TABLE OF CONTENTS

MO-SP.1A: MILLIMETER-WAVE ANTENNA ARRAYS FOR 5G WIRELESS HANDHELD DEVICES

MO-SP.1A.1: FOUR-ELEMENT DUAL-BAND PRINTED SLOT ANTENNA ARRAY FOR THE FUTURE 1
5G MOBILE COMMUNICATION NETWORKS
Osama Haraz, Mohamed Ali, Assiut University, Egypt; Ayman Elboushi, Electronic Research Institute (ERI), Egypt; Abdel-Razik Sebak, Concordia University, Canada

MO-SP.1A.2: A DIELECTRIC RESONATOR BASED MILLIMETER-WAVE MIMO ANTENNA ARRAY 3
FOR HAND-HELD DEVICES
Mohamed Hussain, Oualid Hammi, Mohammad S. Sharawi, King Fahd University of Petroleum and Minerals, Saudi Arabia; Symon K. Podilchak, Yahia M.M. Antar, Royal Military College of Canada, Canada

MO-SP.1A.3: REGULARIZED TIME-REVERSAL BEAMFORMING FOR MM-WAVE MASSIVE MIMO 5
SYSTEMS
Carlos Viteri-Mera, Fernando Teixeira, Ohio State University, United States

MO-SP.1A.4: CHARACTERIZATION OF MILLIMETER WAVE PHASED ARRAY ANTENNAS IN MOBILE TERMINAL FOR 5G MOBILE SYSTEM
Jakob Helander, Daniel Sjöberg, Mats Gustafsson, Lund University, Sweden; Kun Zhao, Zhinong Ying, Sony Mobile Communications, Sweden

MO-SP.1A.6: DESIGN OF HIGH-DIVERSITY GAIN MIMO ANTENNA ARRAYS THROUGH SURFACE CURRENT OPTIMIZATION
Sebastien Clauzier, Said Mikki, Yahia M.M. Antar, Royal Military College of Canada, Canada

MO-SP.1A.8: LOW PROFILE LENS AND REFLECTARRAY DESIGN FOR MM WAVES ... 11
Shaileshachandra Pandey, Ravi Arya, Raj Mittra, Pennsylvania State University, United States

MO-SP.1A.10: 60 GHZ AGILE EBG-BASED ANTENNA WITH RECONFIGURABLE PATTERN 13
Muath Al-Hasan, INRS-University of Quebec, Canada; Abdel-Razik Sebak, Concordia University, Canada; Tayeb A. Denidni, INRS-University of Quebec, Canada

MO-SP.2A: ADVANCES IN THE DEVELOPMENT OF GNSS ANTENNAS AND CONTROLLED RADIATION PATTERN ARRAYS

MO-SP.2A.1: AN INTEROPARABLE ANTENNA FOR GPS AND GLONASS SERVICES ON A CAR 15
Iuliia Goncharova, Stefan Lindenmeier, University of the Bundeswehr, Germany

MO-SP.2A.2: DESIGN AND CHARACTERISTIC MODE ANALYSIS OF A WIDEBAND HIGH PERMITTIVITY PATCH ANTENNA
Kathleen Fasenfest, TE Connectivity, United States

MO-SP.2A.4: EVOLUTION OF A PRECISION GNSS ANTENNA ... 19
Ronald Johnston, University of Calgary, Canada

MO-SP.2A.5: WIDEBAND DUAL-CIRCULAR POLARIZED SPIRAL ANTENNA PHASED ARRAY 21
Hongzhao, Ray Fang, Ramanan Balakrishnan, Koen Mouthaan, National University of Singapore, Singapore; Régis Guinvarc’h, SONDRA, Supélec, France
MO-A1.1A: LEAKY-WAVE ANTENNAS

MO-A1.1A.1: USING THE MATRIX PENCIL METHOD TO ANALYZE A 3D LEAKY WAVE ANTENNA
Amardeep Singh, Robert Paknys, Concordia University, Canada; David R. Jackson, University of Houston, United States

MO-A1.1A.2: UNIFORM AND NON UNIFORM OPTICAL LEAKY-WAVE ANTENNAS FOR FIELD SHAPING
Caner Guclu, Ozdal Boyraz, Filippo Capolino, University of California, Irvine, United States

MO-A1.1A.3: DUAL-POLARIZED DIRECTIONAL ANTENNA WITH APPLICATION TO POLARIMETRIC RADAR
Maria García-Viguera, Marc Esquiú-Morote, Juan R. Mosig, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

MO-A1.1A.4: REAL-TIME 2-D SPECTRAL-DECOMPOSITION USING A LEAKY-WAVE ANTENNA ARRAY WITH DISPERSIVE FEEDING NETWORK
Shulabh Gupta, Christophe Caloz, Polytechnique de Montréal, Canada

MO-A1.1A.5: WIDEBAND LEAKY-WAVE RADIATION FROM WIRE-MEDIUM LOADED FABRY-PEROT CAVITY ANTENNAS
Davide Comite, Paolo Burghignoli, Paolo Baccarelli, Alessandro Galli, Sapienza University of Rome, Italy

MO-A1.1A.8: PERIODIC SLOTTED LEAKY WAVE ANTENNA EXCITED BY QUASI DIPOLE
Alireza Mallahzadeh, Sajad Mohammad-Ali-Nezhad, Shahed University, Iran

MO-A1.2A: DIELECTRIC RESONATOR AND DIELECTRIC LOADED ANTENNAS

MO-A1.2A.1: MODELING OF SUBSTRATE INTEGRATED WAVEGUIDE SERIES FED DIELECTRIC RESONATOR ANTENNA ARRAY WITH LONGITUDINAL SLOTS EXCITATION
Mona Abdallah, Ying Wang, UOIT, Canada; Wael M. Abdel-Wahab, Safieeddin Safavi-Naeini, University of Waterloo, Canada

MO-A1.2A.2: WIDEBAND FABRY-PEROT RESONATOR ANTENNAS WITH DIELECTRIC EBG STRUCTURES
Naizhi Wang, Northwestern Polytechnical University, China; Qingsheng Zeng, University of Quebec, Canada

MO-A1.2A.3: IMPROVING PHASE UNIFORMITY IN THE APERTURE: A METHOD TO ENHANCE RADIATION CHARACTERISTICS OF FABRY-PEROT RESONATOR ANTENNAS
Muhammad Usman Afzal, Karu P. Esselle, Macquarie University, Australia

MO-A1.2A.4: COMPACT WIDEBAND PERFORATED RECTANGULAR DIELECTRIC RESONATOR ANTENNA
Pragati Patel, IIT Bombay, India; Biswajeet Mukherjee, IIITDM, India; Jayanta Mukherjee, IIT Bombay, India

MO-A1.2A.5: A NOVEL DUAL-BROADBAND DIELECTRIC RESONATOR ANTENNA BASED ON MODIFIED SIERPINSKI FRACTAL GEOMETRY
Hu Liu, Ying Liu, Ming Wei, Shuxi Gong, Xidian University, China

MO-A1.2A.6: CIRCULARLY POLARIZED RING DIELECTRIC RESONATOR ANTENNA EXCITED WITH CROSS-SLOT
Rajkishor Kumar, Raghvendra Kumar Chaudhary, Indian School of Mines Dhanbad, India

MO-A1.2A.7: DESIGN AND DEVELOPMENT OF A KOCH-SIERPINSKI GASKET WIDEBAND DIELECTRIC RESONATOR ANTENNA
Kedar Trivedi, Dhaval Pujara, Institute of Technology, Nirma University, India

MO-A1.2A.8: DESIGN AND DEVELOPMENT OF A PRISM-SHAPED WIDEBAND DIELECTRIC RESONATOR ANTENNA
Kedar Trivedi, Dhaval Pujara, Institute of Technology, Nirma University, India
MO-A2.1A: DEVELOPMENTS IN CLOAKING

MO-A2.1A.1: MANTLE CLOAKING: ANTENNA APPLICATIONS ... 51
Alessio Monti, Niccolò Cusano University, Italy; Jason Soric, Andrea Alù, University of Texas at Austin, United States; Alessandro Toscano, Filiberto Bilotti, University of Roma Tre, Italy

MO-A2.1A.2: RADIO-FREQUENCY TRANSPARENT DIPOLE ANTENNAS .. 53
Jason Soric, Andrea Alù, University of Texas at Austin, United States

MO-A2.1A.3: AN INTEGRATED METASURFACE FILTERING CLOAK FOR MONOPOLE ANTENNAS 55
Zhi Hao Jiang, Douglas H. Werner, Pennsylvania State University, United States

MO-A2.1A.4: DESIGN AND EXPERIMENTAL VALIDATION OF A VIRTUAL LINE SOURCE USING METAMATERIALS
Caglar Emiroglu, Do-Hoon Kwon, University of Massachusetts Amherst, United States

MO-A2.1A.5: A SYSTEM-BY-DESIGN APPROACH FOR THE SYNTHESIS OF MULTI-LAYER MANTLE CLOAKS
Lorenza Tenuti, Giacomo Oliveri, Federico Viani, ELEDIA Research Center, University of Trento, Italy; Alessio Monti, Filiberto Bilotti, Alessandro Toscano, University Roma Tre, Italy; Andrea Massa, ELEDIA Research Center, University of Trento, Italy

MO-A2.1A.6: CLOAKING EXPLOITING ANISOTROPIC ADJOINT SENSITIVITY ANALYSIS 59
Laleh Seyyed Kalantari, Mohamed Bakr, McMaster University, Canada

MO-A2.1A.7: INVERSE SCATTERING HOMOGENIZATION METHOD FOR CONFORMAL METAMATERIAL STRUCTURES
Giuseppe Labate, Ladislau Matekovits, Mario Orefice, Politecnico di Torino, Italy

MO-A2.1A.8: CLOAKING A CONDUCTING SPHERE WITH DISPERSIVE METAMATERIAL COATING AND AN INTERVENING AIR GAP
Adnan Jamil, Tenneti Rao, University of Massachusetts Lowell, United States

MO-A2.1A.9: EFFECT ON SCATTERING CROSS SECTION FOR SCALED ANTI-OBJECT AND COORDINATE TRANSFORMED ANTI-OBJECT IN EXTERNAL CLOAKING
Archana Rajput, Pravallika Vura, Kushmanda Saurav, Kumar Vaibhav Srivastava, Indian Institute of Technology Kanpur, India

MO-A2.2A: ACTIVE AND NON-FOSTER STRUCTURES

MO-A2.2A.1: DISPERSION-REDUCED HIGH IMPEDANCE SURFACE LOADED WITH NON-FOSTER IMPEDANCES
Jiang Long, Daniel Sievenpiper, University of California, San Diego, United States

