2015 IEEE PELS Workshop on Emerging Technologies: Wireless Power

(WoW 2015)

Daejeon, South Korea
5-6 June 2015
Session 1: Wireless Powers for Electric Vehicles I
June 5, 2015 13:20 - 15:00

Session Chairs: Hyosung Kim, *Kongju University, Korea*
Xin Dai, *Chongqing University, China*

Real-time Coupling Coefficient Estimation and Maximum Efficiency Control on Dynamic Wireless Power Transfer for Electric Vehicles
Daita Kobayashi, *The University of Tokyo, Japan*
Takehiro Imura, *The University of Tokyo, Japan*
Yoichi Hori, *The University of Tokyo, Japan*

DQ-Quadrature Power Supply Coil Sets with Large Tolerances for Wireless Stationary EV Chargers
Seog Y. Jeong, *KAIST, Korea*
Su Y. Choi, *KAIST, Korea*
Sonapreetha Mohan Radha, *KAIST, Korea*
Chun T. Rim, *KAIST, Korea*

A Wireless Vehicle Charging System using Class Φ2 Inverter
Mohammad Kamar Uddin, *University of Malaya, Malaysia*
Kafeel Ahmed Kalwar, *University of Malaya, Malaysia*
Gobbi Ramasamy, *Multimedia University, Malaysia*
Saad Mekhilef, *University of Malaya, Malaysia*

Research of the Input-Parallel Output-Series Inductive Power Transfer System
Hang Liu, *Nanjing University of Aeronautics and Astronautics, China*
Qianhong Chen, *Nanjing University of Aeronautics and Astronautics, China*
Guangjie Ke, *Nanjing University of Aeronautics and Astronautics, China*
Siu-Chung Wong, *Hong Kong Polytechnic University, Hong Kong*
Xiaoyong Ren, *Nanjing University of Aeronautics and Astronautics, China*

Dual-purpose Non-overlapped Coil Sets as Foreign Object and Vehicle Location Detections for Wireless Stationary EV Chargers
Sonapreetha Mohan Radha, *KAIST, Korea*
Seog Y. Jeong, *KAIST, Korea*
Su Y. Choi, *KAIST, Korea*
Chun T. Rim, *KAIST, Korea*

Session 2: Wireless Powers for Electric Vehicles II
June 5, 2015 13:20 - 15:00

Session Chairs: Hanju Cha, *Chungnam National University, Korea*
Kai Song, *Harbin Institute of Technology, China*

Economic Considerations for On-Road Wireless Charging Systems - A Case Study
Aditya Shekhar, *Delft University of Technology, Netherlands*
Mark Bolech, *Delft University of Technology, Netherlands*
Venugopal Prasanth, *Delft University of Technology, Netherlands*
Pavol Bauer, *Delft University of Technology, Netherlands*
Electric Vehicles Wireless Charging System Compensation Based on the Magnetic Energy Recovery Switch 37
Huang zhizhen, South China University of Technology, China
Longyun Kang, South China University of Technology, China
Lingyu Chen, South China University of Technology, China
Teng Feng, South China University of Technology, China

Energy-Security-Based Contactless Battery Charging System for Roadway-Powered Electric Vehicles 44
Zhen Zhang, The University of Hong Kong, Hong Kong
K. T. Chau, The University of Hong Kong, Hong Kong
Chunhua Liu, The University of Hong Kong, Hong Kong
Chun Qiu, The University of Hong Kong, Hong Kong

Evaluation of a Non-contact Power Supply System with a Figure-of-Eight Coil for Railway Vehicles 50
Keigo Ukita, Railway Technical Research Institute, Japan
Takayuki Kashiwagi, Railway Technical Research Institute, Japan
Yasuaki Sakamoto, Railway Technical Research Institute, Japan
Takashi Sasakawa, Railway Technical Research Institute, Japan

Wireless Power Transfer for Running EV Powering Using Multi-Parallel Segmented Rails 56
Kai Song, Harbin Institute of Technology, China
Chunbo Zhu, Harbin Institute of Technology, China
Koh Kim Ean, The University of Tokyo, Japan
Takehiro Imura, The University of Tokyo, Japan
Yoichi Hori, The University of Tokyo, Japan

Session 3: Wireless Powers for Industrial Applications
June 5, 2015 15:20 - 17:00
Session Chairs: Jeehoon Jung, Ulsan National Institute of Science and Technology, Korea
Xinzhi Shi, Wuhan University, China

Inter-operability Considerations of the Double-sided LCC Compensated Wireless Charger for Electric Vehicle and Plug-in Hybrid Electric Vehicle Applications 62
Wenhan Li, Hefei University of Technology, China
Han Zhao, Hefei University of Technology, China
Tianze Kan, University of Michigan-Dearborn, United States
Chris Mi, University of Michigan-Dearborn, United States

Comparisons of Magnetic Field Shaping Methods for Ubiquitous Wireless Power Transfer 68
Yeong H. Sohn, KAIST, Korea
Bo H. Choi, KAIST, Korea
Eun S. Lee, KAIST, Korea
Chun T. Rim, KAIST, Korea

