Table of Contents

Student Paper Contest ..xxxi
Foreword ...xxxii

MAb-1: Learning and Optimization for Big Data

MAb-1.1: Flexible Selective Parallel Algorithms for Big Data Optimization ...3
Amir Daneshmand, State University of New York at Buffalo, United States; Francisco Facchinei, University of Rome, Italy; Vyacheslav Kungurtsev, Czech Technical University in Prague, Czech Republic; Gesualdo Scutari, University of Buffalo, the State University of New York, United States

MAb-1.2: Fast and Robust Bootstrap in Analysing Large Multivariate Datasets ..8
Shahab Basiri, Esa Ollila, Visa Koivunen, Aalto University, Finland

MAb-1.4: Online Censoring for Large-scale Regressions ..14
Dimitrios Berberidis, University of Minnesota, Twin Cities, United States; Gang Wang, Beijing Institute of Technology, China; Georgios Giannakis, Vassilis Kekatos, University of Minnesota, Twin Cities, United States

MAb-2: EEG Based Brain Computer Interface

MAb-2.3: Single-Trial Identification of Failed Memory Retrieval ..21
Eunho Noh, University of California, San Diego, United States; Matthew Mollison, Tim Curran, University of Colorado Boulder, United States; Virginia de Sa, University of California, San Diego, United States

MAb-2.4: Utilization of Temporal Trial Dependency in ERP based BCIs ...26
Umut Orhan, Honeywell Labs, United States; Delia Fernandez-Canellas, Universitat Politecnica de Catalunya, Spain; Murat Akcakaya, University of Pittsburgh, United States; Dana H. Brooks, Deniz Erdogmus, Northeastern University, United States

MAb-3: Underwater Wireless Networks

Filippo Campagnaro, Federico Favaro, Paolo Casari, Michele Zorzi, University of Padova, Italy

MAb-3.2: Modeling Realistic Underwater Acoustic Networks using Experimental Data ..39
Mandar Chitre, Gabriel Chua, National University of Singapore, Singapore

MAb-3.3: Cramér Rao Lower Bound for Underwater Range Estimation with Noisy Sound Speed44
Hamid Ramezani, Technical University of Delft, Netherlands; Raj Thilak Rajan, Technical University of Delft and Netherlands Institute for Radio Astronomy (ASTRON), Netherlands; Milica Stojanovic, Northeastern University, United States; Geert Leus, Technical University of Delft, Netherlands

MAb-4: Physical Layer Security I

MAb-4.1: On Physical Layer Secrecy of Collaborative Compressive Detection ..51
Bhavya Kailkhura, Thakshila Wimalajeewa, Pramod Varshney, Syracuse University, United States

MAb-4.2: Converse Results for Secrecy Generation over Channels ..56
Himanshu Tyagi, University of California, San Diego, United States; Shun Watanabe, University of Tokushima, Japan

MAb-4.3: Robust Transmission over Wiretap Channels with Secret Keys ...60
Rafael F. Schaefer, H. Vincent Poor, Princeton University, United States

MAb-4.4: Helper-Assisted Asymmetric Two Key Generation ...65
Huishuai Zhang, Yingbin Liang, Syracuse University, United States; Lifeng Lai, Worcester Polytechnic Institute, United States

MAb-5: Image and Video Processing

MAb-5.1: Image Classification by Multi-Kernel Dictionary Learning ..73
Rituparna Sarkar, Sedat Ozer, Kevin Skadron, Scott Acton, University of Virginia, United States
MAb-5.2: Robust Dual-Band MWIR/LWIR Infrared Target Tracking

Chuong Nguyen, Joseph Havlcek, University of Oklahoma, United States; Guoliang Fan, Oklahoma State University, United States; John Caulfield, Cyan Systems, United States; Marios Pattichis, University of New Mexico, United States

MAb-5.3: Crowdsourced Study of Subjective Image Quality

Deepthi Ghadiyaram, Alan Bovik, University of Texas at Austin, United States

MAb-5.4: Detecting Coronal Holes for Solar Activity Modeling

Marios Pattichis, Venkatesh Jatla, University of New Mexico, United States; Rachel Hock, Carl Henney, Charles Arge, AFRL/RVBS Space Vehicles Directorate, United States

MAb-6: Sparse Estimation and Learning in Multi-Channel and Array Systems

MAb-6.1: Characterization of Orthogonal Subspaces for Alias-Free Reconstruction of Damped Complex Exponential Modes in Sparse Arrays

Pooria Pakrooh, Ali Pezeshki, Louis L. Scharf, Colorado State University, United States

MAb-6.2: Exploiting Sparsity During the Detection of High-Order QAM Signals in Large Dimension MIMO Systems

Oleg Tanchuk, Bhaskar Rao, University of California, San Diego, United States

MAb-6.3: Structured Sparse Representation with Low-Rank Interference

Minh Dao, Yuanming Suo, Sang (Peter) Chin, Trac Tran, Johns Hopkins University, United States

MAb-6.4: Gridless Methods for Underdetermined Source Estimation

Piya Pal, University of Maryland, College Park, United States; P. P. Vaidyanathan, California Institute of Technology, United States

MAb-7: Architectures for Detection and Decoding

MAb-7.1: A Reduced-Complexity Iterative Scheme for Decoding Quasi-Cyclic Low-Density Parity-Check Codes

Shu Lin, Keke Liu, Juane Li, Khaled Abdel-Ghaffar, University of California, Davis, United States

MAb-7.2: Efficient Adaptive List Successive Cancellation Decoder for Polar Codes

Chuan Zhang, National Mobile Communications Research Laboratory, China; Zhongfeng Wang, Broadcom Corporation, United States; Xiaohu You, National Mobile Communications Research Laboratory, China; Bo Yuan, University of Minnesota, Twin Cities, United States

MAb-7.3: Decoder Diversity Architectures for Finite Alphabet Iterative Decoders

Bane Vasic, University of Arizona, United States; David Declercq, Universite de Cergy-Pontoise, France; Shiva Planjery, Codelucida, United States

MAb-7.4: Asynchronous Design for Precision-Scaleable Energy-Efficient LDPC Decoder

Jingwei Xu, Tiben Che, Ehsan Rohani, Gwan Choi, Texas A&M University, United States

MAb-8: Active Sensing and Target Recognition

Pawan Setlur, Wright State Research Institute, United States; Muralidhar Rangaswamy, Air Force Research Laboratory, United States

MAb-8.2: The Generalized Sinusoidal Frequency Modulated Waveform for High Duty Cycle Active Sonar

David Hague, John Buck, University of Massachusetts Dartmouth, United States

MAb-8.3: Concurrent Exploration of MIMO Radar and Co-Prime Array for Faster and Higher Resolution Scanning

Xiaomeng Wang, Shuo Yang, Xin Wang, Xuehong Lin, Stony Brook University, United States

MAb-8.4: On Bayesian Transmit Signal Design using Information Theory

Mir H. Mahmood, NextNav LLC, United States; Mark R. Bell, Purdue University, United States

MAb-8.5: Improved Distributed Automatic Target Recognition Performance by Exploiting Dominant Scatterer Spatial Diversity

John Wilcher, William Melvin, Georgia Tech Research Institute, United States; Aaron Lanterman, Georgia Institute of Technology, United States

MAb-8.6: Semi-Supervised Classification of Terrain Features in Polarmetric SAR Images using H/A/alpha and the General Four-Component Scattering Power Decompositions

Stephen Dauphin, Derek West, Robert Riley, Katherine Simonson, Sandia National Laboratories, United States
Mab-8.8: Limitations and Capabilities of the Slanted Spectrogram Analysis Tool for SAR-Based Detection of Multiple Vibrating Targets
Adebello Jelili, Balu Santhanam, Majeed Hayat, University of New Mexico, United States

Mab-8: Physiological Signal Processing
Mab-8.1: Sample-Based Cross-Frequency Coupling Analysis with CFAR Detection
Charles Creusere, Nathan McRae, Philip Davis, New Mexico State University, United States
Mab-8.2: Classification of Human Viewers using High-Resolution EEG with SVM
Philip Davis, Charles Creusere, Jim Kroger, New Mexico State University, United States
Mab-8.3: Activity Recognition using Statistical Gait Parameters from a Single Accelerometer
Alessio Medda, Georgia Tech Research Institute, United States; Andrew Vaughan, Pindrop Security, United States; Brian Liu, Shean Phelps, Georgia Tech Research Institute, United States
Mab-8.4: Intra-Patient and Inter-Patient Seizure Prediction from Spatial-Temporal EEG

Features
Shuoxin Ma, Daniel Bliss, Arizona State University, United States
Mab-8.5: Effective Connectivity in fMRI from Mutual Prediction Approach
Marisel Villafañe-Delgado, Selin Aviyente, Michigan State University, United States
Mab-8.6: Whitening 1/f-type Noise in Electroencephalogram Signals for Steady-State
Visual Evoked Potential Brain-Computer Interfaces
Alan Paris, Azadeh Yosoughi, George K. Atia, University of Central Florida, United States
Mab-8.7: Adaptive Learning of Behavioral Tasks for Patients with Parkinson’s Disease
Using Signals from Deep Brain Stimulation
Nazanin Zaker, University of Denver, United States; Arindam Dutta, Alexander Maurer, Arizona State University, United States; Jun Zhang, University of Denver, United States; Sara Hanrahan, Adam Hebb, Colorado Neurological Institute, United States; Narayan Kovvali, Antonia Papandreou-Suppappola, Arizona State University, United States

Mab-8: Relaying
Mab-8.1: Performance Analysis of Fixed Gain MIMO AF Relaying with Co-Channel Interferences
Min Lin, Min Li, PLA University of Science and Technology, China; Wei-Ping Zhu, Concordia University, Canada; Kang An, PLA University of Science and Technology, China
Mab-8.2: On Carrier-Cooperation in Parallel Gaussian MIMO Relay Channels with Partial Decode-and-Forward
Christoph Hellings, Wolfgang Utschick, Technische Universität München, Germany
Mab-8.3: Enhanced Relay Cooperation via Rate Splitting
Ivana Maric, Dennis Hui, Ericsson, United States
Mab-8.4: Alternate versus Simultaneous Relaying in MIMO Cellular Relay Networks: A Degrees of Freedom Study
Aya Salah, Amr El-Keyi, Nile University, Egypt; Mohammed Nafie, Cairo University, Egypt
Mab-8.5: Low-Complexity Two-Way AF MIMO Relay Strategy for Wireless Relay Networks
Kanghee Lee, Republic of Korea Air Force, Republic of Korea; Visvakumar Aravinthan, Sungmoon Moon, Wichita State University, United States; Jongbum Ryou, Sungo Kim, Changki Moon, Inha Hyun, Republic of Korea Air Force, Republic of Korea
Mab-8.6: Blind Self-Interference Cancellation for Full-Duplex Relays
Gustavo Gonzalez, Fernando Gregorio, Juan Cousseau, CONICET - Universidad Nacional del Sur, Argentina