MO-A2.2A.2: STABILITY CONDITIONS FOR A DIGITAL DISCRETE-TIME NON-FOSTER CIRCUIT ELEMENT
Thomas Weldon, John Covington, Kathryn Smith, Ryan Adams, University of North Carolina at Charlotte, United States

MO-A2.2A.3: INFLUENCE OF TRANSMISSION LINE ON STABILITY OF NETWORKS CONTAINING IDEAL NEGATIVE CAPACITORS
Josip Loncar, Damir Muha, Silvio Hrabar, University of Zagreb, Croatia

MO-A2.2A.4: NONLINEAR MULTICONDUCTOR TRANSMISSION LINE ANALYSIS OF BROADBAND SWITCHING METAMATERIALS
Scott Rudolph, Walter Wall, Naval Research Laboratory, United States

MO-A2.2A.5: MILLIMETER-WAVE PHASE MODULATOR BASED ON VANADIUM DIOXIDE META-SURFACES
Mohammad Reza Hashemi, Shang-Hua Yang, University of California, Los Angeles, United States; Tongyu Wang, Nelson Sepulveda, Michigan State University, United States; Mona Jarraya, University of California, Los Angeles, United States
MO-A2.2A.7: TRANSIENT ANALYSIS OF NONLINEAR RIGHT-LEFT-HANDED TRANSMISSION LINES
Gregory Milford, University of New South Wales, Australia

MO-A4.1A: PROPAGATION CHARACTERIZATION IN VEHICULAR ENVIRONMENTS

MO-A4.1A.1: MODELING AND MEASUREMENT OF THE INFLUENCE OF ANTENNA TRANSVERSAL LOCATION ON TUNNEL PROPAGATION
Chenming Zhou, Ronald Jacksha, National Institute for Occupational Safety and Health, United States

MO-A4.1A.2: LARGE SCALE FADING CHARACTERISTICS IN RAIL TRAFFIC SCENARIOS
Ke Guan, Zhangdui Zhong, Bo Ai, Beijing Jiaotong University, China; Cesar Briso, Lei Zhang, Universidad Politécnica de Madrid, Spain

MO-A4.1A.3: COMPARISON OF UPLINK SAR VALUES IN TRAIN ENVIRONMENT FOR DIFFERENT WIRELESS TECHNOLOGIES
David Plets, Sam Aerts, Kris Vanhecke, Wout Joseph, Luc Martens, iMinds/UGent-WiCa, Belgium

MO-A4.1A.4: MODELING AND OPTIMIZATION OF COVERAGE IN LONDON UNDERGROUND SUBWAY TUNNELS
Neeraj Sood, Alon Ludwig, Xingqi Zhang, University of Toronto, Canada; Frans Bouwman, Patryk Nowicki, Colin Bantin, Joseph Siu, Thales Canada, Canada; Costas D. Sarris, University of Toronto, Canada

MO-A4.1A.5: CALIBRATION OF A 3-D RAY-TRACING MODEL IN RAILWAY ENVIRONMENTS
Xingqi Zhang, Neeraj Sood, University of Toronto, Canada; Joseph Siu, Thales Canada Transportation Solutions, Canada; Costas D. Sarris, University of Toronto, Canada

MO-A4.1A.6: EMPIRICAL CORRELATION PROPERTY OF MULTI-PATH FOR HIGH-SPEED RAILWAYS IN COMPOSITE PROPAGATION SCENARIO
Bei Zhang, Zhangdui Zhong, Ruisi He, Ke Guan, Jianwen Ding, Beijing Jiaotong University, China; Cesar Briso-Rodríguez, Universidad Politécnica de Madrid, Spain

MO-A4.1A.7: PATH LOSS CHARACTERIZATION FOR VEHICULAR-TO-INFRASTRUCTURE COMMUNICATIONS AT 700 MHZ AND 5.9 GHZ IN URBAN ENVIRONMENTS
Lorenzo Rubio, Universitat Politècnica de València, Spain; Herman Fernández, Universidad Pedagógica y Tecnológica de Colombia, Colombia; Vicent Miquel Rodrigo-Peñarrocha, Juan Reig, Universitat Politècnica de València, Spain

MO-A4.1A.8: PERFORMANCE EVALUATION OF UNDERGROUND STBC-MIMO SYSTEM UNDER IMPERFECT CHANNEL ESTIMATION ERRORS
Samira Boualleg, CDTA/USTHB, Algeria; Khalida Ghanem, Brahim Haraoubia, Centre de développement des technologies avancées, Algeria; Mourad Nedil, UQAT, Canada

MO-A4.1A.9: NON-STATIONARY CHANNEL CHARACTERISTICS IN HIGH-SPEED RAILWAY
Binghao Chen, Zhangdui Zhong, Bo Ai, Beijing Jiaotong University, China

MO-A4.1A.10: TIME-VARIANT CHARACTERISTICS FOR VEHICLE-TO-VEHICLE COMMUNICATIONS IN HIGHWAY SCENARIO
Qi Wang, Bo Ai, Beijing Jiaotong University, China; Xiang Cheng, Peking University, China; Yan Li, Zhangdui Zhong, Beijing Jiaotong University, China

MO-A5.2A: WIRELESS POWER TRANSMISSION

MO-A5.2A.1: DESIGN AND OPTIMIZATION OF EFFICIENT WIRELESS POWER TRANSMISSION SYSTEMS: THEORETICAL GUIDELINES AND EXPERIMENTAL VALIDATION
Massimo Donelli, Paolo Rocca, Federico Viani, Andrea Massa, ELEDIA Research Center, University of Trento, Italy

MO-A5.2A.2: OPTIMIZATION OF RESONANT INDUCTIVE LINKS FOR WIRELESS POWER TRANSFER
Hyeonseok Hwang, Junil Moon, Byeonghak Jo, Chankeun Kwon, Soo-Won Kim, Korea University, Republic of Korea
MO-A5.2A.3: TUNABLE OPEN ENDED PLANAR SPIRAL COIL FOR WIRELESS POWER TRANSMISSION
Telnaz Zarifi, Adam Maunder, Kambiz Moez, Pedram Mousavi, University of Alberta, Canada

MO-A5.2A.4: TUNABLE METAMATERIALS FOR OPTIMIZATION OF WIRELESS POWER TRANSFER SYSTEMS
J. Prasad Kumara Sampath, Arokiaswami Alphones, Nanyang Technological University, Singapore; Don Mahinda Vilathgamuwa, Queensland University of Technology, Australia

MO-A5.2A.5: EFFICIENCY COMPARISON BETWEEN RESONANT COIL AND METAMATERIAL SHEET FOR WIRELESS POWER TRANSFER
Gunbok Lee, Young Seok Noh, Pohang University of Science and Technology, Republic of Korea; Gi-bum Lee, Research Institute of Industrial Science & Technology, Republic of Korea; Wee Sang Park, Pohang University of Science and Technology, Republic of Korea

MO-A5.2A.6: DUAL-MODE WIRELESS POWER TRANSFER MODULE FOR SMARTPHONE APPLICATION
Minseok Han, Ji-Min Kim, Hoon Sohn, Korea Advanced Institute of Science and Technology, Republic of Korea

MO-A5.2A.7: EFFECTS OF METAMATERIAL SLAB WITH NEGATIVE PERMEABILITY APPLIED TO MAGNETICALLY-COUPLED WIRELESS POWER TRANSFER SYSTEM
Gunyoung Kim, Bomson Lee, Kyung Hee University, Republic of Korea

MO-A5.2A.8: COMPARISON OF MAGNETIC FIELD EXPOSURE FOR SISO AND MISO WIRELESS POWER TRANSFER SYSTEMS
Tim X. Liu, Hans-Dieter Lang, Costas D. Sarris, University of Toronto, Canada

MO-A5.2A.9: MISALIGNMENT INSENSITIVE WPT WITH CONFORMAL SCMR SYSTEMS
Hao Hu, Shun Yao, Kun Bao, Stavros V. Georgakopoulos, Florida International University, United States

MO-A5.2A.10: CONFORMAL SCMR SYSTEM WITH MULTIPLE RESONATORS
Kun Bao, Elad Siman Tov, Stavros V. Georgakopoulos, Florida International University, United States

MO-A5.1A: MIMO FOR 5G AND BEYOND

MO-A5.1A.1: SECURE KEY ESTABLISHMENT IN THE PRESENCE OF A PASSIVE EAVESDROPPER: IMPACT OF ANTENNA COUPLING
Attiya Mahmood, Michael Jensen, Brigham Young University, United States

MO-A5.1A.2: CRS PRECODING WEIGHTS FOR WIDE BEAM COVERAGE IN FD-MIMO ANTENNA ARRAYS
Ioannis Tzanidis, Yang Li, Gary Xu, Jianzhong Zhang, Samsung Research America - Dallas, United States

MO-A5.1A.3: AN ADAPTIVE MULTI-BEAM MASSIVE ARRAY ARCHITECTURE FOR 5G WIRELESS
Ruey-Bing Hwang, Yi-Che Tsai, Cherg-Chyi Hsiao, National Chiao Tung University, Taiwan

MO-A5.1A.4: HORIZONTALLY POLARIZED CYLINDRICAL MIMO RADAR ANTENNA ARRAY
Danyang Huang, Xuan Hui Wu, Minnesota State University, Mankato, United States

MO-A5.1A.5: WIDEBAND SELF-INTERFERENCE CANCELLATION FILTER FOR SIMULTANEOUS TRANSMIT AND RECEIVE SYSTEMS
Stephen Watt, Elias A. Alwan, Waleed Khalil, John L. Volakis, Ohio State University, United States

MO-A5.1A.6: DESIGN OF IMPEDANCE LOADING BOARD SUPPORTING LOAD-MODULATED BEAMSPACE MIMO SINGLE RF SYSTEM
Kyoungtae Lee, Il-Do Choi, JuYong Lee, Korea Advanced Institute of Science and Technology, Republic of Korea

MO-A5.1A.7: ANTENNA BEAMFORMING FOR INTERFERENCE CANCELLATION IN RADAR-WIRELESS SPECTRUM SHARING
Zhe Geng, Hai Deng, Florida International University, United States
MO-A5.1A.8: MIMO WAVEFORM DESIGN FOR MINIMIZING MULTIPATH FROM GROUND AND CEILING REFLECTIONS
Aashish Sharma, Shobha Sundar Ram, Indraprastha Institute of Information Technology, India

MO-A5.1A.9: RESEARCH ON THE CONFIGURATION OF TIME REVERSAL MIRROR IN TIME REVERSAL BEAMFORMING SYSTEM
Yu Yang, Bing-Zhong Wang, Zhishuang Gong, Ren Wang, Yaqing Wen, University of Electronic Science and Technology of China, China