A Novel Wireless Power Charging System for Electric Bike Application 74
Han Zhao, Kunming University of Science and Technology, China
Wenbin Shu, Kunming University of Science and Technology, China
Desong Li, Kunming University of Science and Technology, China
Siqi Li, Kunming University of Science and Technology, China
Resonant Slip Ring-less Doubly-Fed Hyper Synchronous Machine with Variable Capacitors
Beom W. Gu, KAIST, Korea
Bo H. Choi, KAIST, Korea
Chun T. Rim, KAIST, Korea

Effects of Obstacle Sizes on Wireless Power Transfer via Magnetic Resonance Coupling
Xinzhi Shi, Wuhan University, China
Chang Qi, Wuhan University, China
Shuangli Ye, Wuhan University, China

Session 4: Analytical Methods for Wireless Powers
June 5, 2015 15:20 - 17:00
Session Chairs: Gyubeom Jung, Woosuk University, Korea
Siqi Li, Kunming University of Science and Technology, China

A Method of Regulating Wireless Power Transfer Based on the Analysis of Power Communication
Ngan K. Hoang, KAIST, Korea
Sang-Gug Lee, KAIST, Korea

Analysis and Equivalent of Four-coil and Two-Coil Systems in Wireless Power Transfer
Zhe Liu, Kunming University of Science and Technology, China
Han Zhao, Kunming University of Science and Technology, China
Chunyan Shuai, Kunming University of Science and Technology, China
Siqi Li, Kunming University of Science and Technology, China

Analytical Investigation of Optimal Wireless Power Transfer Topology for Electric Vehicles
Sangyeong Jeong, Ulsan National Institute of Science and Technology, Korea
Jeehoon Jung, Ulsan National Institute of Science and Technology, Korea
Jingook Kim, Ulsan National Institute of Science and Technology, Korea

Review of Analytical Methods to Extract Magnetic Parameters of an Inductively Coupled Circuit
Venugopal Prasanth, Delft University of Technology, Netherlands
Pavol Bauer, Delft University of Technology, Netherlands
Jan A. Ferreira, Delft University of Technology, Netherlands
Henk Polinder, Delft University of Technology, Netherlands

Theoretical Modeling and Analysis of a Wireless Ultrasonic Power Transfer System
Ho Fai Leung, The University of Auckland, New Zealand
Aiguo Patrick Hu, The University of Auckland, New Zealand

Session 5: Converters for Wireless Powers I
June 6, 2015 13:20 - 15:00
Session Chairs: YongSeok Seo, Chonbuk National University, Korea
HanhPhuc Le, Lion Semiconductor Inc., United States

A Compact Class E Rectifier for Megahertz Wireless Power Transfer
Ming Liu, University of Michigan-Shanghai Jiao Tong University Joint Institute, China
Minfan Fu, University of Michigan-Shanghai Jiao Tong University Joint Institute, China
Chengbin Ma, University of Michigan-Shanghai Jiao Tong University Joint Institute, China
Adjusting the Frequency of an Autonomous Push Pull Converter for Wireless Power Transfer by Varying the Equivalent Resonant Capacitance through Balanced DC Voltage Control

Jianlong Tian, The University of Auckland, New Zealand
Aiguo Patrick Hu, The University of Auckland, New Zealand

Research on Driving Source of Wireless Power Transfer under Weak Coupling Condition

Li Yang, Harbin Institute of Technology, China
Zhu Chunbo, Harbin Institute of Technology, China
Wei Guo, Harbin Institute of Technology, China
Song Kai, Harbin Institute of Technology, China
Lu Rengui, Harbin Institute of Technology, China
Zhang Jiantao, Harbin Institute of Technology, China

Design Methodology of a 500 W Wireless Power Transfer Converter

Mina Kim, Ulsan National Institute of Science and Technology, Korea
Katherine A. Kim, Ulsan National Institute of Science and Technology, Korea
Jingook Kim, Ulsan National Institute of Science and Technology, Korea
Jeehoon Jung, Ulsan National Institute of Science and Technology, Korea

Harmonic Elimination and Power Regulation Based Five-level Inverter for Supplying IPT Systems

Li Yong, Southwest Jiaotong University, China
Ma Ruikun, Southwest Jiaotong University, China
Lu liwen, Southwest Jiaotong University, China
Liu Shaoqing, CSR Qingdao Sifang Co. Ltd, China
He Zhengyou, Southwest Jiaotong University, China

Session 6: Converters for Wireless Powers II
June 6, 2015 13:20 - 15:00
Session Chairs: Byoungkuk Lee, SungKyunKwan University, Korea
Chi Kwan Lee, The University of Hong Kong, Hong Kong

Improved LCL Resonant Network for Inductive Power Transfer System

Xin Dai, Chongqing University, China
Weiyi Li, Chongqing University, China
Yanling Li, Chongqing University, China
Su Yugang, Chongqing University, China
Tang Chunsen, Chongqing University, China
Wang Zhihui, Chongqing University, China
Sun Yue, Chongqing University, China

