo Spacecraft
K. Kempkens
Astrium GmbH, Germany

16P2-S3. Comparison of Rotational-Run vs Hybrid-Measurement by Modelling of a Large Test Object/Satellite
H. Kuegler
IABG, Germany

16P2-S4. Sensitivity to Setup Configuration of the Response of Differential Lines Driven by an External Field
F. Grassi1, S. A. Pignari1, G. Spadacini1, F. Marliani2
1Politecnico di Milano, Italy, 2European Space Agency (ESA), The Netherlands

16P2-S5. VHF Switching DC/DC Converter Electromagnetic Emissions Assessment
C. Delepaut1, J. Wolf1, F. Leroy2, O. Deblecker2, F. Dualibe2, N. Le Gallou1
1European Space Agency, The Netherlands, 2University of Mons, Belgium