MO-A5.1A.10: PERFORMANCE OF OFDM-IDMA AND OFDM-CDMA ARCHITECTURES OVER FREQUENCY SELECTIVE MISO CHANNELS
Widad Belaoura, EMP, Algeria; Khalida Ghanem, Centre de développement des technologies avancées, Algeria; Mustapha Djeddou, EMP, Algeria

MO-A5.3A: FLEXIBLE SUBSTRATES AND PASSIVES FOR UWB SYSTEMS

MO-A5.3A.1: A NOVEL ULTRA-WIDEBAND BANDPASS FILTER WITH A NOTCHED BAND
Jinxin Li, Tayeb A. Denidni, Institut National de la Recherche Scientifique (INRS), Canada; Jun Xu, University of Electronic Science and Technology of China, China; Qingsheng Zeng, Institut National de la Recherche Scientifique (INRS), Canada

MO-A5.3A.2: A STRUCTURE AND FAST DESIGN OF COMPACT UWB ANTENNA WITH UPPER WLAN BAND-NOTCH
Slawomir Koziel, Adrian Bekasiewicz, Reykjavik University, Iceland

MO-A5.3A.3: INKJET PRINTED BANDPASS FILTERS AND FILTENNAS USING SILVER NANOPARTICLE INK ON FLEXIBLE SUBSTRATE
Waqas Ahmad, University of Westminster, United Kingdom; Andrea Maric, Nikola Ivanisevic, University of Novi Sad, Serbia; Djuradj Budimir, University of Westminster, United Kingdom

MO-A5.3A.4: NOVEL FLEXIBLE ANTENNA FOR UWB APPLICATIONS
Sherif Zahran, Arab Academy for Science and Technology, Egypt; Mahmoud Abdalla, MTC College, Egypt

MO-A3.1A: HIGH ORDER INTEGRAL EQUATION SOLVERS

MO-A3.1A.1: HIGHER-ORDER METHOD OF MOMENTS ANALYSIS FOR UNCONNECTED QUADRILATERAL MESHES
Peter Meincke, Erik Jørgensen, Oscar Borries, TICRA, Denmark

MO-A3.1A.2: SUBDIVISION SURFACES FOR ELECTROMAGNETIC INTEGRAL EQUATIONS
Daniel Dault, Jie Li, Beibei Liu, Rundong Zhao, Yiyong Tong, Balasubramaniam Shanker, Michigan State University, United States

MO-A3.1A.3: ISOGEOOMETRIC ANALYSIS OF INTEGRAL EQUATIONS USING SUBDIVISION
Jie Li, Daniel Dault, Rundong Zhao, Beibei Liu, Yiyong Tong, Balasubramaniam Shanker, Michigan State University, United States

MO-A3.1A.4: HIGH ORDER LOCALLY CORRECTED NYSTRÖM METHOD WITH NORMAL CONTINUITY
Nastaran Hendijani, Jin Cheng, Robert J. Adams, John C. Young, University of Kentucky, United States

MO-A3.1A.5: A HIGHER-ORDER METHOD FOR ELECTROMAGNETIC SIMULATION OF CONDUCTING OBJECTS NEAR/ACROSS THE INTERFACE OF A HALF SPACE
Wan Luo, Zaiping Nie, Yongpin Chen, University of Electronic Science and Technology of China, China
MO-A5.4A: RFID TAGS AND SYSTEMS

MO-A5.4A.1: A NOVEL CO/CROSS-POLARIZING CHIPLESS RFID TAGS FOR HIGH CODING CAPACITY AND ROBUST DETECTION
Maher Khaliel, Ahmed El-Awamry, Abdelfattah Fawky, Mohamed El-Hadidy, Thomas Kaiser, Duisburg-Essen University, Germany

MO-A5.4A.2: MODAL-BASED APPROACH TO TUNE AND ENHANCE THE FREQUENCY AND DIELECTRIC BANDWIDTH OF A UHF-RFID TAG ANTENNA MOUNTED ON A DIELECTRIC SUBSTRATE
Ezdeen Elghannai, Roberto G. Rojas, Ohio State University, United States

MO-A5.4A.3: NUMERICAL INVESTIGATION ON THE TOLERANCE OF WEARABLE UHF-RFID TAGS TO HUMAN BODY COUPLING
Matteo Altini, Giovanni Andrea Casula, Giuseppe Mazzarella, Università di Cagliari, Italy; Paolo Nepa, University of Pisa, Italy

MO-A5.4A.4: MULTI-AXIS SINGLE-ANCHOR VS. SINGLE-AXIS MULTI-ANCHORS IN LONG-RANGE 2D MQS POSITIONING
Darmindra Arumugam, Jet Propulsion Laboratory, United States

MO-A5.4A.5: BACKSCATTERING MODULATION USING STRONGLY COUPLED MAGNETIC RESONANCE (SCMR) ANTENNAS
Elad Siman Tov, Kun Bao, Stavros V. Georgakopoulos, Florida International University, United States

MO-A5.4A.6: SPECTRAL EXTRACTION OF CHIPLESS RFID TAG USING TIME DOMAIN ANALYSIS
Nijas C M, Sajitha V R, Vivek R, Mohanan P, Bina Paul, Mridula S, Cochin University of Science and Technology, India

MO-A3.2A: NOVEL FINITE ELEMENT AND DOMAIN DECOMPOSITION METHODS

MO-A3.2A.1: A 2D INTERFACE-ENRICHED GENERALIZED FEM FOR EM ANALYSIS OF COMPOSITE MATERIALS
Kedi Zhang, Ahmad Raeisi Najafi, Philippe H. Geubelle, Jian-Ming Jin, University of Illinois at Urbana-Champaign, United States

MO-A3.2A.2: A 3D INTERFACE-ENRICHED GENERALIZED FEM FOR EM ANALYSIS OF COMPOSITE MATERIALS
Kedi Zhang, Philippe H. Geubelle, Jian-Ming Jin, University of Illinois at Urbana-Champaign, United States

MO-A3.2A.3: W-FETI: GLOBAL DOMAIN DECOMPOSITION PRECONDITIONING DONE RIGHT
Wei Wang, Marinos N. Vouvakis, University of Massachusetts Amherst, United States

MO-A3.2A.4: RANDOMIZED COMPUTATIONS IN DOMAIN DECOMPOSITION METHODS
Wei Wang, Marinos N. Vouvakis, University of Massachusetts Amherst, United States

MO-A3.2A.5: EB SCHEME HYBRID SPECTRAL-FINITE ELEMENT TIME DOMAIN METHOD FOR SUPER MULTISCALE SIMULATION
Qiang Ren, Qing Huo Liu, Duke University, United States

MO-SP.1P: INNOVATIVE ANALYTICAL AND NUMERICAL TECHNIQUES FOR THE SOLUTION OF OPEN EM PROBLEMS: COMPLEX SCATTERING PROBLEMS, SPECIAL MATERIALS, NANOSTRUCTURES

MO-SP.1P.1: ELECTROMAGNETIC SCATTERING OF A COMPLEX-SOURCE BEAM BY SEMI-INFINITE SECTORS AND CONES
Hendrik Brüns, Ludger Klinkenbusch, Kiel University, Germany
MO-SP.1P.2: THE PROPAGATING FRAME: A NOVEL FRAMEWORK FOR WAVE TRACKING ... 183
THROUGH ROUGH MEDIUM AND FOR INVERSE SCATTERING
Matan Leibovich, Ram Tuvi, Ehud Heyman, Tel Aviv University, Israel

MO-SP.1P.4: WIENER-HOPF FORMULATION OF AN UNALIGNED PEC WEDGE OVER A 185
STRATIFICATION
Vito G. Daniele, Istituto Superiore Mario Boella - Politecnico di Torino, Italy; Guido Lombardi, Politecnico di Torino, Italy

MO-SP.1P.6: ANALYTICAL AND NUMERICAL MODELING OF PASSIVE AND ACTIVE COATED 187
NANOPARTICLES
Richard W. Ziolkowski, University of Arizona, United States

MO-SP.1P.7: ERROR-CONTROLLED BOUNDARY ELEMENT MODELING OF 3D PLASMONIC 189
NANO-STRUCTURES VIA HIGHER-ORDER LOCALLY CORRECTED NYSTROM METHOD
Mohammad Shafieipour, Vladimir I. Okhatovski, University of Manitoba, Canada

MO-SP.1P.8: EFFICIENT NUMERICAL MODELLING OF A SPECIAL CLASS OF PHOTONIC 191
CRYSTALS USING THE TIGHT BINDING APPROACH
Nima Chamanara, Christophe Caloz, Poly-Grames Research Center, Canada

MO-SP.1P.9: IMPEDANCE MODELING OF CHESSBOARD-PATTERNED DEFLECTORS COMPOSED N/A
OF METASURFACES WITH SUBWAVELENGTH INCLUSIONS
Ali Eren Culhaoglu, Andrey Osipov, German Aerospace Center (DLR), Germany

MO-SP.1P.10: A NEW FORMULATION DISCONTINUOUS GALERKIN SURFACE INTEGRAL 195
EQUATION METHOD FOR TIME-HARMONIC WAVE SCATTERING PROBLEM
Dongwei Li, Jiangong Wei, Jin-Fa Lee, Ohio State University, United States

MO-SP.2P: ANTENNAS AND SENSORS FOR EPIDERMAL ELECTRONICS

MO-SP.2P.4: ENHANCED READ RANGE TATTOO RFID TAGS ... 197
Dumtoochukwu Oyeka, John C Batchelor, Badredin. M Turki, University of Kent, United Kingdom

MO-SP.2P.5: CHARACTERISING SKIN-BASED NANO-NETWORKS FOR HEALTHCARE 199
MONITORING APPLICATIONS AT THZ
Ke Yang, Nishtha Chopra, Jamie Upton, Yang Hao, Mike Philpott, Queen Mary University of London, United Kingdom; Qammer Hussain Abbasi, Khalid Qaraqe, Texas A&M University at Qatar, Qatar; Akram Alomainy, Queen Mary University of London, United Kingdom

MO-SP.2P.6: BODY-WORN ANTENNAS, SENSORS AND A NOVEL CLASS OF ELECTRONIC 201
TEXTILES
Asimina Kiourti, John L. Volakis, Ohio State University, United States

MO-SP.2P.7: ON-SKIN TUNABLE RFID LOOP TAG FOR EPIDERMAL APPLICATIONS 202
Sara Amendola, Stefano Milici, Gaetano Marrocco, University of Roma Tor vergata, Italy; Cecilia Occhiuzzi, RADIO6ENSE S.r.l, Italy