Mab-8: Synchronization and Channel Estimation
Mab-8.1: Frequency Tracking with Intermittent Wrapped Phase Measurement Using the Rao-Blackwellized Particle Filter
Maryam Eslami Rasekh, Upamanyu Madhow, University of California Santa Barbara, United States; Raghuraman Mudumbai, University of Iowa, United States
Mab-8.2: Improving IEEE 1588v2 Time Synchronization Performance with Phase Locked Loop
Rico Jahja, Saurav Dahal, Suk-seung Hwang, Goo-Rak Kwon, Jae-young Pyun, Seokjoo Shin, Chosun University, Republic of Korea
MAb-8.4: An Improved ESPRIT-Based Blind CFO Estimation Algorithm In OFDM Systems 258
 Yen-Chang Pan, See-May Phoong, National Taiwan University, Taiwan; Yuan-Pei Lin, National Chiao Tung University, Taiwan
MAb-8.5: Blind, Low Complexity Estimation of Time and Frequency Offsets in OFDM Systems 263
 Rohan Ramlall, University of California, Irvine, United States
MAb-8.6: Estimation of NLOS Optical Wireless Communication Channels with Laser Transmitters 268
 Xiaoke Zhang, Chen Gong, Zhengyuan Xu, University of Science and Technology of China, China
MAb-8.7: Channel Estimation and Precoder Design for Millimeter-Wave Communications: The Sparse Way 273
 Philip Schniter, Ohio State University, United States; Akbar Sayeed, Wisconsin, United States

MPa-1: Big Data Analytics
MPa-1.1: Universal Sequential Outlier Hypothesis Testing .. 281
 Yun Li, University of Illinois at Urbana-Champaign, United States; Sirin Nitinawarat, Qualcomm Technologies, Inc., United States; Venugopal Veeravalli, University of Illinois at Urbana-Champaign, United States
MPa-1.4: Quickest Sequential Search Over Correlated Sequences .. 286
 Javad Heydari, Ali Tajer, RPI, United States

MPa-2: Neural Engineering and Signal Processing
MPa-2.3: A Review of Source Separation and Source Localization Approaches in Peripheral Nerves 293
 Jose Zariffa, Toronto Rehabilitation Institute - University Health Network, Canada

MPa-3: Compressed Sensing I
MPa-3.1: Robust Line Spectral Estimation .. 301
 Gongguo Tang, Colorado School of Mines, United States; Parikshit Shah, Badri Bhaskar, University of Wisconsin-Madison, United States; Benjamin Recht, University of California, Berkeley, United States
MPa-3.2: On the Applicability of Matrix Completion on MIMO Radars .. 306
 Shunqiao Sun, Athina Petropulu, Rutgers University, United States
MPa-3.3: Subspace Learning from Extremely Compressed Measurements .. 311
 Martin Azizyan, Akshay Krishnamurthy, Aarti Singh, Carnegie Mellon University, United States
MPa-3.4: Analysis of Misfocus Effects in Compressive Optical Imaging ... 316
 Wenbing Dang, Ali Pezeshki, Randy Bartels, Colorado State University, United States

MPa-4: Underwater Acoustic Communications and Networking
MPa-4.1: Experimental Study of Secret Key Generation in Underwater Acoustic Channels 323
 Yi Huang, Shengli Zhou, Zhijie Shi, University of Connecticut, United States; Lifeng Lai, Worcester Polytechnic Institute, United States
MPa-4.2: Random Linear Packet Coding: Joint Power and Rate Control ... 328
 Rameez Ahmed, Milica Stojanovic, Northeastern University, United States
MPa-4.3: Experimental Study on the Difference between Acoustic Communication Channels in Freshwater Rivers/Lakes and in Oceans 333
 Wensheng Sun, Zhaohui Wang, Mohsen Jamalabdollahi, Seyed Zekavat, Michigan Technological University, United States
MPa-4.4: Index Modulated OFDM with ICI Self-Cancellation in Underwater Acoustic Communications 338
 Miaowen Wen, South China University of Technology, China; Yuke Li, Chinese Academy of Sciences, China; Xiang Cheng, Peking University, China; Liuqing Yang, Colorado State University, United States

MPa-5: Smart Grid: Learning and Optimization
MPa-5.1: Dynamic Attacks on Power Systems Economic Dispatch ... 345
 Jinsub Kim, Lang Tong, Robert Thomas, Cornell University, United States
MPa-5.2: Line Outage Detection in Power Transmission Networks Via Message Passing .. 350
Algorithms

Jianshu Chen, University of California, Los Angeles, United States; Yue Zhao, Stony Brook University, United States; Andrea Goldsmith, Stanford University, United States; H. Vincent Poor, Princeton University, United States

MPa-5.3: Online Optimal Power Flow With Renewables .. 355
Seung-Jun Kim, University of Maryland, Baltimore County, United States; Georgios Giannakis, University of Minnesota, United States; Kwang Y. Lee, Baylor University, United States

MPa-6: Array Calibration
MPa-6.1: Bilinear Compressed Sensing for Array Self-Calibration .. 363
Benjamin Friedlander, University of California, Santa Cruz, United States; Thomas Strohmer, University of California, Davis, United States

MPa-6.2: Calibrating Nested Sensor Arrays with Model Errors ... 368
Keyong Han, Peng Yang, Arve Nehorai, Washington University in St. Louis, United States

MPa-6.3: A New Method for DOA Estimation in the Presence of Unknown Mutual Coupling .. 373
of an Antenna Array
Eric Wei-Jhong Ding, Borching Su, National Taiwan University, Taiwan

MPa-6.4: An Angular Sampling Theorem for the Usable Frequency Range of Antenna Array .. 377
Calibration Measurements
Chung-Cheng Ho, Scott Douglas, Southern Methodist University, United States

MPa-7: Resource-aware and Domain-specific Computing
MPa-7.1: Partial Expansion of Dataflow Graphs for Resource-Aware Scheduling of Multicore .. 385
Signal Processing Systems

George Zaki, IGI Technologies, United States; William Plishker, Shuvra Bhattacharyya, University of Maryland, College Park, United States; Frank Fruth, Texas Instruments, United States

MPa-7.2: Performance Analysis of Weakly-Consistent Scenario-Aware Dataflow Graphs .. 393
Marc Geilen, TU Eindhoven, Netherlands; Joachim Falk, University of Erlangen-Nuremberg, Germany; Christian Haubelt, Universität Rostock, Germany; Twan Basten, TU Eindhoven, Netherlands; Bart Theelen, TNO-ESI, Netherlands; Sander Stuijk, TU Eindhoven, Netherlands

MPa-7.3: Application-driven Reconfiguration of Shared Resources for Timing Predictability ... 398
of MPSoC Platforms
Deepak Gangadharan, Ericles Sousa, Vahid Lari, Frank Hannig, Juergen Teich, University of Erlangen-Nuremberg, Germany

MPa-7.4: Accelerating the Dynamic Time Warping Distance Measure using Logarithmic Arithmetic ... 404
Joseph Tarango, University of California, Riverside / Intel, United States; Eamonn Keogh, Philip Brisk, University of California, Riverside, United States

MPa-8: Source Separation and Array Processing
MPa-8.1: Forward - Backward Greedy Algorithms for Signal Demixing .. 437
Nikhil Rao, Parikshit Shah, Stephen Wright, University of Wisconsin, United States

MPa-8.2: An Extended Family of Bounded Component Analysis Algorithms ... 442
Huseyin Atahan Inan, Alper Tunga Erdogan, Koc University, Turkey

MPa-8.3: Source Separation in Noisy and Reverberant Environment using Miniature Microphone Array ... 446
Shuo Li, Milutin Stanacevic, Stony Brook University, United States

MPa-8.4: Competitive Algorithm Blending for Enhanced Source Separation ... 450
Keith Gilbert, Karen Payton, University of Massachusetts Dartmouth, United States

MPa-8.5: Design of Coprime DFT Arrays and Filter Banks .. 455
Chun-Lin Liu, P. P. Vaidyanathan, California Institute of Technology, United States

MPa-8.6: The Differential Geometry of Asymptotically Efficient Subspace Estimation ... 460
Thomas Palka, Richard Vaccaro, University of Rhode Island, United States

MPa-8.7: Effects of Network Topology on the Conditional Distributions of Surrogated Generalized Coherence Estimates
Lauren Crider, Douglas Cochran, Arizona State University, United States
MPa-8.8: Maximum Energy Sequential Matrix Diagonalisation for Parahermitian Matrices

Jamie Corr, Keith Thompson, Stephan Weiss, University of Strathclyde, United Kingdom; John McWhirter, Cardiff University, United Kingdom; Ian Proudler, Loughborough University, United Kingdom

MPa-8: Bioinformatics and Medical Imaging
MPa-8.3: An Efficient ADMM-based Sparse Reconstruction Strategy for Multi-Level Sampled MRI

Joshua Trzasko, Eric Borisch, Paul Weavers, Armando Manduca, Phillip Young, Stephen Riederer; Mayo Clinic, United States
MPa-8.4: Multiscale Functional Networks in Human Resting State Functional MRI

Alessio Medda, Georgia Tech Research Institute, United States; Jacob Billings, Emory University, United States; Shella Keilholz, Georgia Institute of Technology / Emory University, United States
MPa-8.5: Piecewise Linear Slope Estimation

Atul Ingle, William Sethares, Tony Varghese, James Bucklew, University of Wisconsin-Madison, United States
MPa-8.6: Fast Magnetic Resonance Parametric Imaging via Structured Low-Rank Matrix Reconstruction

Parisa Amiri Eliasi, New York University, Polytechnic School of Engineering, United States; Li Feng, Ricardo Otazo, New York University, School of Medicine, United States; Sundee K. Rangan, New York University, Polytechnic School of Engineering, United States
MPa-8.7: A Signal Model for Forensic DNA Mixtures

Ullrich Mönich, Massachusetts Institute of Technology, United States; Catherine Grigac, Boston University, United States; Viveck Cadambe, Pennsylvania State University, United States; Yonglin Wu, Massachusetts Institute of Technology, United States; Genevieve Wellner, Boston University, United States; Ken Duffy, National University of Ireland Maynooth, Ireland; Muriel Médard, Massachusetts Institute of Technology, United States