Link Efficiency-Led Design of Mid-Range Inductive Power Transfer Systems

Christopher H. Kwan, Imperial College London, United Kingdom
George Kkelis, Imperial College London, United Kingdom
Samer Aldhaher, Imperial College London, United Kingdom
James Lawson, Imperial College London, United Kingdom
David C. Yates, Imperial College London, United Kingdom
Patrick Chi-Kwong LUK, Intelligent Grid Interfaced Vehicle Eco-charging, United Kingdom
Paul D. Mitcheson, Imperial College London, United Kingdom

A Study of High-Frequency-Fed AC-DC Converter with Different DC-DC Topologies

Zhe Yang, The University of Hong Kong, Hong Kong
Sitthisak Kiratipongvoot, The University of Hong Kong, Hong Kong
Chi K. Lee, The University of Hong Kong, Hong Kong
Siu Shing Ho, The University of Hong Kong, Hong Kong
Comparison of Input Power Factor Correction Techniques for Buck Converters in Single-Phase Wireless Power Transfer Systems 161
Hyeuntae Cho, Ulsan National Institute of Science and Technology, Korea
Jingook Kim, Ulsan National Institute of Science and Technology, Korea
Katherine A. Kim, Ulsan National Institute of Science and Technology, Korea
Jeehoon Jung, Ulsan National Institute of Science and Technology, Korea

An Inductive-Link with a Regulated Secondary Voltage based on Frequency Adjustment 169
Pablo Aqueveque, University of Concepcion, Chile
Esteban Pino, University of Concepcion, Chile
Juliano Barboza, University of Concepcion, Chile

Session 7: Magnetics, and Coil Designs for Wireless Powers
June 6, 2015 15:20 - 17:00
Session Chairs: Jungmuk Choi, Virginia Tech., United States
Aqueveque Pablo, University of Concepcion, Chile

Analysis on Normalized Distance and Scalability in Designing Wireless Power Transfer 173
J.P.K. Sampath, Nanyang Technological University Singapore
A. Alphones, Nanyang Technological University Singapore
D. M. Vilathgamuwa, Queensland University of Technology, Australia
L.Y.Y. Kenneth, Nanyang Technological University Singapore

A New Type Receiving Set of Wireless Power Transmission Systems for Gastrointestinal Robot 179
Jiazihiwei, Changsha University of Science and Technology, China
Bingquan Zhu, Shanghai Jiaotong University, China

Two-Transmitter Wireless Power Transfer with LCL Circuit for Continuous Power in Dynamic Charging 183
Koh Kim Ean, The University of Tokyo, Japan
Kai Song, The University of Tokyo, Japan
Pakorn Sukprasert, The University of Tokyo, Japan
Takehiro Imura, The University of Tokyo, Japan
Yoichi Hori, The University of Tokyo, Japan

A Study on Comparing Analytical Methods for Coil Design in High Frequency Wireless Energy Transfer 189
Bekir Fincan, Istanbul Technical University, Turkey
Ozgur Ustun, Istanbul Technical University, Turkey

Envelope Model of Load Voltage on Series-Series Compensated Wireless Power Transfer via Magnetic Resonance Coupling 194
Daisuke Gunji, The University of Tokyo, Japan
Takehiro Imura, The University of Tokyo, Japan
Hiroshi Fujimoto, The University of Tokyo, Japan
Full-Bridge Rectifier Input Reactance Compensation in Megahertz Wireless Power Transfer Systems
Minfan Fu, University of Michigan-Shanghai Jiao Tong University Joint Institute, China
Zefan Tang, University of Michigan-Shanghai Jiao Tong University Joint Institute, China
Ming Liu, University of Michigan-Shanghai Jiao Tong University Joint Institute, China
Chengbin Ma, University of Michigan-Shanghai Jiao Tong University Joint Institute, China
Xinen Zhu, University of Michigan-Shanghai Jiao Tong University Joint Institute, China

Improved Robust Controller Design for Dynamic IPT System under Mutual-Inductance Uncertainty
Limin Huang, Southwest Jiaotong University, China
Yanling Li, Southwest Jiaotong University, China
Gao Shiping, CSR Qingdao Sifang Co. Ltd., China
Yu Jin, CSR Qingdao Sifang Co. Ltd., China
He Zhengyou, Southwest Jiaotong University, China

Minimization of Converter Ratings for MW-scale Inductive Charger Operated under Widely Variable Coupling Conditions
Giuseppe Guidi, SINTEF Energy Research, Norway
Jon Are Suul, Norwegian University, Norway

Wireless Power System for Charge Supercapacitors as Power Sources for Implantable Devices
Pablo Aqueveque, University of Concepcion, Chile
Juliano Barboza, University of Concepcion, Chile

Wireless Power Transmission An Assessment of Technology Potential and Risk
Krish Gomatom, Electric Power Research Institute, United States
Stephen Berger, TEM Consulting, United States