MO-SP.2P.9: A NOVEL FLEXIBLE WEARABLE MAGNETIC ENERGY HARVESTER UTILIZING 204
INKJET MASKING TECHNIQUES
Jo Bito, Manos Tentzeris, Georgia Institute of Technology, United States

MO-A1.1P: WAVEGUIDE SLOT ARRAYS I

MO-A1.1P.1: SLOT ANTENNA ARRAY ON TRIANGULAR WAVEGUIDE... 206
Ying Chen, Rodney Vaughan, Simon Fraser University, Canada
MO-A1.1P.2: X-BAND PARALLEL-PLATE SLOT ARRAY ANTENNA FOR SAR SENSOR ONBOARD 100 KG

Prilando Rizki Akbar, Hirobumi Saito, Institute of Space and Astronautical Science of JAXA, Japan; Miao Zang, Jiro Hirokawa, Makoto Ando, Tokyo Institute of Technology, Japan

MO-A1.1P.3: LOCOMO SATCOM TERMINAL: A SWITCHABLE RHCP/LHCP ARRAY ANTEENNA FOR ON-THE-MOVE APPLICATIONS IN KA-BAND

Jose Ignacio Herranz-Herruzo, Miguel Ferrando-Rocher, Alejandro Valero-Nogueira, Universitat Politècnica de València, Spain; Regis Lenormand, Antonín Hirsch, Jean-Luc Almeida, Mathieu Arnaud, Lyonel Barthe, Thales Alenia Space, France

MO-A1.1P.4: WIDTH EFFECTS ON ELECTROMAGNETIC AND MECHANICAL BEHAVIOR OF Z-SLOTTED WAVEGUIDE ANTENNAS

Qing Lan, Derek Gray, Xi’an Jiatong Liverpool University, China; Stanley Chen, University of Nottingham, China; Kunio Sakakibara, Nagoya Institute of Technology, Japan

MO-A1.1P.5: CONTROLLABLE-SIDELOBE SLOTTED WAVEGUIDE ANTENNAS WITH CORRUGATIONS FOR FREQUENCY SELECTIVITY

Mohammed Al-Husseini, Lebanese Center for Studies and Research, Lebanon; Hilal M. El Misilmani, Karim Y. Kabalan, Ali El-Hajj, American University of Beirut, Lebanon; Xuyuan Pan, Christos Christodoulou, University of New Mexico, United States

MO-A1.1P.6: DESIGN PROCEDURE FOR 2D SLOTTED WAVEGUIDE ANTENNA WITH CONTROLLABLE SIDELOBE LEVEL

Hilal M. El Misilmani, American University of Beirut, Lebanon; Mohammed Al-Husseini, Beirut Research and Innovation Center, Lebanon; Karim Y. Kabalan, Ali El-Hajj, American University of Beirut, Lebanon

MO-A1.1P.7: WAVEGUIDE SLOT ARRAY ANTENNA DESIGN WITH A NOVEL COMPACT ARCHITECTURE

Wentao Zhang, Fengyun Cui, Qiang Wang, Xiaoyang He, Chun Yang, Yong Cui, China Academy of Engineering Physics, China

MO-A1.1P.8: DUAL BAND DUAL POLARIZED ANTENNA FOR SAR

Wei Wang, Hongtao Zhang, Ming Chen, Jiaoguo Lu, East China Research Institute of Electronic Engineering, China; Ying Liu, Xidian University, China

MO-A1.1P.9: A HIGH GAIN-BANDWIDTH, NEARLY OMNIDIRECTIONAL WAVEGUIDE SLOT ARRAY ANTENNA

Rintu Kumar Gayen, Sushrut Das, Ashmi Chakraborty Das, Indian School of Mines, India

MO-A1.2P: BEAMFORMING STRUCTURES

MO-A1.2P.1: X-BAND PHASE SHIFTERS AND BEAM FORMING NETWORKS USING MICROFLUIDICALLY CONTROLLED METALLIZED PLATES

Timothy Palomo, Gokhan Mumcu, University of South Florida, United States

MO-A1.2P.2: A PLANAR FEED FOR SOTM KA-BAND LENS ANTENNAS

MO-A1.2P.3: UNIFORM CIRCULAR ARRAY WITH INTEGRATED MICROSTRIP TAPERED BALUNS

Brad Jackson, Bruce Liao, Defence R&D Canada, Canada

MO-A1.2P.4: BROADBAND 4 X 4 BUTLER MATRIX FOR K- AND KA- BANDS

Abdulrahman Alaqeel, Sultan Almorqi, King Abdullah City for Science and Technology, Saudi Arabia; Osama Haraz, Muhammad Ashraf, Saleh Alshebeili, Abdel-Razik Sebak, King Saud University, Saudi Arabia

MO-A1.2P.5: X-BAND SUBSTRENTE INTEGRATED ROTMAN LENS WITH ±24° SCANNING CAPABILITY

Javad Pourrahmadazar, Tayeb A. Denidni, National Institute of Scientific Research (INRS) Centre for Energy, Materials and Telecommunication, Canada
MO-A1.2P.6: AN INITIAL STUDY ON USING CARBON MICROFIBER TRANSMISSION LINES IN
CONFORMAL ARRAY NETWORKS
Sajid Asif, Adnan Iftikhar, Benjamin Braaten, North Dakota State University, United States; Muhammad Khan, University of Padova, Italy

MO-A1.2P.7: PHASER-BASED FEEDING NETWORK FOR UNIFORMLY SCANNING ANTENNA ARRAYS
Ge Zhang, Qingfeng Zhang, Fan Yang, Yifan Chen, South University of Science and Technology of China, China; Christophe Caloz, Polytechnique de Montréal, Canada; King Abdulaziz University, Saudi Arabia; Ross D. Murch, Hong Kong University of Science and Technology, Hong Kong SAR of China

MO-A1.2P.8: A PROTOTYPE OF FEED SUBSYSTEM FOR A MULTIPLE-BEAM ARRAY-FED REFLECTOR ANTENNA
Qinghua Lai, Pei Li, Xiaopeng Lu, Chu Gao, East China Research Institute of Electronic Engineering, China

MO-A1.2P.9: A WIDE-BAND 180-DEGREE PHASE SHIFTER USING A PAIR OF COUPLED-LINE STUBS
Yongle Wu, Lidan Yao, Weimin Wang, Yuanan Liu, Beijing University of Posts and Telecommunications, China

MO-A1.2P.10: FOCUSED ARRAY ANTENNA USING SUBARRAYS
Peng-Fa Li, Shi-Wei Qu, Run-Liang Xia, University of Electronic Science and Technology of China, China

MO-A2.1P: METASURFACE AND METAMATERIAL APPLICATIONS

MO-A2.1P.1: NOVEL METAMATERIAL ABSORBER WITH FRACTAL ELEMENTS
Te-Kao Wu, FSS, EM, and Antenna Consulting, United States

MO-A2.1P.2: PANCHARTNAM-BERRY METASURFACES WITH GIANT NONLINEAR RESPONSE
Mykhailo Tymchenko, Andrea Alù, University of Texas at Austin, United States

MO-A2.1P.3: CYLINDRICAL NEAR-FIELD DIRECTING SHELL
Brian Raeker, Scott Rudolph, Naval Research Laboratory, United States

MO-A2.1P.4: USING SIGNAL ESTIMATION FOR NEAR-FIELD PLATE OPTIMIZATION
Erik Gamez Rodriguez, David Schurig, Gianluca Lazzi, University of Utah, United States

MO-A2.1P.5: ABERRATION-FREE PLANAR FOCUSING BASED ON PARITY-TIME SYMMETRIC NONLOCAL METAMATERIALS
Francesco Monticone, Andrea Alù, University of Texas at Austin, United States; Constantinos Valagiannopoulos, Aalto University, Finland

MO-A2.1P.6: BEAMFORMING BOW-TIE ANTENNA FOR MILLIMETER-WAVE APPLICATIONS USING METAMATERIAL LENS
Abdolmeidh Dadgarpour, Behnam Zargsooni, Tayeb A. Denidni, Institut National de la Recherche Scientifique (INRS), Canada

MO-A2.1P.7: COMPLETE TRANSMISSION THROUGH SHORT WAVEGUIDE BENDS USING CONNECTED BI-OMEGA PARTICLES
Davide Ramaccia, “RomaTre” University, Italy; Mirko Barbuto, “Niccolò Cusano” University, Italy; Filiberto Bilotti, Alessandro Toscano, “RomaTre” University, Italy

MO-A2.1P.8: FREQUENCY SELECTIVE TRANSMISSION THROUGH WAVEGUIDES WITH ENZ SECTIONS
Navid Pourramzan Gandji, George Semouchkin, Elena Semouchkina, Michigan Technological University, United States

MO-A2.1P.9: RING RESONANCES IN GROOVE GAP WAVEGUIDES WITH APPLICATION TO SLOT ARRAY ANTENNAS
Alejandro Jimenez Saez, Alejandro Valero-Nogueira, Jose Ignacio Herranz-Herruzo, Vicent Miquel Rodrigo-Peñarrocha, Universitat Politècnica de València, Spain
MO-UB.1P: NANOANTENNA CONSIDERATIONS

MO-UB.1P.1: A REDUCED ORDER ADMITTANCE MODEL FOR LONGITUDINALLY LOADED .. 262
PLASMONIC NANOROD ANTENNAS
Anastasios Panaretos, Douglas H. Werner, Pennsylvania State University, United States

MO-UB.1P.2: ANALYSIS AND DESIGN OF AN OPTICAL TRAPPED NANO DIPOLE USING .. 264
PLASMONIC CORE-SHELL PARTICLES
Anastasios Panaretos, Douglas H. Werner, Pennsylvania State University, United States

MO-UB.1P.3: STUDY ON THE LONG RANGE ACTIVE COATED NANO PARTICLES ... 266
Junping Geng, Ronghong Jin, Xianling Liang, Shanghai Jiao Tong University, China; Richard W. Ziolkowski, University of Arizona, United States

MO-UB.1P.10: ENHANCEMENT OF CARBON NANOTUBE ANTENNA WITH GAS SENSOR 268
CAPABILITIES THROUGH CHEMICAL FUNCTIONALIZATION
Steven Keller, Jinting Liu, Amir Zaghloul, Army Research Laboratory, United States

MO-A4.1P: PROPAGATION AND SCATTERING IN COMPLEX MEDIA

MO-A4.1P.1: A STATISTICAL STUDY OF DYADIC ANGULAR SPECTRUM IN RANDOM SCATTERING 270
ENVIRONMENTS
Jie Xu, Loyola Marymount University, United States