MPa-8: Image and Speech Processing
MPa-8.1: Acoustic Echo and Noise Cancellation using Kalman Filter in a Modified GSC Framework

Subhash Tanan, Karan Nathwani, Ayush Jain, Rajesh M. Hegde, Indian Institute of Technology Kanpur, India; Ruchi Rani, Abhijit Tripathy, Samsung R&D Institute India Delhi, India
MPa-8.2: Paper Texture Classification via Multi-Scale Restricted Boltzman Machines

Arash Sangari, William Sethares, University of Wisconsin-Madison, United States
MPa-8.3: Regularized Logistic Regression Based classification for Infrared Images

Golrokh Mirzaei, Mohsin M. Jamali, University of Toledo, United States; Peter Gorsevski, Joseph Frizad, Verner Bingman, Bowling Green State University, United States
MPa-8.4: Localizing Near and Far Field Acoustic Sources with Distributed Microphone Arrays

Martin Weiss Hansen, Jesper Rindom Jensen, Mads Græshøj Christensen, Aalborg University, Denmark
MPa-8.5: Graph Wavelet Transform: Application to Image Segmentation

Alp Ýzdemir, Selin Aviyente, Michigan State University, United States
MPa-8.6: Histogram Transform Model Using MFCC Features for Text-Independent Speaker Identification

Hong Yu, Zhanyu Ma, Beijing University of Posts and Telecommunications, China; Minyue Li, Jun Guo, Google, Inc., Sweden

MPa-8: Digital Communications
MPa-8.1: High-throughput DOCSIS Upstream QC-LDPC Decoder

Michael Wu, Bei Yin, Eric Miller, Rice University, United States; Christopher Dick, Xilinx Incorporated, United States; Joseph R. Cavallaro, Rice University, United States
MPa-8.2: On the Performance of LDPC and Turbo Decoder Architectures with Unreliable Memories

Joao Andrade, Instituto de Telecomunicações, Universidade de Coimbra, Portugal; Aida Vasoughi, Guohui Wang, Rice University, United States; Georgios Karakonstantis, Andreas Burg, Telecommunication Circuits Lab, EPFL, Switzerland; Gabriel Falcao, Vitor Silva, Instituto de Telecomunicações, Universidade de Coimbra, Portugal; Joseph R. Cavallaro, Rice University, United States

MPa-8.3: Successive Cancellation List Polar Decoder using Log-likelihood Ratios

Bo Yuan, Keshab K. Parhi, University of Minnesota, Twin Cities, United States

MPa-8.4: 60 GHz Synthetic Aperture Radar for Short-Range Imaging: Theory and Experiments

Babak Mamandipoor, University of California, Santa Barbara, United States; Greg Malysa, Amin Arbabian, Stanford University, United States; Upamanyu Madhow, University of California, Santa Barbara, United States; Karam Noujeim, Anritsu Co., United States

MPa-8.5: A Systematic Procedure for Deriving Block-Parallel, Power Efficient, Digital Filter Architectures for High-Speed Data Conversion

Paraskevas Argyropoulos, Hanoch Lev-Ari, Northeastern University, United States

MPa-8.6: Distributed Synchronization of a testbed network with USRP N200 radio boards

Gilberto Berardinelli, Jakob L. Buthler, Fernando M. L. Tavares, Oscar Tonelli, Dereje A. Wassie, Farhood Hakkamaneshi, Troels B. Sørensen, Preben Mogensen, Aalborg University, Denmark

MPa-8.7: Design Study of a Short-Range Airborne UAV Radar for Human Monitoring

Sevgi Zubeysel Gur, Unver Kaynak, Bertan Özkan, Ozan Can Kocaman, Firat Kiyici, Bürkan Tekeli, TOBB University of Economics and Technology, Turkey

MPa-8.8: Max-Min Fairness in Compact MU-MIMO Systems: Can the Matching Network Play a Role?

Yahia Hassan, Armin Wittneben, Tim Rueegg, ETH Zurich, Switzerland

MPa-8: Network Resource Allocation and Localization

MPa-8.1: Optimal Scheduling Policies and the Performance of the CDF Scheduling

Phuong Bang Nguyen, Bhaskar Rao, University of California, San Diego, United States

MPa-8.2: Joint Interference and User Association Optimization in Cellular Wireless Networks

Changkyu Kim, Russell Ford, Sundeep Rangan, New York University, Polytechnic School of Engineering, United States

MPa-8.3: Throughput Maximization in Wireless Powered Communication Networks with Energy Saving

Rui Wang, Donald Richard Brown III, Worcester Polytechnic Institute, United States

MPa-8.4: Optimal Flow Bifurcation in Networks with Dual Base Station Connectivity and Non-ideal Backhaul

Amitav Mukherjee, Ericsson Research, United States

MPa-8.5: Joint Sequential Target State Estimation and Clock Synchronization in Wireless Sensor Networks

Jichuan Li, Arye Nehorai, Washington University in St. Louis, United States

MPa-8.7: Statistical Scheduling of Economic Dispatch and Energy Reserves of Hybrid Power Systems with High Renewable Energy Penetration

Yi Gu, Huaiqiang Jiang, University of Denver, United States; Yingchen Zhang, National Renewable Energy Laboratory, United States; David Wenzhong Gao, University of Denver, United States

MPb-1: Tensor-Based Signal Processing

MPb-1.1: Memory-Efficient Parallel Computation of Tensor and Matrix Products for Big Tensor Decomposition

Niranjay Ravindran, Nicholas Sidiropoulos, Shaden Smith, George Karypis, University of Minnesota, United States

MPb-1.2: Recent Advances on Tensor Models and their Relevance for Multidimensional Data Processing

Julien Marot, Aix Marseille Université - Institut Fresnel, France; Salah Bourennane, Ecole Centrale Marseille - Institut Fresnel, France
MPb-1.3: Tensor-Based Channel Estimation for Non-Regenerative Two-Way Relaying ...591
Networks with Multiple Relays
Jianshu Zhang, Kristina Naskovska, Martin Haardt, Ilmenau University of Technology, Germany
MPb-1.4: Fast Non-Unitary Simultaneous Diagonalization of Third-Order Tensors ...596
Victor Maurandi, Eric Moreau, University of Toulon, France

MPb-2: Brain Connectomics
MPb-2.1: A Hierarchy of Cognitive Brain Networks Revealed by Multivariate Performance Metrics
Stephen C. Strother, Saman Sarraf, Cheryl Grady, Baycrest, Canada
MPb-2.2: Learning with Multi-Site fMRI Graph Data
Gabriel Castrillon, Seyed-Ahmad Ahmadi, Nassir Navab, Technische Universität München, Germany; Jonas Richardi, Stanford University, United States
MPb-2.3: A Hebbian/Anti-Hebbian Network for Online Sparse Dictionary Learning Derived from Symmetric Matrix Factorization
Tao Hu, Texas A&M University, United States; Cengiz Pehlevan, Howard Hughes Medical Institute, United States; Dmitri Chklovskii, Simons Foundation, United States
MPb-2.4: Eigenconnectivities of Dynamic Functional Networks: Consistency Across Subjects
Nora Leonardi, Dimitri Van De Ville, École Polytechnique Fédérale de Lausanne / University of Geneva, Switzerland

MPb-3: Compressed Sensing II
MPb-3.1: Filter Design for a Compressive Sensing Delay and Doppler Estimation Framework
Misagh Khayambashi, A. Lee Swindlehurst, University of California, Irvine, United States
MPb-3.2: Adaptive Sequential Compressive Detection
Davood Mardani, George K. Atia, University of Central Florida, United States
MPb-3.3: A Recursive Way for Sparse Reconstruction of Parametric Spaces
Oguzhan Teke, Bilkent University, Turkey; Ali Cafer Gurbuz, TOBB University of Economics and Technology, Turkey; Orhan Arikan, Bilkent University, Turkey
MPb-3.4: Subspace based Low Rank and Joint Sparse Matrix Recovery
Sampurna Biswas, Sunrita Poddar, Soura Dasgupta, Raghuraman Mudumbai, Mathews Jacob, University of Iowa, United States

MPb-4: Massive MIMO I
MPb-4.1: Jsdm and Multi-Cell Networks: Handling Inter-Cell Interference Through Long-Term Antenna Statistics
Ansuman Adhikary, Ericsson, United States; Giuseppe Caire, Technical University Berlin, Germany
MPb-4.2: Enabling Massive MIMO Systems in the FDD Mode thanks to D2D Communications
Haifan Yin, Laura Cottatellucci, David Gesbert, Eurecom, France
MPb-4.3: Massive MIMO As a Cyber-Weapon
Marcus Karlsson, Linköping University, Sweden; Erik G. Larsson, Linkoping University, Sweden
MPb-4.4: Large Antenna Array and Propagation Environment Interaction
Xiang Gao, Meifang Zhu, Fredrik Rusek, Fredrik Tufvesson, Ove Edfors, Lund University, Sweden

MPb-5: Image and Video Quality
MPb-5.1: Real-Time 3D Rotation Smoothing for Video Stabilization
Chao Jia, Zeina Sinno, Brian Evans, University of Texas at Austin, United States
MPb-5.2: Joint Source-Channel Rate-Distortion Optimization with Motion Information Sharing for H.264/AVC Video-Plus-Depth Coding
Yueh-Lun Chang, University of California, San Diego, United States; Yuan Zhang, Communication University of China, China; Pamela Cosman, University of California, San Diego, United States
MPb-5.3: Image Assisted Upsampling of Depth Map via Nonlocal Similarity
Wentian Zhou, Xin Li, Daryl Reynolds, West Virginia University, United States
MPb-5.4: Video De-Interlacing Using Asymmetric Nonlocal-Means Filtering
Roozbeh Dehghannasiri, Texas A&M University, United States
TAa-3: Distributed Optimization over Networks

TAa-3.1: The ADMM Algorithm for Distributed Averaging: Convergence Rates and Optimal Parameter Selection

Eunhanna Ghadimi, André Teixeira, Royal Institute of Technology-KTH, Sweden; Michael Rabbat, McGill University, Canada; Mikael Johansson, Royal Institute of Technology-KTH, Sweden

TAa-3.2: Performance Analysis of Multitask Diffusion Adaptation Over Asynchronous Networks

Roula Nassif, Cédric Richard, André Ferrari, Université de Nice Sophia-Antipolis, France; Ali H. Sayed, University of California, Los Angeles, France

TAa-3.3: On the Convergence of an Alternating Direction Penalty Method for Nonconvex Problems

Sindri Magnússon, P. Chathuranga Weeraddana, KTH Royal Institute of Technology, Sweden; Michael Rabbat, McGill University, Canada; Carlo Fischione, KTH Royal Institute of Technology, Sweden