MO-A4.1P.2: EXPERIMENTAL CHARACTERIZATION OF IMPULSIVE NOISE IN A RAILWAY 272
ENVIRONMENT
Bertrand Nkakanou, Gilles Y. Delisle, Université Laval, Canada; Nadir Hakem, Université du Québec en Abitibi-Témiscamingue, Canada

MO-A4.1P.3: OPPORTUNISTIC CROWD SENSING IN WIFI-ENABLED INDOOR AREAS .. 274
Fabrizio Robol, Federico Viani, Alessandro Polo, Enrico Giarola, Paola Garofalo, Cristian Zambiasi, Andrea Massa, ELEDIA Research Center, University of Trento, Italy

MO-A4.1P.4: WIRELESS COVERAGE OPTIMIZATION FOR ROBOTIC SWARM IN EMERGENCY 276
SCENARIO
Federico Viani, Enrico Giarola, Paolo Rocca, Giacomo Oliveri, Andrea Massa, ELEDIA Research Center, University of Trento, Italy

MO-A4.1P.5: PRELIMINARY STUDY ON THE USE OF COMPLEX MEDIA FOR ANTENNA 278
CHARACTERIZATION
Mouad Djedidi, Florian Monsef, Andrea Cozza, UMR 8507 – UPSud, CentraleSupélec, CNRS, UPMC, France

MO-A4.1P.6: PROPAGATION AND SCATTERING IN A MICROWAVE PLASMA CHAMBER 280
Eric Peterson, Vijay Katta, Jayanti Venkataraman, Rochester Institute of Technology, United States; Merritt Funk, Megan Doppel, Jianping Zhao, Tokyo Electron America, United States

MO-A4.1P.7: A HYBRID PERTURBATIONAL AND TRANSFORMATIONAL ELECTROMAGNETICS 282
APPROACH FOR MODELING ROUGH SURFACE SCATTERING PROBLEMS
Mustafa Kuzuoglu, Middle East Technical University, Turkey; Ozlem Ozgun, Hacettepe University, Turkey

MO-A4.1P.8: MODELING ELECTROMAGNETIC SCATTERING FROM RANDOM ARRAY OF OBJECTS 284
BY FORM INVARIENCE OF MAXWELL’S EQUATIONS
Ozlem Ozgun, Hacettepe University, Turkey; Mustafa Kuzuoglu, Middle East Technical University, Turkey

MO-A4.1P.9: FULL-WAVE SIMULATION OF PROPAGATION IN HUMAN CROWDS 286
Miroslav Veljovic, Dragan Olean, Branko Kolundzija, University of Belgrade, Serbia

MO-A4.1P.10: FAST SOLUTION OF VOLUME INTEGRAL EQUATIONS WITH COMPLEX MATERIALS 288
Jie Zhang, Si Cong Yan, Chun Xia Yang, Mei Song Tong, Tongji University, China
MO-A5.1P: MIMO CHANNEL MEASUREMENTS AND PERFORMANCE EVALUATIONS

MO-A5.1P.1: 2X2 MIMO DOWNLINK OTA MEASUREMENT BASED ON CTIA GUIDELINES ... 290
Alessandro Scannavini, Lars Jacob Foged, Microwave Vision Group, Italy; John Estrada, Nicolas Gross, MVG Inc. Americas, United States

MO-A5.1P.2: PAS CONTROL IN A RECONFIGURABLE OTA CHAMBER... 292
Rashid Mehmood, Jon Wallace, Michael Jensen, Brigham Young University, United States

MO-A5.1P.3: A BASE STATION CORRELATION-CONTROLLED BILATERAL EMULATOR FOR.......................... 294
Kazuhiro Honda, Toshihiko Kabeya, Kento Karitan, Kun Li, Koichi Ogawa, Toyama University, Japan; Yoshio Koyanagi,
Hirosi Sato, Ritsa Miura, Panasonic System Networks Co., Ltd., Japan

MO-A5.1P.4: MEASURED 2X2 MIMO UHF CHANNELS IN AN URBAN ENVIRONMENT... 296
Michael Daly, Marcos Ontiveros, Jeffery Allen, Kristopher Buchanan, Diana Arceo, Space and Naval Warfare Systems Center,
Pacific, United States

MO-A5.1P.5: VARIABILITY OF ELLIPTICITY STATISTIC OF MIMO INDOOR RADIO CHANNELS 298
Hassan El-Sallabi, Mohamed Abdallah, Texas A&M University at Qatar, Qatar; Jean-Francois Chamberland, Texas A&M
University, United States; Khalid Qaraqe, Texas A&M University at Qatar, Qatar

MO-A5.1P.6: PERFORMANCE EVALUATION OF MASSIVE MIMO USING CYLINDRICAL ARRAY IN A 300
REAL MICROCELL ENVIRONMENT
Ryochi Kataoka, Kentaro Nishimori, Niigata University, Japan; Ngochao Tran, Tetsuro Imai, NTT DOCOMO INC., Japan

MO-A5.1P.7: CHANNEL CAPACITY UNDER MEASUREMENT-BASED MODEL FOR COOPERATIVE 302
VEHICULAR AD HOC NETWORKS
Ruifeng Chen, Beijing Jiaotong University, China; Zhengguo Sheng, University of Sussex, United Kingdom; Minming Ni,
Zhangdui Zhong, Beijing Jiaotong University, China; David Michelson, University of British Columbia, Canada

MO-A5.1P.8: ANTENNA DECISION METHOD FOR DOWNLINK MULTIUSER MIMO SYSTEMS 304
WITH RECEIVE ANTENNA ALLOCATION
Tomoki Murakami, Yasushi Takatori, Masato Mizoguchi, NTT Corporation, Japan; Fumiaki Maehara, Waseda university, Japan

MO-A5.1P.9: PERFORMANCE OF LTE COMMUNICATION SYSTEM IN CORRELATED RAYLEIGH 306
CHANNEL WITH DIFFERENT ANTENNA CONFIGURATIONS
Nessrine Smalli, EMP, Algeria; Khalida Ghanem, Centre de développement des technologies avancées, Algeria; Mustapha
Djeddou, EMP, Algeria

MO-A5.1P.10: MEASURED MIMO CHANNEL CAPACITY OF A VIRTUAL COLOCATED 308
TRI-POLARIZED LOOP ANTENNA
Dazhi Piao, Lingyu Yang, Huaqing Zhang, Jianxun Su, Zengrui Li, Communication University of China, China

MO-A5.2P: ANTENNAS MANUFACTURED WITH ADDITIVE TECHNOLOGIES

MO-A5.2P.1: CPW-FED 3D CUBIC FOLDED ANNULAR SLOT ANTENNA .. 310
Souren Shamsinejad, Pedram Mousavi, University of Alberta, Canada; Franco De Flaviis, University of California, Irvine,
United States

MO-A5.2P.2: TRANSPARENT AND STRETCHABLE CHIPLESS RFID FABRICATED USING SILVER 312
NANO WIRE AND 3D PRINTED MASK
Taehae Jang, L. Jay Guo, University of Michigan, United States

MO-A5.2P.3: DESIGN AND IMPLEMENTATION OF A 3D PRINTED DISCONE ANTENNA FOR TV 314
BROADCASTING SYSTEM
Ricardo Gonçalves, Pedro Pinho, Nuno Carvalho, Instituto de Telecomunicações, Portugal
MO-A5.2P.4: APPLICATION OF 3-D METAL-DIRECT-PRINTING TECHNIQUE FOR WAVEGUIDE ANTENNA FABRICATION
Guan-Long Huang, Tan-Huat Chio, Tat-Soon Yeo, National University of Singapore, Singapore; Shi-Gang Zhou, Northwestern Polytechnical University, China

MO-A5.2P.5: AUTOMATED DESIGN OF A 3D PRINTED WAVEGUIDE SURFACE COUPLER
Constantine Sideris, California Institute of Technology, United States; Chen Yang, Sung-Yueh Wu, Firas Sammoura, Liwei Lin, University of California, Berkeley, United States; Ali Hajimiri, California Institute of Technology, United States; Elad Alon, University of California, Berkeley, United States

MO-A5.2P.6: DEFICIENCIES IN PRINTED FSS INTENDED FOR APPLICATION IN SMART BUILDINGS
Badredin M Turki, Edward A Parker, University of Kent, United Kingdom; Rachel Saunders, Joseph S.R. Wheeler, Stephe G Yeates, University of Manchester, United Kingdom; John C Batchelor, University of Kent, United Kingdom

MO-A5.2P.7: DESIGN OF A WIDEBAND AND LOW-PROFILE MONOPULSE ARRAY FABRICATED BY 3-D METAL PRINTING Technique
Guan-Long Huang, Tan-Huat Chio, Tat-Soon Yeo, National University of Singapore, Singapore; Shi-Gang Zhou, Northwestern Polytechnical University, China

MO-A5.2P.8: A 3D PRINTED HELICAL ANTENNA WITH INTEGRATED LENS
Muhammad Fahad Farooqui, Atif Shamim, King Abdullah University of Science and Technology, Saudi Arabia

MO-A5.2P.9: OPERATION OF 8-WAVELENGTH-RADIUS 2-LAYER LENSES
Derek Gray, Xi’an Jiatong Liverpool University, China; Nasiha Nikolic, CSIRO, Australia; John Thornton, Antennas Research, United Kingdom

MO-A5.2P.10: A NOVEL 3-D PRINTED ELECTROMAGNETIC BANDGAP STRUCTURE FOR PARALLEL PLATE MODE SUPPRESSION IN MICROSTRIP CIRCUIT PACKAGES
Yongrong Shi, Nanjing University of Science and Technology, China; Wanchun Tang, Jiawei Zhou, Wei Zhuang, Nanjing Normal University, China

MO-A3.1P: FDTD METHODS

MO-A3.1P.1: A ROTATED SUBGRID FOR 3D FDTD
Christopher Railton, University of Bristol, United Kingdom

MO-A3.1P.2: FINITE FSS STRUCTURE ANALYSIS USING A HYBRID HIGH ORDER FDTD AND SUBGRIDDING METHOD
Longjian Zhou, Feng Yang, University of Electronic Science and Technology of China, China

MO-A3.1P.3: A CONSERVATIVE FDTD M(2,4) SCHEME IN 3D WITHOUT TIME STEP REDUCTION FOR REDUCING DISPERSION
Nicolas Bui, Christophe Guiffaut, Alain Reineix, XLIM Institute, France; Philippe Pouliguen, DGA/DS/MRIS, France