TAa-3.4: Decentralized Regression with Asynchronous Sub-Nyquist Sampling

Hoi To Wai, Anna Scaglione, University of California, Davis, United States

TAa-4: Enhanced MIMO for LTE-A and 5G Systems

TAa-4.1: 3D Channel Models for Elevation Beamforming and FD-MIMO in LTE-A and 5G

Young-Han Nam, Yang Li, Jianzhong (Charlie) Zhang, Samsung, United States

TAa-4.2: Advanced Antenna Solutions for 5G Wireless Access

Erik Dahlman, Stefan Parkvall, David Astely, Hugo Tullberg, Ericsson, Sweden

TAa-4.3: Multi-Layer Precoding for Full-Dimensional Massive MIMO Systems

Ahmed Alkhateeb, University of Texas at Austin, United States; Geert Leus, Delft University of Technology, Netherlands; Robert W. Heath Jr., University of Texas at Austin, United States

TAa-4.4: Massive MIMO for mmWave systems

Frederick Vook, Timothy Thomas, Eugene Visotsky, Nokia Networks, United States

TAa-5: Recent Advances in Speech Coding

TAa-5.1: Large Margin Nearest Neighborhood Metric Learning for I-Vector Based Speaker Verification

Waquar Ahmad, Harish Karnick, Rajesh M. Hegde, Indian Institute of Technology Kanpur, India

TAa-5.2: Performance Enhanced Scalable Wideband Speech Coding for IP Networks

Koji Seto, Tokunbo Ogunfunmi, Santa Clara University, United States

TAa-5.3: Adaptive Post-Filtering Controlled by Pitch Frequency for CELP-based Speech Coder

Hironobu Chiba, University of Tsukuba, Japan; Yutaka Kamamoto, Takehiro Moriya, Noboru Harada, Nippon Telegraph and Telephone Corp., Japan; Shigeki Miyabe, Takeshi Yamada, Shoji Makino, University of Tsukuba, Japan

TAa-5.4: Classification of Sonorant Consonants Utilizing Empirical Mode Decomposition

Ashkan Ashrafi, San Diego State University, United States; Stanley Wenndt, Air Force Research Laboratory, United States

TAa-6: Compressive Methods in Radar

TAa-6.1: Sparse Arrays, MIMO, and Compressive Sensing for GMTI Radar

Haley Kim, Alexander Haimovich, New Jersey Institute of Technology, United States; Mark Govoni, J2WD US Army, United States

TAa-6.2: Efficient Linear Time-Varying System Identification Using Chirp Waveforms

Andrew Harms, Duke University, United States; Waheed Bajwa, Rutgers University, United States; Robert Calderbank, Duke University, United States

TAa-6.3: Robust Multipath Exploitation Radar Imaging in Urban Sensing Based on Bayesian Compressive Sensing

Qisong Wu, Yimin Zhang, Moeness Amin, Fauzia Ahmad, Villanova University, United States

TAa-6.4: Joint Sparse and Low-rank Model for Radio-Frequency Interference Suppression in Ultra-wideband Radar Applications

Lam Nguyen, Army Research Laboratory, United States; Minh Dao, Trac Tran, Johns Hopkins University, United States
TAa-7: Computer Arithmetic I
TAa-7.4: Optimizing DSP Circuits by a New Family of Arithmetic Operators ...871
 Javier Hormigo, Julio Villalba, Universidad de Malaga, Spain

TAa-8: Adaptive Filtering
TAa-8.1: On Component-Wise Conditionally Unbiased Linear Bayesian Estimation...879
 Mario Huemer, Oliver Lang, Johannes Kepler University Linz, Austria
TAa-8.2: Performance of Proportionate-type NLMS Algorithm with Gain Allocation ...886
 Proportional to the Mean Square Weight Deviation
 Kevin Wagner, Naval Research Laboratory, United States; Milos Doroslovacki, George Washington University, United States
TAa-8.4: An Efficient Least Mean Squares Algorithm based on q-Gradient ...891
 Ubaid Al-Saggaf, Muhammad Moinuddin, King Abdulaziz University, Saudi Arabia; Azzedine Zerguine, King Fahd University of Petroleum and Minerals, Saudi Arabia
TAa-8.5: Optimal Step Size Control for Acoustic Echo Cancellation ...895
 Khosrow Lashkari, Seth Suppappola, Cirrus Logic, United States
TAa-8.6: Stochastic Gradient Algorithm Based on an Improved Higher Order Exponentiated Error Cost Function
 Umair bin Mansoor, Syed Asad, Azzedine Zerguine, King Fahd University of Petroleum and Minerals, Saudi Arabia
TAa-8.7: Spectral Multiscale Coverage with the Feature Aided CPHD Tracker ...904
 Ramona Georgescu, Shuo Zhang, Amit Surana, Alberto Speranzon, Ozgur Erdinc, United Technologies Research Center, United States
TAa-8.8: Adaptive Sampling with Sensor Selection for Target Tracking in Wireless Sensor Networks
 Abdulkadir Kose, Engin Masazade, Yeditepe University, Turkey

TAa-8: Image Processing I
TAa-8.1: Second Order Model Deviations of Local Gabor Features for Texture Classification ...917
 David Picard, Inbar Fijalkow, ETIS - UMR 8051 / ENSEA, Université Cergy-Pontoise, CNRS, France
TAa-8.2: Weighted Boundary Matching Error Concealment for HEVC Using Block Partition Decisions
 Yan-Tsung Peng, Pamela Cosman, University of California, San Diego, United States
TAa-8.3: Reducing the Latency and Improving the Resolution of Vector Quantization with Anamorphic Stretch Transform
 Haochen Yuan, Mohammad H. Asghari, Bahram Jalali, University of California, Los Angeles, United States
TAa-8.4: Supervised Facial Recognition based on Multiresolution Analysis with Radon Transform
 Ahmed Aldhahab, George K. Atia, Wasfy Mikhael, University of Central Florida, United States
TAa-8.5: On Compensating Unknown Pixel Behaviors for Image Sensors with Embedded Processing
 William Guicquero, Michele Benetti, Arnaud Peizerat, Antoine Dupret, Commissariat à l’énergie atomique et aux énergies alternatives, France; Pierre Vanderghynst, École Polytechnique Fédérale de Lausanne, Switzerland
TAa-8.6: Representative Selection for Big Data via Sparse Graph and Geodesic Grassmann Manifold Distance
 Chinh Dang, Mohammed Al-Qizwini, Hayder Radha, Michigan State University, United States
TAa-8.7: A Generic Particle Filtering Approach for Multiple Polyhedral Object Tracking in a Distributed Active Sensor Network
 Benoit Fortin, Regis Lherbier, Jea-Charles Noyer, University Littoral Cote d’Opale, France
TAa-8.8: Spatial Domain Synthetic Scene Statistics
 Debarati Kundu, Brian Evans, University of Texas at Austin, United States
TAa-8: Channel Estimation and MIMO Feedback
TAa-8.1: Channel Estimation in Millimeter Wave MIMO Systems with One-Bit Quantization ... 957
Jianhua Mo, University of Texas at Austin, United States; Philip Schniter, Ohio State University, United States; Nuria Prelcic, Universidade de Vigo, Spain; Robert W. Heath Jr., University of Texas at Austin, United States
TAa-8.2: Maximum-Likelihood Joint Channel Estimation and Data Detection for Space Time Block Coded MIMO Systems 962
Haider Alshamary, Weiyu Xu, University of Iowa, United States
TAa-8.3: Cramer-Rao Bound for Blind Channel Estimation in Cyclic Prefixed MIMO-OFDM Systems With Few Received Symbols 966
Borching Su, Kai-Han Tseng, National Taiwan University, Taiwan
TAa-8.4: Efficient MIMO Sparse Channel Estimation Using LTE Sounding Reference Signal .. 971
Jeng-Kuang Hwang, Jen-Hao Liu, Chien-Min Chen, Chuan-Shun Lin, Yuan-Ze University, Taiwan
TAa-8.5: Impact of Received Signal on Self-interference Channel Estimation and Achievable Rates in In-band Full-duplex Transceivers 975
Dani Korpi, Lauri Anttila, Mikko Valkama, Tampere University of Technology, Finland
TAa-8.6: MIMO Nullforming with RVQ Limited Feedback and Channel Estimation Errors ... 983
Donald Richard Brown III, Worcester Polytechnic Institute, United States; David Love, Purdue University, United States
TAa-8.7: Limited Feedback in OFDM Systems for Combating ISI/ICI Caused by Insufficient Cyclic Prefix Length 988
Erich Zoechmann, Stefan Pratschner, Stefan Schwarz, Markus Rupp, Vienna University of Technology, Austria
TAa-8.8: Frugal Channel Tracking for Transmit Beamforming .. 993
Omar Mehanna, Nicholas Sidiropoulos, University of Minnesota, United States

TAa-8: Signal Processing for Communications
TAa-8.1: Energy-Efficient Secure Communications in MISO-SE Systems ... 1001
Alessio Zappone, Pin-Hsun Lin, Eduard A. Jorswieck, TU Dresden, Germany
TAa-8.2: Distinguishing BFSK from QAM and PSK by Sampling Once per Symbol ... 1006
Mohammad Bari, Milos Doroslovacki, George Washington University, United States
TAa-8.3: Quadratic Program Solution of Communication Links Under Jamming .. 1011
Koorosh Firouzbakht, Guevara Noubir, Masoud Salehi, Northeastern University, United States
TAa-8.4: An Iterative Soft Decision Based Adaptive K-best Decoder Without SNR Estimation ... 1016
Mehnaz Rahman, Ehsan Rohani, Gwan Choi, Texas A&M University, United States
TAa-8.5: MMSE Scaling Enhances Performance of Practical Lattice Codes .. 1021
Nuwan Ferdinand, University of Oulu, Finland; Matthew Nokleby, Duke University, United States; Brian Kurkoski, Japan Advanced Institute of Science and Technology, Japan; Behnaam Aazhang, Rice University, United States
TAa-8.6: RLS-Based Frequency-domain DFE for Uplink SC-FDMA ... 1026
Naveed Iqbal, Azzedine Zerguine, King Fahd University of Petroleum and Minerals, Saudi Arabia; Naofal Al-Dhahir, University of Texas at Dallas, United States
TAa-8.7: Reduced-State Cyclic Viterbi Receiver for Localized SC-FDMA Uplink System .. 1030
Jeng-Kuang Hwang, Jeng-Da Li, Yu-Chang Hsu, Chuan-Shun Lin, Yuan-Ze University, Taiwan
TAa-8.8: Energy Detection Using Very Large Antenna Array Receivers .. 1034
Alex Oliveras Martinez, Elisabeth De Carvalho, Petar Popovski, Gert Fredlund Pedersen, Aalborg University, Denmark