MO-A3.1P.4: CONSTRUCTING NONSTANDARD AND HIGH ORDER FDTD SCHEMES IN CYLINDRICAL COORDINATES USING SPECTRAL DOMAIN AND MODIFIED EQUATION METHODOLOGIES
Bezalel Finkelstein, Raphael Kastner, Tel Aviv University, Israel

MO-A3.1P.5: ON THE LOW-FREQUENCY BREAKDOWN OF FDTD
Md Gaffar, Dan Jiao, Purdue University, United States

MO-A3.1P.6: THREE-STEP LOD-FDTD METHOD INCLUDING LUMPED RESISTORS AND ITS STABILITY ANALYSIS
Yong-Dan Kong, Qing-Xin Chu, South China University of Technology, China
MO-A3.1P.7: ACCURATE MATRIX-FREE TIME-DOMAIN METHOD WITH TRADITIONAL VECTOR BASES IN UNSTRUCTURED MESHES
Jin Yan, Dan Jiao, Purdue University, United States

MO-A3.1P.8: A HYBRID FDTD-SIE APPROACH FOR RADAR IMAGING SYSTEM SIMULATION
Traian Dogaru, DaHan Liao, Army Research Laboratory, United States

MO-A3.1P.9: A NEW EXPLICIT AND UNCONDITIONALLY STABLE FDTD METHOD FOR ANALYZING GENERAL LOSSY PROBLEMS
Md Gaffar, Dan Jiao, Purdue University, United States

MO-A3.1P.10: A NEW SIMD-BASED FDTD MESHING ALGORITHM USED FOR FDTD SIMULATION OF AIRCRAFT PLATFORM
Yang Guo, Xiang-Hua Wang, Jun Hu, Zhejiang University, China; Lian-Dong Wang, State Key Lab of Complex Electromagnetic Environment Effects on Electronic and Information System, China; Wen-Yan Yin, Zhejiang University, China

MO-A5.3P: ANTENNAS FOR BIOMEDICAL APPLICATIONS

MO-A5.3P.1: DEVELOPMENT OF COMPACT THREE-DIMENSIONAL UNIDIRECTIONAL ULTRA-WIDEBAND ANTENNAS FOR PORTABLE MICROWAVE HEAD IMAGING SYSTEMS
Ahmed Toaha Mobashsher, Amin M. Abbosh, University of Queensland, Australia

MO-A5.3P.2: MINIATURIZED UWB ANTIPODAL VIVALDI ANTENNA FOR A MECHATRONIC BREAST CANCER IMAGING SYSTEM
Ali Molaei, Ashkan Ghanbarzadeh Dagheyan, Juan Heredia Juesas, Jose Angel Martinez Lorenzo, Northeastern University, United States

MO-A5.3P.3: SWITCHED SENSOR ARRAY FOR NEAR-FIELD MICROWAVE IMAGING OF TISSUE
Alex Beaverstone, Natalia Nikolova, McMaster University, Canada

MO-A5.3P.4: A POLYCARBONATE RFID TAG FOR BLOOD CHAIN TRACKING
Alessandro Fanti, Roberto Secci, Gianluca Boi, Sergio Casu, Giovanni Andrea Casula, Giuseppe Mazzarella, Giorgio Montisci, University of Cagliari, Italy

MO-A5.3P.5: ENERGY HARVESTING SYSTEM INTEGRATED ON WEARABLE CONTACT LENS
Luyao Chen, George Shaker, Safieeddin Safavi-Naeini, University of Waterloo, Canada

MO-A1.3P: CIRCULARLY POLARIZED ANTENNAS

MO-A1.3P.1: INVESTIGATION OF REDUCED HEIGHT DUAL-POLARIZED ARCHIMEDEAN SPIRAL ANTENNAS WITH UNIDIRECTIONAL RADIATION PATTERNS
A M. Mehrabani, Lotfollah Shafai, University of Manitoba, Canada

MO-A1.3P.2: STUDY OF COUPLED SPLIT-RING RESONATOR ARRAYS FOR CIRCULAR POLARIZATION SELECTIVE SURFACE
Wenxing Tang, George Goussetis, Heriot-Watt University, United Kingdom; Nelson J. G. Fonseca, Moltek Consultants Ltd, Netherlands; Hervé Legay, Thales Alenia Space, France; Elena Sáenz, ETH Zürich, Netherlands; Peter de Maagt, European Space Agency, Netherlands

MO-A1.3P.3: DESIGN OF A BROADBAND CIRCULARLY-POLARIZED LENS ANTENNA WITH A LINEARLY POLARIZED FEEDER
Yujie Liu, Yuehe Ge, Yinyan Chen, Huaqiao University, China

MO-A1.3P.4: 45° SLANT-POLARIZED OMNIDIRECTIONAL ANTENNA: METAMATERIAL-BASED LOOP-DIPOLE ANTENNA
Yi Zhang, Zhengzhou Information Science and Technology Institute, China; Zhijun Zhang, Zhenghe Feng, Tsinghua National Laboratory for Information Science and Technology, China
MO-A1.4P: ANTENNA DECOUPLING TECHNIQUES

MO-A1.4P.1: LOW PROFILE DUAL BAND WLAN ANTENNA ARRAY FOR MOBILE TERMINALS 378
Kun Wang, Thomas Eibert, Technische Universität München, Germany

MO-A1.4P.2: ISOLATION ENHANCEMENT OF TWO PLANAR MONOPOLE ANTENNAS FOR MIMO 380
WIRELESS APPLICATIONS
Ayman Isaac, Hussain Al-Rizzo, Ali Hammoodi, Said Abushamleh, University of Arkansas at Little Rock, United States; Haider Khaleel, Sonoma State University, United States

MO-A1.4P.3: ISOLATION ENHANCEMENT OF TWO CLOSELY SPACED PLANAR MONOPOLE 382
ANTENNAS FOR INDUSTRIAL, SCIENTIFIC, AND MEDICAL APPLICATIONS
Ayman Isaac, Hussain Al-Rizzo, Ali Hammoodi, Said Abushamleh, University of Arkansas at Little Rock, United States; Haider Khaleel, Sonoma State University, United States

MO-A1.4P.4: DESIGN OF COMPACT RF CHOKE FOR SUPPRESSING GROUND EDGE CURRENT 384
IN LTE MOBILE APPLICATION
Woo Cheol Choi, Seonho Lim, Young Joong Yoon, Yonsei University, Republic of Korea

MO-A1.4P.5: ENHANCING ISOLATION BETWEEN TWO CLOSELY SPACED PATCH ANTENNAS 386
USING PARASITIC ELEMENTS
Hongye Qi, Xiaoxing Yin, Hongxin Zhao, Southeast University, China; Leilei Liu, Nanjing University of Posts and Telecommunications, China

MO-A1.4P.6: MUTUAL COUPLING REDUCTION OF DUAL-FREQUENCY PATCH ANTENNAS USING 388
A SIMPLE MICROSTRIP H-SECTION
Yantao Yu, Lijun Yi, Xiaoya Liu, Zhaokai Gu, Jinghe Li, Chongqing University, China
TU-SP.1A: COMPRESSIVE SENSING AND APPLICATIONS IN ANTENNAS AND IMAGING TECHNOLOGIES

TU-SP.1A.1: ADVANCES ON COMPRESSIVE SENSING BASED APPROACHES FOR INVERSE SCATTERING
Lorenzo Poli, ELEDIA Research Center, University of Trento, Italy; Toshifumi Moriyama, University of Nagasaki, Japan; Giacomo Oliveri, Federico Viani, Andrea Massa, ELEDIA Research Center, University of Trento, Italy

TU-SP.1A.2: IMAGING BREAST CANCER IN A HYBRID DBT / NRI SYSTEM USING COMPRESSIVE SENSING
Richard Obermeier, Juan Heredia Juesas, Jose Angel Martinez Lorenzo, Northeastern University, United States

TU-SP.1A.3: COMPRESSIVE SENSING BASED APPROACH FOR DETECTION OF HUMAN RESPIRATORY RATE
Vinh Dang, Tuan Phan, Ozlem Kilic, Catholic University of America, United States

TU-SP.1A.5: TOWARDS SMARTER FASTER UWB TRANSCEIVERS
Haofei Wang, Beijing Institute of Technology, China; Vinh Dang, Catholic University of America, United States; Linyun Ren, Aly E. Fathy, University of Tennessee, United States; Erke Mao, Beijing Institute of Technology, China; Ozlem Kilic, Catholic University of America, United States

TU-SP.1A.6: COMPARISON OF METHODS FOR REFLECTARRAY DIAGNOSTIC FROM FAR FIELD MEASUREMENTS
Benjamin Fuchs, Laurent Le Coq, Laurent Ferro-Famil, University of Rennes 1 - IETR, France; Marco Donald Migliore, University of Cassino, Italy

TU-SP.1A.7: FAST MULTISTATIC FOURIER-BASED FORWARD AND INVERSE OPERATORS FOR COMPRESSIVE SENSING IMAGING
Yolanda Rodriguez Vaqueiro, Northeastern University, United States; Yuri Álvarez, Universidad de Oviedo, Spain; Borja Gonzalez-Valdes, Northeastern University, United States; Fernando Las-Heras, Universidad de Oviedo, Spain; Jose Angel Martinez Lorenzo, Northeastern University, United States

TU-SP.1A.10: IMPROVED COMPRESSIVE SENSING WITH ANTENNA DIRECTIVITY FOR TWRI
Ali Muqaibel, King Fahd University of Petroleum and Minerals, Saudi Arabia

TU-SP.2A: NOVEL DESIGNS AND APPLICATIONS OF WIRELESS POWER TRANSFER

TU-SP.2A.2: OPTIMIZATION AND DESIGN SENSITIVITY OF SISO AND MISO WIRELESS POWER TRANSFER SYSTEMS
Hans-Dieter Lang, Alon Ludwig, Costas D. Sarris, University of Toronto, Canada

TU-SP.2A.4: STUDY ON PERFECT MATCHING RECEIVING CONDITION OF INFINITE ARRAY ANTENNA WITH HEMISPHERICAL DIELECTRIC RESONATORS
Takayuki Matsumuro, Yohei Ishikawa, Naoki Shinohara, Kyoto University, Japan

TU-SP.2A.7: ELECTRIC FIELD COUPLING TO SHORT DIPOLE RECEIVERS IN CAVITY MODE ENABLED WIRELESS POWER TRANSFER
Matthew Chabalko, Alanson Sample, Disney Research Pittsburgh, United States

TU-SP.2A.10: A DISTRIBUTED RETRO-REFLECTIVE BEAMFORMING SCHEME FOR WIRELESS POWER TRANSMISSION
Jimmei He, Xin Wang, Lisheng Guo, Nanjing University of Aeronautics and Astronautics, China; Shan Shen, Ayia Electronic Tech CO., LTD, China; Mingyu Lu, West Virginia University Institute of Technology, United States
TU-A1.1A: MUTUAL COUPLING IN ANTENNA ARRAYS

TU-A1.1A.1: MUTUAL COUPLING REDUCTION BETWEEN TWO MONOPOLE ANTENNAS USING FRACTAL BASED DGS
Ali Hammoodi, Hussain Al-Rizzo, Ayman Isaac, University of Arkansas at Little Rock, United States

TU-A1.1A.2: MUTUAL COUPLING SUPPRESSION IN AN ARRAY OF 2-LAYER SELF-EXCITED EBG RESONATOR ANTENNAS
Mehdi Hosseini, David M. Klymyshyn, University of Saskatchewan, Canada

TU-A1.1A.3: COUPLING REDUCTION OF TWO PLANAR MONOPOLE ANTENNAS FOR MODERN WIRELESS APPLICATIONS
Ayman Isaac, Hussain Al-Rizzo, Ali Hammoodi, Said Abushamleh, University of Arkansas at Little Rock, United States; Haider Khaleel, Sonoma State University, United States

TU-A1.1A.4: MUTUAL-COUPLED SUPPRESSION FOR 60 GHZ MIMO ANTENNA USING METAMATERIALS
Abdolmehid Dadgarpour, Behnam Zarghooni, Tayeb A. Denidni, Institut National de la Recherche Scientifique (INRS), Canada

TU-A1.1A.5: A SIMPLE METHOD FOR ESTIMATION OF MUTUAL COUPLING AMONG MINIMIM SCATTERING ANTENNAS
Branko Mrdakovic, WIPL-D d.o.o, Serbia; Branko Kolundzija, University of Belgrade, Serbia

TU-A1.1A.6: SENSITIVITY ANALYSIS OF MUTUAL COUPLING EFFECTS IN ANTENNA ARRAYS THROUGH INTERVAL ANALYSIS
Nicola Anselmi, Lorenzo Poli, Paolo Rocca, Federico Viani, Andrea Massa, ELEDIA Research Center, University of Trento, Italy

TU-A1.1A.7: A DIPOLE ANTENNA SYSTEM FOR SIMULTANEOUS TRANSMIT AND RECEIVE
Elie Tianang, Dejan Filipovic, University of Colorado Boulder, United States

TU-A1.1A.8: A SIMPLE OPTIMIZATION TECHNIQUE FOR REDUCING MUTUAL COUPLING BETWEEN TWO COUPLED ANTENNAS
Mohamed Ezzat, Choon Lee, Southern Methodist University, United States

TU-A1.1A.9: MUTUAL COUPLING REDUCTION IN INTEGRATED TRANSMIT–RECEIVE ARRAY ANTENNAS USING HIGH ORDER DGS FILTER
Mahmoud Abdalla, Ibraeeem Mohamed, MTC College, Egypt

TU-A1.1A.10: AN EFFICIENT DECOUPLING NETWORK FOR MICROSTRIP PHASED ARRAY ANTENNA
Run-Liang Xia, Shi-Wei Qu, Peng-Fa Li, University of Electronic Science and Technology of China, China

TU-A1.1A.11: MUTUAL COUPLING REDUCTION IN MICROSTRIP PHASED ARRAY USING STACKED-PATCH REDUCED SURFACE WAVE ANTENNA
Shirin Ramezanzadeh Yazdi, Somayyeh Chamaani, Seyed Arash Ahmadi, K. N. Toosi University of Technology, Iran

TU-A1.1A.12: A SIMPLE METHOD FOR ESTIMATION OF MUTUAL COUPLING AMONG MINIMIM SCATTERING ANTENNAS
Branko Mrdakovic, WIPL-D d.o.o, Serbia; Branko Kolundzija, University of Belgrade, Serbia

TU-A1.2A: WIDEBAND AND MULTIBAND DIELECTRIC RESONATOR ANTENNAS

TU-A1.2A.1: PARTIALLY ENCLOSED CYLINDRICAL DIELECTRIC RESONATOR (DR) FOR MULTIBAND ANTENNAS
Konstantinos Pliakostathis, E.T.A.A., Ministry of Labor, Social Security and Welfare, Greece; Dariush Mirshekar-Syahkal, University of Essex, United Kingdom
TU-A1.2A.2: A LOW-PROFILE DIELECTRIC RESONATOR ANTENNA FOR WIDEBAND APPLICATIONS
Shahzad Iqbal Mian, Karu P. Esselle, Macquarie University, Australia

TU-A1.2A.3: BIDIRECTIONAL DIELECTRIC RESONATOR ANTENNA
Li Ying Feng, Kwok Wa Leung, City University of Hong Kong, Hong Kong SAR of China

TU-A1.2A.4: HIGH GAIN RECONFIGURABLE MILLIMETER-WAVE DIELECTRIC RESONATOR
Jinxin Li, Tayeb A. Denidni, Qingsheng Zeng, Institut National de la Recherche Scientifique (INRS), Canada

TU-A1.2A.5: DESIGN OF AN ANNUAL DIELECTRIC LOADED CYLINDRICAL DIELECTRIC
Yan He, Xiangyu Du, National University of Defense Technology, China; Changjiang Deng, Zhenghe Feng, Tsinghua University, China

TU-A1.2A.6: METAL-DIELECTRIC COMPOSITE MONOPOLE: NOVEL QUEST FOR DEVELOPING
Debarati Ganguly, Lourdes Matha College of Science and Technology, India; Sumesh George, St. George’s College, India; Debatosh Guha, University of Calcutta, India; Yahia M.M. Antar, Royal Military College of Canada, Canada

TU-A1.2A.7: COMPACT AND WIDEBAND DIELECTRIC RESONATOR ANTENNA
Mohammad Ranjbar Nikkhah, University of Montreal, Canada; Ahmed A. Kishk, Concordia University, Canada

TU-A1.2A.8: RELATION BETWEEN CHARACTERISTIC MODES AND COMPLEX NATURAL
Tomás Bernabeu-Jiménez, Universitat Politècnica de València, Spain; Ahmed A. Kishk, Concordia University, Canada; Alejandro Valero-Nogueira, Felipe Vico-Bondía, Universitat Politècnica de València, Spain

TU-A1.2A.9: HIGH EFFICIENCY ON-CHIP DIELECTRIC RESONATOR ANTENNA USING
Mai Sallam, Mohamed Serry, American University in Cairo, Egypt; Atif Shamim, King Abdullah University of Science and Technology, Saudi Arabia; Walter De Raedt, IMEC, Belgium; Sherif Sedky, Zewail City of Science and Technology, Egypt; Guy A. E. Vandenbosch, KU Leuven, Belgium; Ezzeldin Soliman, American University in Cairo, Egypt

TU-A1.2A.10: MULTI-OBJECTIVE DESIGN OPTIMIZATION OF COMPACT QUASI-ISOTROPIC
Adrian Bekasiewicz, Gdańsk University of Technology, Poland; Slawomir Koziel, Reykjavik University, Iceland

TU-A2.1A: METAMATERIAL-INSPIRED ANTENNAS

TU-A2.1A.1: SUPERSHAPE METAMATERIAL UNIT-CELLS USING THE GIELIS FORMULA
Behnam Zarghooni, Abdolmehdi Dadgarpour, Javad Pourahmadazar, Tayeb A. Denidni, INRS, Canada

TU-A2.1A.2: OPTIMIZED SELF-DIPLEXED ANTENNA IN GAP WAVEGUIDE TECHNOLOGY
Carlos Sanchez Cabello, Eva Rajo-Iglesias, University Carlos III of Madrid, Spain

TU-A2.1A.3: METALOOP ANTENNA WITH A PARASITIC LOOP
Hisamatsu Nakano, Tomohiro Yoshida, Junji Yamauchi, Hosei University, Japan

TU-A2.1A.4: EXCITATION OF A TWO-ARM METASPIRAL ANTENNA
Hisamatsu Nakano, Kenji Anjo, Junji Yamauchi, Hosei University, Japan

TU-A2.1A.5: WIDEBAND NEGATIVE PERMEABILITY STRUCTURES BASED ON SPLIT RING
Takuji Arima, Yuta Aoki, Toru Uno, Yokyo University of Agriculture and Technology, Japan

TU-A2.1A.6: THE EFFECT OF PERIODICITY DISTANCE IN ELECTRIC FIELD DIRECTION ON
The Resonance Frequency by Using Equivalent Circuit Model and Simulation
Pinar Yasar Orten, ASELSAN Inc., Turkey; Gonul Turhan Sayan, Middle East Technical University, Turkey
TU-A2.1A.7: A COMPACT CPW-FED METAMATERIAL ANTENNA FOR WLAN/WI-FI APPLICATIONS 470
Ashish Gupta, Sameer Kumar Sharma, Raghvendra Kumar Chaudhary, Indian School of Mines Dhanbad, India

TU-A2.1A.8: METAMATERIAL INSPIRED DUAL-BAND ANTENNA WITH MODIFIED CSRR AND EBG 472
LOADING
Sameer Kumar Sharma, Raghvendra Kumar Chaudhary, Indian School of Mines Dhanbad, India

TU-A2.1A.9: COMPACT BROADBAND ZOR AND FOR ANTENNA WITH EPSILON NEGATIVE 474
TRANSMISSION LINE
Liang-Yuan Liu, Bing-Zhong Wang, Ya-Qing Wen, Ren Wang, University of Electronic Science and Technology of China, China

TU-A2.1A.10: A HIGH GAIN EBG BACKED SLOT ANTENNA LOADED WITH ... 476
ANISOTROPICMUC-NEGATIVE SUPERSTRATE
Basudev Majumder, Krishnamoorthy Kandasamy, Jayanta Mukherjee, IIT Bombay, India; Kamla Prasan Ray, Society for
Applied Microwave Electronic Engineering and Research, India

TU-A2.1A.11: INVESTIGATION ON SRR-LOADED METAMATERIAL ANTENNA WITH DIFFERENT 478
FEEDING METHODS
Sameer Kumar Sharma, Raghvendra Kumar Chaudhary, Indian School of Mines Dhanbad, India

TU-A1.3A: WAVEGUIDE SLOT ARRAYS II

TU-A1.3A.1: A SIMPLE PARALLEL-PLATE WAVE LAUNCHER IN SUBSTRATE INTEGRATED 480
WAVEGUIDE TECHNOLOGY
Jose Luis Gomez-Tornero, Alejandro Martinez-Ros, Miguel Angel Martinez Garcia, Alejandro Martinez-Sala, Technical
University of Cartagena, Spain; George Goussetis, Symon K. Podilchak, Heriot-Watt University, United Kingdom