TAb-1: Big Data Signal Processing
TAb-1.1: A Comparison of Clustering and Missing Data Methods for Health Sciences .. 1041
Ran Zhao, Claremont Graduate University, United States; Deanna Needell, Claremont McKenna College, United States; Christopher Johansen, Jerry Grenard, Claremont Graduate University, United States
TAb-1.3: Big Data Clustering via Random Sketching and Validation

Panagiotis Traganitis, Konstantinos Slavakis, Georgios Giannakis, University of Minnesota, United States

TAb-1.4: Classification of Streaming Big Data with Misses

Fatemeh Sheikholesalmi, Morteza Mardani, Georgios Giannakis, University of Minnesota, United States

TAb-2: Dynamic Brain Functional Connectivity

No papers are available for publication

TAb-3: Latest Coding Advances

TAb-3.1: Joint Space-Time Code Designs for Multiple Access Channels

Tianyi Xu, InterDigital Communications, Inc., United States; Xiang-Gen Xia, University of Delaware, United States

TAb-3.2: Channel Estimation Techniques for Quantized Distributed Reception in MIMO Systems

Junil Choi, David Love, Purdue University, United States; Donald Richard Brown III, Worcester Polytechnic Institute, United States

TAb-3.3: Generalized Spatial Modulation for Large-Scale MIMO Systems: Analysis and Detection

Theagarajan Lakshmi Narasimhan, Patchava Raviteja, Ananthanarayanan Chockalingam, Indian Institute of Science, India

TAb-3.4: Bandwidth Analysis of Low-Complexity Decoupling Networks for Multiple Coupled Antennas

Ding Nie, Bertrand Hochwald, University of Notre Dame, United States

TAb-4: Cognitive Radio I

TAb-4.1: Statistically Coordinated Precoding for the MISO Cognitive Radio Channel

Paul de Kerret, Miltiades Filippou, David Gesbert, Eurecom, France

TAb-4.2: Simultaneous Detection and Estimation based Spectrum Sharing in Cognitive Radio Networks

Jyoti Mansukhani, Priyadip Ray, Indian Institute of Technology Kharagpur, India; Pramod Varshney, Syracuse University, United States

TAb-4.3: Interference-Temperature Limit for Cognitive Radio Networks with MIMO Primary Users

Cristian Lameiro, University of Cantabria, Spain; Wolfgang Utschick, Technische Universität München, Germany; Ignacio Santamaría, University of Cantabria, Spain

TAb-4.4: Competitive Dynamic Pricing under Demand Uncertainty

Yixuan Zhai, Qing Zhao, University of California, Davis, United States

TAb-5: Historic Photographic Paper Identification via Textural Similarity Assessment

TAb-5.1: Automated Surface Texture Classification of Photographic Print Media

Paul Messier, Paul Messier LLC, United States; Richard Johnson, Cornell University, United States

TAb-5.2: Eigentextures: An SVD Approach to Automated Paper Classification

William Sethares, Atul Ingle, University of Wisconsin, United States; Tomas Krc, Czech Technical University, Czech Republic; Sally Wood, Santa Clara University, United States

TAb-5.3: Texture Classification via Area-Scale Analysis of Raking Light Images

Andrew G. Klein, Western Washington University, United States; Anh Do, Christopher Brown, Worcester Polytechnic Institute, United States; Philip Klausmeyer, WAM, United States

TAb-5.4: Hyperbolic Wavelet Transform for Historic Photographic Paper Classification

Stephane Roux, ENS Lyon, France; Patrice Abry, CNRS - ENS Lyon, France; Herwig Wendt, CNRS ENSHEEIT-IRIT, France; Stephane Jaffard, Paris Est University, France; Beatrice Vedel, Université de Bretagne Sud, France
TAB-6: Statistical Inference in Smart Grids
TAB-6.2: Integrating PMU-data-driven and Physics-based Analytics for Power Systems ..1127
Operations
Yang Chen, Le Xie, P. R. Kumar, Texas A&M University, United States
Structural Systems Approach
Pedro Rocha, University of Porto, Portugal; Sergio Pequito, Soumya Kar, Carnegie Mellon
University, United States; Pedro Aguilar, Paula Rocha, University of Porto, Portugal
TAB-6.4: Dynamic Joint Outage Identification and State Estimation in Power Systems ..1138
Yue Zhao, Stony Brook University, United States; Jianshu Chen, University of California, Los Angeles,
United States; Andrea Goldsmith, Stanford University, United States; H. Vincent Poor, Princeton
University, United States

TAB-7: MIMO Sensing
TAB-7.1: Bi-Static MIMO Radar Operations for Range-Folded Clutter Mitigation ...1145
Yuri Abramovich, WR Systems Ltd., United States; Gordon Frazer, DSTO, Australia; Geoffrey San
Antonio, Naval Research Laboratory, United States; Ben Johnson, Colorado School of Mines, United
States
TAB-7.2: Phased Array Antenna Calibration Using Airborne Radar Clutter and MIMO ..1150
Matthew Brown, Mitch Mirkin, Dan Rabideau, MIT Lincoln Laboratory, United States
TAB-7.3: High Resolution Imaging for MIMO Forward Looking Ground Penetrating Radar1157
Ode Ojowu, Luzhou Xu, Jian Li, University of Florida, United States; John Anderson, Howard
University, United States; Lam Nguyen, Army Research Laboratory, United States
TAB-7.4: Structural Health Monitoring Exploiting MIMO Ultrasonic Sensing and Group1162
Sparse Bayesian Learning
Qisong Wu, Yimin Zhang, Moeness Amin, Andrew Golato, Fauzia Ahmad, Sridhar Santhanam,
Villanova University, United States

TAB-8: Array Processing Methods
TAB-8.1: Array Self-Calibration with Large Initial Errors ...1169
Benjamin Friedlander, University of California, Santa Cruz, United States
TAB-8.2: Maximum Likelihood Estimation for Geolocation in the Presence of Multipath1174
Benjamin Friedlander, University of California, Santa Cruz, United States
TAB-8.3: Enhanced Location Detection Algorithms Based on Time of Arrival Trilateration1179
Sajina Pradhan, Jae-young Pyun, Goo-Rak Kwon, Seokjoo Shin, Suk-seung Hwang, Chosun
University, Republic of Korea
TAB-8.4: Designing Radio Interferometric Positioning Systems for Indoor Localizations in Millimeter Wave Bands
Marie Shinotsuka, Georgia Institute of Technology, United States; Yiyin Wang, Shanghai Jiao Tong
University, China; Xiaoli Ma, G. Tong Zhou, Georgia Institute of Technology, United States
TAB-8.5: Indoor Sound Source Localization and Number Estimation Using Infinite Gaussian Mixture Models
Longji Sun, Qi Cheng, Oklahoma State University, United States
TAB-8.6: On the Structural Nature of Cooperation in Distributed Network Localization ..1194
Alireza Ghods, Stefano Severi, Giuseppe Abreu, Jacobs University Bremen, Germany; Samuel Van de
Velde, Heidi Steendam, Ghent University, Belgium
TAB-8.7: Enabling Distributed Detection with Dependent Sensors ...1199
Brian Proulx, Junshan Zhang, Douglas Cochran, Arizona State University, United States
TAB-8.8: Active Sonar Transmission Strategies in the Presence of Strong Direct Blast1204
Luzhou Xu, Jian Li, Akshay Jain, University of Florida, United States

TAB-8: Compressed Sensing III
TAB-8.1: Super-resolution Line Spectrum Estimation with Block Priors ...1211
Kumar Vijay Mishra, Myung Cho, Anton Kruger, Weiyu Xu, University of Iowa, United States
TAB-8.3: Complexity Reduction in Compressive Sensing using Hirschman Uncertainty1216
Structured Random Matrices
Peng Xi, Victor DeBrunner, Florida State University, United States
TAB-8.5: Sparsity Order Estimation for Single Snapshot Compressed Sensing

Florian Roemer, Anastasia Lavrenko, Giovanni Del Galdo, Thomas Hotz, Technische Universität Ilmenau, Germany; Orhan Arikan, Bilkent University, Turkey; Reiner Thomae, Technische Universität Ilmenau, Germany

TAB-8.6: Streaming Signal Recovery Using Sparse Bayesian Learning

Uditha Wijewardhana, Marian Codreanu, Centre for Wireless Communications, Finland

TAB-8.7: Compressed Change Detection for Structural Health Monitoring

Omid Sarayani-Bafghi, George K. Atia, Masoud Malekzadeh, Necati Catbas, University of Central Florida, United States

TAB-8.8: Sparse Semi-Parametric Chirp Estimator

Johan Sward, Johan Brynolfsson, Andreas Jakobsson, Maria Hansson-Sandsten, Lund University, Sweden

TAB-8: Computer Arithmetic II

TAB-8.1: Improved Non-restoring Square Root Algorithm with Dual Path Calculation

Kihwan Jun, Earl E. Swartzlander, Jr., University of Texas at Austin, United States

TAB-8.3: Partial-Product Generation and Addition for Multiplication in FPGAs With 6-Input LUTs

E. George Walters III, Penn State Erie, The Behrend College, United States

TAB-8.4: Low-Power Radix-4 Quotient Generator

Milos Ercegovac, University of California, Los Angeles, United States; Lu Meng, Altera Corporation, United States

TAB-8.5: Memristor Based Adders

Divya Mahajan, Matheen Musaddiq, Earl E. Swartzlander, Jr., University of Texas at Austin, United States

TAB-8.6: Canonic Real-Valued FFT Structures

Megha Parhi, Yingjie Lao, Keshab K. Parhi, University of Minnesota, Twin Cities, United States

TAB-8.7: A High Throughput and Low Power Radix-4 FFT Architecture

Soumak Mookherjee, Linda S. DeBrunner, Victor DeBrunner, Florida State University, United States

TAB-8.8: A Domain Splitting Algorithm for the Mathematical Functions Code Generator

Olga Kupriianova, Christoph Lauter, UPMC, LIP6, PEQUAN team, France

TAB-8: Multiuser and Cellular Systems

TAB-8.1: Average Sum MSE Minimization in the Multi-User Downlink With Multiple Power Constraints

Andreas Gründinger, Michael Joham, Technische Universität München, Germany; Jose Pablo Gonzalez Coma, Luis Castedo, University of A Coruna, Spain; Wolfgang Utschick, Technische Universität München, Germany

TAB-8.2: Hierarchical Precoding for Ultra-Dense Heterogeneous Networks

Lars Thiele, Martin Kurras, Fraunhofer Institute for Telecommunications Heinrich Hertz Institute, Germany

TAB-8.3: Detection using Block QR Decomposition for MIMO HetNets

Robin Thomas, Raymond Knopp, Eurecom, France; Sunil (B.T.) Maharaj, University of Pretoria, South Africa; Laura Cottatellucci, Eurecom, France

TAB-8.4: On Performance Prediction for Multiuser Detection Enabled Systems in Packet Based Asynchronous Gaussian Multiple Access Channels

Prabahan Basu, MIT Lincoln Laboratory, United States

TAB-8.5: Decentralized Target Rate Optimization for MU-MIMO Leakage Based Precoding

Tim Rüegg, Marc Kuhn, Armin Wittneben, ETH Zurich, Switzerland

TAB-8.6: Leveraging Interference for Increasing Throughput and Reliability of Commercial Wireless Femtocells

Rachel Learned, Michael Pitaro, Matthew Ho, Marko Kocic, Massachusetts Institute of Technology, United States; Gary Whipple, Laboratory for Telecommunication Sciences, United States

TAB-8.7: Throughput Analysis of LTE and WiFi in Unlicensed Band

Abhijeet Bhorkar, Christian Ibars Casas, Pingping Zong, Intel Corporation, United States
Multi-User Detection for xDSL with Interference Cooperation Among Multiple Operators

Syed Hassan Raza Naqvi, Umberto Spagnolini, Politecnico di Milano, Italy

Covariance Mining

TPa-1.1: Abstract Algebraic-Geometric Subspace Clustering

Manolis Tsakiris, Rene Vidal, Johns Hopkins University, United States

TPa-1.2: Minimum Variance Portfolio Optimization with Robust Shrinkage Covariance Estimation

Liusha Yang, Hong Kong University of Science and Technology, Hong Kong SAR of China; Romain Couillet, Supelec, France; Matthew McKay, Hong Kong University of Science and Technology, Hong Kong SAR of China

Greedy Algorithms in Convex Optimization on Banach Spaces

Vladimir Temlyakov, University of South Carolina, United States

Bioinformatics and DNA Computing

No papers are available for publication

Machine Learning

TPa-3.1: Consensus Inference with Multilayer Graphs for Multi-modal Data

Karthikeyan Natesan Ramamurthy, IBM T. J. Watson Research Center, United States; Jayaraman Thiagarajan, Lawrence Livermore National Laboratory, United States; Rahul Sridhar, Premnishanth Kothenaraman, Ramanathan Nachiappan, SSN College of Engineering, India

TPa-3.2: Energy Price Matrix Factorization

Vassilis Kekatos, University of Minnesota, United States

TPa-3.3: A New Reduction Scheme for Gaussian Sum Filters

Leila Pishdad, Fabrice Labeau, McGill University, Canada

TPa-3.4: Exploring Upper Bounds on the Number of Distinguishable Classes

Catherine Keller, MIT Lincoln Laboratory, United States; Gary Whipple, Laboratory for Telecommunication Sciences, United States

Optical Communications

TPa-4.1: Fifth-Order Volterra Series Based Nonlinear Equalizer for Long-Haul High Data Rate Optical Fiber Communications

Abdelkerim Amari, Philippe Ciblat, Yves Jaouen, Telecom ParisTech, France

TPa-4.2: Improving the NLOS Optical Scattering Channel via Beam Reshaping

Difan Zou, Shang-Bin Li, Zhengyuan Xu, School of Information Science and Technology, and Optical Wireless Communication and Network Center, China

TPa-4.3: Correlation Study for Single-Input Multiple-Output Optical Wireless Scattering Channels

Boyang Huang, Chen Gong, Zhengyuan Xu, University of Science and Technology of China, China

TPa-4.4: An Improved Performance Receiving Technique for Asymmetrically and Symmetrically Clipping Optical (ASCO)-OFDM

Nan Wu, Yeheskel Bar-Ness, New Jersey Institute of Technology, United States

Speech Enhancement

TPa-5.1: Noise Power Spectral Density Matrix Estimation Based on Modified IMCRA

Qipeng Gong, Benoit Champagne, Peter Kabal, McGill University, Canada

TPa-5.2: BI-CosampSE: Block Identification based Compressive Sampling Matching Pursuit for Speech Enhancement

Dalei Wu, Nanjing University of Posts and Telecommunications, China; Wei-Ping Zhu, M.N.S. Swamy, Concordia University, Canada

TPa-5.3: Pitch Estimation for Non-Stationary Speech

Mads Græsbøll Christensen, Jesper Rindom Jensen, Aalborg University, Denmark
TPa-8: Signal Processing Methods
TPa-8.1: Blind Equalization Based On Blind Separation with Toeplitz Constraint ... 1453
Zhengwei Wu, Saleem Kassam, University of Pennsylvania, United States; Kaipeng Li, Rice University, United States

TPa-8.2: One-dimensional Piecewise-Constant Signal Recovery via Spike-and-Slab Approximate Message-Passing
Jaewook Kang, Hyouyoung Jung, Heung-No Lee, Kiseon Kim, Gwangju Institute of Science and Technology (GIST), Republic of Korea

TPa-8.3: Resource Allocation Optimization for Distributed Vector Estimation with Digital Transmission
Alireza Sani, Azadeh Vosoughi, University of Central Florida, United States

TPa-8.4: Exploiting the Cramér-Rao Bound for Optimised Sampling and Quantisation of FRI Signals
Andre Angierski, Volker Kuehn, University of Rostock, Germany

TPa-8.5: Adaptive Waveform for Integrated Detection and Identification of Moving Extended Target
Jo-Yen Nieh, Ric Romero, Naval Postgraduate School, United States

TPa-8.6: Channel Gain Cartography Via Low Rank and Sparsity
Donghoon Lee, University of Minnesota, United States; Seung-Jun Kim, University of Maryland, Baltimore County, United States

TPa-8.7: Bayesian Cramér-Rao Bound for Distributed Estimation of Correlated Data with Non-linear Observation Model
Mojtaba Shirazi, Azadeh Vosoughi, University of Central Florida, United States

TPa-8.8: Multirate Processing Using Nested Sampling
Peter Vouras, Naval Research Laboratory, United States

TPa-8: Cognitive Radio II
TPa-8.1: Characterization of Outage Performance for Cognitive Relay Networks with Mixed Fading
Efthymios Stathakis, Lars K. Rasmussen, Mikael Skoglund, Royal Institute of Technology (KTH), Sweden

TPa-8.2: Restless Multi-Armed Bandits under Time-Varying Activation Constraints for Dynamic Spectrum Access
Kobi Cohen, Qing Zhao, Anna Scaglione, University of California, Davis, United States

TPa-8.3: On the Optimal Relay Design for Multi-Antenna Cognitive Two-Way AF Relay Networks
Maksym Girnyk, KTH Royal Institute of Technology, Sweden; Mikko Vehkaperä, Sergiy Vorobyov, Aalto University, Finland
TPa-8.4: Network Aware Spectrum Efficiency Metric for Heterogeneous and Dynamic Radio Environments
Aditya Padaki, Ravi Tandon, Jeffrey Reed, Virginia Polytechnic Institute and State University, United States

TPa-8.5: A Unified Framework for Robust Cooperative Spectrum Sensing
Qi Cheng, Eric Chan-Tin, Oklahoma State University, United States

TPa-8.6: Receiver Configuration and Testbed Development for Underwater Cognitive Channelization
George Sklivanitis, State University of New York at Buffalo, United States; Emrecan Demirors, Northeastern University, United States; Stella N. Batalama, State University of New York at Buffalo, United States; Tommaso Melodia, Northeastern University, United States; Dimitris A. Pados, State University of New York at Buffalo, United States

TPa-8.7: Estimation of Subspace Occupancy
Kaitlyn Beaudet, Douglas Cochran, Arizona State University, United States

TPa-8.8: Performance Analysis: DF Cognitive Network with Transceiver Imperfections
Dang Khoa Nguyen, Kyushu Institute of Technology, Japan; Tu Thanh Lam, Post and Telecommunications Institute of Technology, Viet Nam; Hiroshi Ochi, Kyushu Institute of Technology, Japan

TPb-1: Large-Scale Learning and Optimization
TPb-1.1: Adaptive Regularized Canonical Correlations in Clustering Sensor Data
Jia Chen, Ioannis Schizas, University of Texas at Arlington, United States

TPb-1.2: Game-Theoretic Learning In A Distributed-Information Setting: Distributed Convergence To Mean-Centric Equilibria
Brian Swenson, Soummya Kar, Carnegie Mellon University, United States; Joao Xavier, Instituto Superior Tecnico, Portugal

TPb-1.3: Network Newton
Aryan Mokhtari, University of Pennsylvania, United States; Qing Ling, University of Science and Technology of China, China; Alejandro Ribeiro, University of Pennsylvania, United States

TPb-2: Echo Cancellation
TPb-2.1: Echo Cancellation for Bone Conduction Transducers
Mohammadhossein Behgam, Steven L. Grant, Missouri University of Science and Technology, United States

TPb-2.2: Uncertainty Modeling in Acoustic Echo Control
Gerald Enzner, Rainer Martin, Ruhr-University Bochum, Germany; Peter Vary, RWTH Aachen University, Germany

TPb-2.3: A Kalman Filter for Stereophonic Acoustic Echo Cancellation
Constantin Paleologu, University Politehnica of Bucharest, Romania; Jacob Benesty, University of Quebec, Canada; Steven L. Grant, Missouri University of Science and Technology, United States; Silviu Ciochina, University Politehnica of Bucharest, Romania

TPb-3: Sparse Signal Recovery
TPb-3.1: Compression Schemes for Time-Varying Sparse Signals
Sundeep Prabhakar Chepuri, Geert Leus, Delft University of Technology, Netherlands

TPb-3.2: A Fast Algorithm for Sparse Generalized Eigenvalue Problem
Junxiao Song, Prabhu Babu, Daniel Palomar, The Hong Kong University of Science and Technology, Hong Kong SAR of China

TPb-3.3: Bootstrapped Sparse Bayesian Learning for Sparse Signal Recovery
Ritwik Giri, Bhaskar Rao, University of California, San Diego, United States

TPb-3.4: A Fast Proximal Gradient Algorithm for Reconstructing Nonnegative Signals with Sparse Transform Coefficients
Renliang Gu, Aleksandar Dogandzic, Iowa State University, United States
TPb-4: Energy Harvesting Wireless Communications
TPb-4.1: Energy Harvesting Two-Way Communications with Limited Energy and Data Storage1671
Burak Varan, Aylin Yener, Pennsylvania State University, United States
TPb-4.2: On-Off Transmission Policy for Wireless Powered Communication with Energy Storage1676
Rania Morsi, Diomidis S. Michalopoulos, Robert Schober, Friedrich-Alexander University of Erlangen-Nuremberg, Germany
TPb-4.3: Optimal Energy Routing in Networks with Energy Cooperation ..1683
B. Gurakan, O. Ozel, Sennur Ulukus, University of Maryland, United States

TPb-5: Full Duplex MIMO Radio
TPb-5.1: Blind Digital Tuning for Interference Cancellation in Full-Duplex Radio ...1691
Yingbo Hua, Yifan Li, Chaitanya Mauskar, Qiping Zhu, University of California, Riverside, United States
TPb-5.2: Full-Duplex Self-Interference Mitigation Performance in Nonlinear Channels ..1696
Daniel Bliss, Yu Rong, Arizona State University, United States
TPb-5.3: MIMO Broadcast Channel with Continuous Feedback using Full-duplex Radios1701
Xu Du, John Tadrous, Rice University, United States; Christopher Dick, Xilinx Incorporated, United States; Ashutosh Sabharwal, Rice University, United States

TPb-6: Many-Core Platforms
TPb-6.2: REPLICA T7-16-128 - A 2048-threaded 16-core 7-FU Chained VLIW Chip ..1709
Multiprocessor
Martti Forsell, Jussi Roivainen, VTT, Finland
TPb-6.3: Improving Image Quality by SSIM Based Increase of Run-Length Zeros in ...1714
GPGPU JPEG Encoding
Stefan Petersson, Håkan Grahn, Blekinge Institute of Technology, Sweden
TPb-6.4: Kickstarting High-performance Energy-efficient Manycore Architectures ..1719
Epiphany
Andreas Olofsson, Adapteva, United States; Tomas Nordström, Zain ul-Abdin, Halmstad University, Sweden

TPb-7: Optical Wireless Communications
TPb-7.1: Multiuser MISO Indoor Visible Light Communications ...1729
Jie Lian, Mohammad Noshad, Maite Brandt-Pearce, University of Virginia, United States
TPb-7.2: Optical Spatial Modulation OFDM using Micro LEDs ...1734
Muhammad Ijaz, Dobroslav Tzonev, University of Edinburgh, United Kingdom; Athanasios Stavridis, The University of Edinburgh, United Kingdom; Abdelhamid Younis, University of Edinburgh, United Kingdom; Jonathan J. D. McKendry, Erdan Gu, Martin Dawson, University of Strathclyde, United Kingdom; Stefan Videv, Li-Fi R&D Centre, United Kingdom; Harald Haas, University of Edinburgh, United Kingdom
TPb-7.3: Adaptation of OFDM under Visible Light Communications and Illumination ...1739
Constraints
Thomas Little, Hany Elgala, Boston University, United States

TPb-8: Signal Processing Theory and Applications
TPb-8.1: Prediction of a Bed-Exit Motion: Multi-Modal Sensing Approach and Incorporation of Biomechanical Knowledge ...1747
Jun Hao, Xiaoxiao Dai, Amy Stroder, Jun Zhang, Bradley Davidson, Mohammad Mahoor, University of Denver, United States; Neil McClure, OKT Enterprises, United States
TPb-8.2: Ultra-Wideband Radar based Human Body Landmark Detection and Tracking with Biomedical Constraints for Human Motion Measuring ..1752
Xiaoxiao Dai, Zhichong Zhou, Jun Zhang, Bradley Davidson, University of Denver, United States
TPb-8.3: Separation of Interleaved Markov Chains ..1757
Ariana Minot, Yue M. Lu, Harvard University, United States
TPb-8: Relays, Cognitive, Cooperative, and Heterogeneous Networks

TPb-8.1: A Distributed Algorithm for Energy Saving in Nomadic Relaying Networks
Zhe Ren, BMW Group Research and Technology, Germany; Slawomir Stanczak, Fraunhofer Institute for Telecommunications Heinrich Hertz Institute, Germany; Mahdy Shabeeb, Munich University of Technology, Germany; Peter Fertl, BMW Group Research and Technology, Germany; Lars Thiele, Fraunhofer Institute for Telecommunications Heinrich Hertz Institute, Germany
TPb-8.3: On the Performance of Hybrid Satellite-Terrestrial Cooperative Networks with Interferences
Min Lin, PLA University of Science and Technology, China; Jian Ouyang, Nanjing University of Posts and Telecommunications, China; Zhu Wei-Ping, Concordia University, Canada
TPb-8.4: An Online Parallel Algorithm for Spectrum Sensing in Cognitive Radio Networks
Yang Yang, Technische Universitaet Darmstadt, Germany; Mengyi Zhang, Chinese University of Hong Kong, Hong Kong SAR of China; Marius Pesavento, Technische Universitaet Darmstadt, Germany; Daniel Palomar, Hong Kong University of Science and Technology, Hong Kong SAR of China
TPb-8.5: On the Spatial Spectral Efficiency of ITLinQ
Ratheesh K. Mungara, Universitat Pompeu Fabra, Spain; Xinchen Zhang, University of Texas at Austin, United States; Angel Lozano, Universitat Pompeu Fabra, Spain; Robert W. Heath Jr., University of Texas at Austin, United States
TPb-8.6: Time and Frequency Self-Synchronization in Dense Cooperative Network
Maria Antonieta Alvarez, Bahar Azari, Umberto Spagnolini, Politecnico di Milano, Italy
TPb-8.7: Effect of Cluster Rotation Speed in Coordinated Heterogeneous MIMO Cellular Networks with Proportionally Fair User Scheduling
Hakimeh Purmehdi, Robert Elliott, Witold Krzymien, University of Alberta, Canada; Jordan Melzer, TELUS Communications, Canada
TPb-8.8: Relay Selection for AF Wireless Relay Networks in Adverse Communication Environments
Kanghee Lee, Republic of Korea Air Force, Republic of Korea; Visvakumar Aravinth, Sunghoon Moon, Wichita State University, United States; Jongbum Ryou, Changki Moon, Inha Hyun, Republic of Korea Air Force, Republic of Korea; Sun Jo, Defense Acquisition Program Administration of ROK, Republic of Korea

TPb-8: Topics in Communication Systems

TPb-8.1: Performance Analysis of a MMSE Turbo Equalizer with LDPC in a FTN
Ghassan Maalouli, Brian A. Bannister, Comtech EF Data, United States
TPb-8.2: Characteristics of Optical Scattering and Turbulence Communication Channels
Weihao Liu, Zhengyuan Xu, University of Science and Technology of China, China
TPb-8.3: Comparison of SNR and Peak-SNR (PSNR) as Performance Measures and Signals
for Peak-limited Two-Dimensional (2D) Pixelated Optical Wireless Communication
Eyal Katz, Yeheskel Bar-Ness, New Jersey Institute of Technology, United States
TPb-8.4: I.I.D. Stochastic Analysis of PWM Signals ... 1885
 Noyan Sevuktekin, Andrew Singer, University of Illinois at Urbana-Champaign, United States
TPb-8.5: Statistical Data Correction for Unreliable Memories ... 1890
 Christoph Roth, ETH Zurich, Switzerland; Christoph Struder, Cornell University, United States;
 Georgios Karakonstantis, Andreas Burg, École Polytechnique Fédérale de Lausanne, Switzerland
TPb-8.6: Sonar Data Compression using Non-Uniform Quantization and Noise Shaping 1895
 Lok Wong, Gregory Allen, Brian Evans, University of Texas at Austin, United States
TPb-8.7: Multilevel Coding for Non-Orthogonal Broadcast .. 1900
 Stephan Pfletschinger, Monica Navarro, Centre Tecnològic de Telecomunicacions de Catalunya,
 Spain; Christian Ibars, Intel Corporation, United States
TPb-8.8: Dynamic Target Identification and Classification Based on Resonance Topography 1905
 Ananya Sen Gupta, Daniel Schupp, University of Iowa, United States; Ivars Kirsteins, Naval Undersea
 Warfare Center, United States

TPb-8: Signal Processing Architectures
TPb-8.1: Hybrid Floating-Point Modules with Low Area Overhead on a Fine-Grained 1829
 Processing Core
 Jon Pimentel, Bevan Baas, University of California, Davis, United States
TPb-8.2: Scalable Hardware-Based Power Management for Many-Core Systems 1834
 Bin Liu, Brent Bohrenstiehl, Bevan Baas, University of California, Davis, United States
TPb-8.3: Optimized FPGA Based Implementation of Discrete Wavelet Transform 1839
 Amin Jarrah, Mohsin M. Jamali, University of Toledo, United States
TPb-8.4: Mapping and Scheduling of Dataflow Graphs - A Systematic Map 1843
 Usman Mazhar Mirza, Mehmet Ali Arslan, Gustav Cedersjö, Sardar Muhammad Sulaman, Jörn W.
 Janneck, Lund University, Sweden
TPb-8.5: Dataflow Machines ... 1848
 Jörn W. Janneck, Gustav Cedersjö, Lund University, Sweden; Endri Bezati, Simone Casale Brunet,
 École Polytechnique Fédérale de Lausanne, Switzerland
TPb-8.6: Replacement Techniques for Improving Performance in Sub-Block Caches 1853
 Ohuleye Olorode, Mehrdad Nourani, University of Texas at Dallas, United States
TPb-8.7: Dynamically Reconfigurable Multi-Processor Arrays .. 1858
 James Glenn-Anderson, Supercomputer Systems, Inc., United States
TPb-8.8: Coprime Processing for the Elba Island Sonar Data Set ... 1864
 Vaibhav Chavali, Kathleen Wage, George Mason University, United States; John Buck, University of
 Massachusetts Dartmouth, United States

WAa-1: MIMO Design for mmWave Systems
WAa-1.1: A Tractable Model for Rate in Noise Limited mmWave Cellular Networks 1911
 Sarabjot Singh, Mandar Kulkarni, Jeffrey Andrews, University of Texas at Austin, United States
WAa-1.2: MIMO Designs for mmWave Wireless LAN Systems .. 1916
 Sridhar Rajagopal, Shadi Abu-Surra, Sudhir Ramakrishna, Rakesh Taori, Samsung Research America,
 United States
WAa-1.3: Analysis of Self-body Blocking Effects in Millimeter Wave Cellular Networks 1921
 Tianyang Bai, Robert W. Heath Jr., University of Texas at Austin, United States
WAa-1.4: Initial Beamforming for mmWave Communications ... 1926
 Ltd., United States; Ahmed Alkhateeb, The University of Texas at Austin, United States

WAa-2: 5G and Energy Efficient Cellular Networks
WAa-2.1: Traffic Aware Offloading for BS Sleeping in Heterogeneous Networks 1933
 Shan Zhang, Sheng Zhou, Zhisheng Niu, Tsinghua University, China
WAa-2.2: A Survey on 5G New Waveform: From Energy Efficiency Aspects 1939
 Shunqing Zhang, Xiuqiang Xu, Yiqun Wu, Lei Lu, Yan Chen, Huawei Technologies Co., Ltd., China
WAa-2.3: Evolution of LTE and new Radio Access Technologies for FRA (Future Radio) 1944
 Hidetoshi Kayama, Hailing Jiang, DOCOMO Beijing Communications Laboratories Co. Ltd., China
WAA-2.4: A Novel Cell-Interference Depth Model and Performance Analysis for the Future

Wireless Networks
Inkang Zhu, Haibao Ren; University of Science and Technology of China, China

WAA-3: Sparse Learning and Estimation

WAA-3.1: Sparse Bayesian Learning Using Approximate Message Passing

Maher Al-Shoukairi, Bhaskar Rao; University of California, San Diego, United States

WAA-3.2: Hierarchical Bayesian Approach for Jointly-Sparse Solution of

Multiple-Measurement Vectors
Mohammad Shekaramiz, Todd K. Moon, Jacob H. Gunther; Information Dynamics Laboratory / Utah State University, United States

WAA-3.3: Dictionary Approaches For Identifying Periodicities in Data

Srikanth Venkata Tenneti, P. P. Vaidyanathan; California Institute of Technology, United States

WAA-3.4: A Regularized Maximum Likelihood Estimator for the Period of a Cyclostationary Process
David Ramirez, Peter J. Schreier; University of Paderborn, Germany; Javier Via, Ignacio Santamaría; University of Cantabria, Spain; Louis L. Scharf; Colorado State University, United States

WAA-4: Physical Layer Security II

WAA-4.1: Investigation of Secure Wireless Regions Using Configurable Beamforming on

WARP
Yuanrui Zhang, Queen’s University Belfast, United Kingdom; Bei Yin, Rice University, United States; Roger Woods, Queen’s University Belfast, United Kingdom; Joseph R. Cavallaro, Rice University, United States; Alan Marshall, University of Liverpool, United Kingdom; Youngwook Ko, Queen’s University Belfast, United Kingdom

WAA-4.2: Wiretap-Channels with Constrained Active Attacks

Carsten Rudolf Janda, Christian Scheunert, Eduard A. Jorswieck; Dresden University of Technology, Germany

WAA-4.3: Secrecy Rate Maximization for Information and Energy Transfer in MIMO Beamforming Networks

Jens Steinwandt, Ilmenau University of Technology, Germany; Sergiy Vorobyov, Aalto University, Finland; Martin Haardt, Ilmenau University of Technology, Germany

WAA-4.4: Everlasting Secrecy in Disadvantaged Wireless Environments against Sophisticated Eavesdroppers
Azadeh Sheikholeslami, Dennis Goeckel, Hossein Pishro-nik; University of Massachusetts Amherst, United States

WAA-5: Information Processing for Social and Sensor Networks

WAA-5.1: Fourier Transform for Signals on Dynamic Graphs

Arash Golibagh Mahyari, Selin Aviyente; Michigan State University, United States

WAA-5.2: Anomalous Subgraph Detection in Publication Networks: Leveraging Truth

Nadya Bliss, Bruce Peirson, Deryc Painter, Manfred Laubichler; Arizona State University, United States

WAA-5.3: Identifying Congestion in Software-Defined Networks Using Spectral Graph Theory

Thomas Parker, Jamie Johnson, Murali Tummala, John McEachen, James Scrofani; Naval Postgraduate School, United States

WAA-5.4: Vulnerability of CPS inference to DoS attack
Mohammadreza Doostmohammadian, Usman A. Khan; Tufts University, United States

WAA-6: Adaptive Signal Design and Analysis

WAA-6.1: Eigen-Basis Analysis of Expected Modulus Perturbation for Constrained Signal Design

Aaron Jones, Air Force Research Laboratory, United States; Brian Rigling, Wright State University, United States; Muralidhar Rangaswamy, Air Force Research Laboratory, United States
<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAa-6.2</td>
<td>Characterization of Information in Phase of Radar Range Profiles</td>
<td>Linda Moore, Air Force Research Laboratory / University of Dayton, United States; Brian Rigling, Wright State University, United States; Robert Penno, University of Dayton, United States</td>
</tr>
<tr>
<td>WAa-6.3</td>
<td>Radar Tracking Waveform Design in Continuous Space and Optimization Selection</td>
<td>Bryan Paul, Daniel Bliss, Antonia Papandreou-Suppappola, Arizona State University, United States</td>
</tr>
<tr>
<td>WAa-6.4</td>
<td>Reduced Rank Adaptive Filtering in Impulsive Noise Environments</td>
<td>Hamza Soury, King Abdullah University of Science and Technology (KAUST), Saudi Arabia; Karim Abed-Meraim, Polytech Orleans, France; Mohamed-Slim Alouini, King Abdullah University of Science and Technology (KAUST), Saudi Arabia</td>
</tr>
<tr>
<td>WAa-7.1</td>
<td>Field-Order Based Hardware Cost Analysis of Non-Binary LDPC Decoders</td>
<td>Yuta Toriyama, Behzad Amiri, Lara Dolecek, Dejan Markovic, University of California, Los Angeles, United States</td>
</tr>
<tr>
<td>WAa-7.2</td>
<td>Algorithm and Architecture for Hybrid Decoding of Polar Codes</td>
<td>Bo Yuan, Keshab K. Parhi, University of Minnesota, Twin Cities, United States</td>
</tr>
<tr>
<td>WAa-7.3</td>
<td>Signal Processing Approach Towards Designing Ultra-low Power Transceivers</td>
<td>Vijay Venkateswaran, Pawel Rutkowsk, Howard Huang, Bell Labs, Ireland</td>
</tr>
<tr>
<td>WAa-7.4</td>
<td>A High Performance GPU-based Software-defined Basestation</td>
<td>Kaipeng Li, Michael Wu, Guohui Wang, Joseph R. Cavallaro, Rice University, United States</td>
</tr>
<tr>
<td>WAb-1.1</td>
<td>A Multistage Linear Receiver Approach for MMSE Detection in Massive MIMO</td>
<td>Ting Li, Sujeet Patole, Murat Torlak, University of Texas at Dallas, United States</td>
</tr>
<tr>
<td>WAb-1.2</td>
<td>Beamforming-Based Spatial Precoding in FDD Massive MIMO Systems</td>
<td>Ming-Fu Tang, Meng-Ying Lee, Borcing Su, National Taiwan University, Taiwan; Chia-Pang Yen, Industrial Technology Research Institute, Taiwan</td>
</tr>
<tr>
<td>WAb-2.2</td>
<td>Patient-Centric On-Body Sensor Localization in Smart Health Systems</td>
<td>Ramyar Saeedi, Washington State University, United States; Navid Amini, University of California, Los Angeles, United States; Hassan Ghasemzadeh, Washington State University, United States</td>
</tr>
<tr>
<td>WAb-3.1</td>
<td>Quasicontinuous State Hidden Markov Models Incorporating State Histories</td>
<td>Todd K. Moon, Jacob H. Gunther, Utah State University, United States</td>
</tr>
<tr>
<td>WAb-3.2</td>
<td>A Classification Centric Quantizer for Efficient Encoding of Predictive Feature Errors</td>
<td>Scott Deann Chen, Pierre Moulin, University of Illinois at Urbana-Champaign, United States</td>
</tr>
<tr>
<td>WAb-3.3</td>
<td>Time-Varying Stochastic Multi-Armed Bandit Problems</td>
<td>Sattar Vakili, Qing Zhao, Yuan Zhou, University of California, Davis, United States</td>
</tr>
<tr>
<td>WAb-4.1</td>
<td>Noisy Belief Propagation Decoder</td>
<td>Chu-Hsiang Huang, Yao Li, Lara Dolecek, University of California, Los Angeles, United States</td>
</tr>
<tr>
<td>WAb-4.2</td>
<td>A Low-Complexity Improved Successive Cancellation Decoder for Polar Codes</td>
<td>Orion Afisiadis, Alexios Balatsoukas-Stimming, Andreas Burg, École Polytechnique Fédérale de Lausanne, Switzerland</td>
</tr>
<tr>
<td>WAb-4.3</td>
<td>Differential Trellis Coded Modulation with State Dependent Mappings</td>
<td>Ruey-Yi Wei, National Central University, Taiwan; James Ritcey, University of Washington, United States</td>
</tr>
</tbody>
</table>
WAb-5: Document Processing and Synchronization
WAb-5.3: Efficient File Synchronization: Extensions and Simulations ...2129
 Clayton Schoeny, Nicolas Bitouze, Frederic Sala, Lara Dolecek, University of California, Los Angeles, United States

WAb-6: Distributed Detection and Optimization
WAb-6.1: Distributed Detection for Wireless Sensor Networks with Fusion Center under Correlated Noise
 Alireza S. Behbahani, Ahmed M. Eltawil, Hamid Jafarkhani, University of California, Irvine, United States
WAb-6.2: Distributed Asynchronous Time-Varying Constrained Optimization ..2142
 Andrea Simonetto, Geert Leus, Delft University of Technology, Netherlands
WAb-6.3: M-ary Distributed Detection in the Presence of Channel Estimation Error ..2147
 Zahra Hajibabaei, Alireza Sani, Azadeh Vosoughi, University of Central Florida, United States

WAb-7: Video Coding Architecture and Design
WAb-7.1: Development and Optimization of High Level Dataflow Programs: The HEVC 2155
 Khaled Jerbi, INSA of Rennes / IETR, France; Daniele Renzi, Damien De Saint Jorre, École Polytechnique Fédérale de Lausanne, Switzerland; Hervé Yviquel, Mickaël Raulet, INSA of Rennes / IETR, France; Claudio Alberti, Marco Mattavelli, École Polytechnique Fédérale de Lausanne, Switzerland
WAb-7.2: A Low-Power Hybrid Video Recording System with H.264/AVC and Light-Weight Compression
 Hyun Kim, Seoul National University, Republic of Korea; Chae Eun Rhee, Inha University, Republic of Korea; Hyuk-Jae Lee, Seoul National University, Republic of Korea
WAb-7.3: Design of View Synthesis Prediction in 3D-HEVC via Algorithmic Complexity2163
 Gwo Giun (Chris) Lee, Bo-Syun Li, Chun-Fu Chen, National Cheng Kung University, Taiwan