TU-A1.3A.2: 8 X 4 SIW POWER DIVIDER AND SLOTTED ARRAY ANTENNA ... 482
Orcun Kiris, Ozlem Aydin Civi, Middle East Technical University, Turkey

TU-A1.3A.3: KA BAND SUBSTRATE INTEGRATED WAVEGUIDE SLOT ARRAY ANTENNA WITH HIGH 484
EFFICIENCY
Alper Ünal, Oral Dinçer, Meteksan Defence Ind. Inc, Turkey

TU-A1.3A.4: SLOTTED RIDGED WAVEGUIDE ARRAY DESIGNED WITH A REFLECTION 486
CANCELLING TECHNIQUE FOR MULTIBEAM APPLICATIONS IN V-BAND
Karim Tekkouk, Institut d'Electronique et de Télécommunications de Rennes-Université de Rennes 1, France; Jiro Hirokawa,
Tokyo Institute of Technology, Japan; Ronan Sauleau, Mauro Ettorre, Institut d’Electronique et de Télécommunications de
Rennes-Université de Rennes 1, France; Makoto Sano, Makoto Ando, Tokyo Institute of Technology, Japan

TU-A1.3A.5: DESIGN OF DUAL-FREQUENCY SUBSTRATE INTEGRATED WAVEGUIDE (SIW) 488
CAVITY BACKED SLOT ARRAY ANTENNA
Soumava Mukherjee, Animesh Biswas, Indian Institute of Technology Kanpur, India

TU-A4.1A: RCS: ANALYSIS AND MEASUREMENTS

TU-A4.1A.1: A SURFACE TREATMENT FOR NON-SPECULAR REFLECTION ... 490
Galen Watts, National Radio Astronomy Observatory, United States

TU-A4.1A.2: FORWARD SCATTER RADAR MODELING: EFFECTS OF NEAR FIELD FOR CANONICAL 492
TARGETS
Marta Tecla Falconi, Davide Comite, Alessandro Galli, Pierfrancesco Lombardo, Frank Silvio Marzano, Sapienza University of
Rome, Italy

TU-A4.1A.3: EMPIRICAL MODELS OF THE NORMALIZED RADAR CROSS SECTION OF 494
MONOSTATIC FRESHWATER CLUTTER
Panos Tzanos, William G. Stevens, Kung-Hau Ding, James Park, Saba Mudaliar, Kristopher Kim, Air Force Research
Laboratory, United States
TU-A4.1A.4: SCATTERING ANALYSIS FOR PEC AND DIELECTRIC BODIES USING CHARACTERISTIC MODES
Yikai Chen, Chao-Fu Wang, National University of Singapore, Singapore

TU-A4.1A.5: ON SCATTERING CENTERS OF CONE-SHAPED TARGETS IN BISTATIC MODE
Quan-You Qu, Kun-Yi Guo, Xin-Qing Sheng, Beijing Institute of Technology, China; Jing Ma, Bin Shi, Cong-Jun Jin, Science and Technology on Space System Simulation Laboratory, China

TU-A4.1A.6: VERTICAL AXIS WIND TURBINE SIMULATIONS AND MEASUREMENTS
Marcos Ontiveros, Diana Arceo, Jeffery Allen, Space and Naval Warfare Systems Center, Pacific, United States

TU-A4.1A.7: RADAR SCATTERING PROPERTIES OF BICYCLES AT 77 GHZ
Domenic Belgiovane, Chi-Chih Chen, Ohio State University, United States

TU-A4.1A.8: UNIFORM DIFFRACTION COEFFICIENT FOR ELECTROMAGNETIC SCATTERING BY FLAT AND CURVED PLATES
Divyabramham Kandimalla, Arijit De, Indian Institute of Technology Kharagpur, India

TU-A4.1A.9: ELECTROMAGNETIC SCATTERING FROM A BURIED SPHERE IN A TWO-LAYERED ROUGH GROUND
Seyed Hossein Mirjahanmardi, Parisa Dehkhoda, Ahad Tavakoli, Hasan Zamani, Amirkabir University of Technology, Iran

TU-A5.1A: UWB STAR, RADAR AND SURVEILLANCE SYSTEMS AND CHARACTERIZATION THEREOF

TU-A5.1A.1: ULTRA-WIDEBAND CIRCULARLY-POLARIZED SIMULTANEOUS TRANSMIT AND RECEIVE (STAR) ANTENNA SYSTEM
Mohamed Elmansouri, Ehab Etellisi, Dejan Filipovic, University of Colorado, United States

TU-A5.1A.2: SHORT TIME STATE SPACE METHOD FOR HUMAN MOTION IDENTIFICATION
Lingyun Ren, University of Tennessee, United States; Nghia Tran, Catholic University of America, United States; Haofei Wang, University of Tennessee, United States; Ozlem Kilic, Catholic University of America, United States; Aly E. Fathy, University of Tennessee, United States

TU-A5.1A.3: ANGLE OF ARRIVAL ESTIMATION ACROSS A 10:1 BANDWIDTH ARCHITECTURE USING ON-SITE CODING RECEIVER
Satheesh Bojja Venkatakrishnan, Abe A. Akhiyat, Elias A. Alwan, Waleed Khalil, John L. Volakis, Ohio State University, United States

TU-A5.1A.4: ULTRAWIDEBAND MULTILAYER PRINTED ANTENNA ARRAYS WITH WIDE SCANNING CAPABILITY
Benjamin Riviere, Herve Jeuland, Sylvain Bolioli, Benjamin Gabard, Vincent Gobin, ONERA The French Aerospace Lab, France

TU-A5.1A.5: STUDY OF A UWB MULTI-STATIC RADAR FOR RAILROAD CROSSING SURVEILLANCE
Marco Govoni, Rete Ferroviaria Italiana (RFI) S.p.A, Italy; Enrico Maria Vitucci, Vittorio Degli Esposti, Francesco Guidi, Giovanni Tartarini, Davide Dardari, University of Bologna, Italy

TU-A5.1A.6: A NON-ITERATIVE SCHEME FOR SIDELOBE REDUCTIONS IN RANDOM NOISE AND DETERMINISTIC SIGNALS
Muhammad Dawood, New Mexico State University, United States; Jim Boehm, Independent Consultant, United States; Ehtesham Shareef, New Mexico State University, United States

TU-A5.1A.7: SIMULTANEOUS TRANSMIT AND RECEIVE SYSTEM ARCHITECTURE WITH FOUR STAGES OF CANCELLATION
Kevin Scherer, Stephen Watt, Elias A. Alwan, Abe A. Akhiyat, Brian Dupaix, Waleed Khalil, John L. Volakis, Ohio State University, United States
TU-A5.1A.8: EXPERIMENTAL EVALUATION OF HIGH-FIDELITY HIGH-DATA-RATE UWB ANTENNA 522
Ahmed Abdelraheem, Mahmoud Abdalla, Hesham Elregaily, Abdelazez Mitkees, MTC College, Egypt

TU-A5.1A.9: DESIGN OF A ULTRA WIDEBAND REMOTE SENSING SYSTEM BASED ON SUB-HARMONIC MIXER
Bo Zhang, University of Electronic Science and Technology of China, China; Xiaodong Chen, Queen Mary University of London, United Kingdom; Yong Fan, Ge Liu, University of Electronic Science and Technology of China, China

TU-UC.1A: IMAGING AND LOCALIZATION
TU-UC.1A.9: HEXAGONAL SHAPED RECIPROCAL EXTERNAL CLOAK WITH HOMOGENEOUS
Pravallika Vura, Archana Rajput, Kushmanda Saurav, Kumar Vaihbav Srivastava, Indian Institute of Technology Kanpur, India

TU-UC.1A.10: RECONSTRUCTION OF DIELECTRIC OBJECTS BY CONTRAST SOURCE INVERSION METHOD UNDER A LIMITED OBSERVATION
Si Cong Yan, Chun Xia Yang, Peng Zhao, Xin Zhou Zhao, Mei Song Tong, Tongji University, China

TU-A5.2A: BIOMEDICAL IMAGING AND DETECTION
TU-A5.2A.1: CONFOCAL IMAGING OF BREAST TUMOR PHANTOM USING 3-D-PRINTED BREAST
Hayato Kono, Takumi Sugitani, Hiroshima University, Japan; Xia Xiao, Tianjin University, China; Katsuhiro Aritome, Hiroshima University, Japan; Ryo Miyake, University of Tokyo, Japan; Takamato Kikkawa, Hiroshima University, Japan

TU-A5.2A.2: 3D FAN-BEAM MODEL IMPLEMENTATION IN A HYBRID DIGITAL-BREAST-TOMOSYNTHESIS MICROWAVE RADAR IMAGING BREAST CANCER DETECTION ALGORITHM
Matthew Tivnan, Ann Morgenthaler, Carey Rappaport, Northeastern University, United States

TU-A5.2A.3: TRACKING A BIOPSY NEEDLE INSIDE A BREAST USING UWB CIRCULAR-SAR
Daniel Oloumi, Rambabu Karumudi, Pierre Boullanger, University of Alberta, Canada

TU-A5.2A.4: FAST MULTI-STATIC TECHNIQUE FOR MICROWAVE BRAIN IMAGING
Ali Zamani, Amin M. Abbosh, University of Queensland, Australia

TU-A5.2A.5: RECENT DEVELOPMENTS IN ANTENNA DESIGN FOR MICROWAVE BASED CONGESTIVE HEART FAILURE DETECTION SYSTEMS
Sasan Ahdi Rezaeieh, Amin M. Abbosh, University of Queensland, Australia

TU-A5.2A.6: EFFECT OF CHEST WALL ON BREAST TUMOR DETECTION USING PRONY’S METHOD
Marwa Bannis, 6th October University, Egypt; Fatma Elhefnawi, Electronic Research Institute and NARSS, Egypt; Hala Abd El Kader, Banha University, Egypt; Khaled ElMahgoub, Trimble Navigation / MIT, United States; Atef Elsherbeni, Colorado School of Mines, United States

TU-A5.2A.8: BIOMEDICAL IMAGING SYSTEM USING SOFTWARE DEFINED RADIO
Konstanty Bialkowski, Jayaseelan Marimuthu, Amin M. Abbosh, University of Queensland, Australia

TU-A5.2A.9: UWB MICROWAVE BREAST CANCER DETECTION WITH MRI DERIVED 3-D REALISTIC NUMERICAL BREAST MODEL
Hang Song, Xia Xiao, Zongjie Wang, Tianjin University, China; Takamato Kikkawa, Hiroshima University, Japan

TU-A5.2A.10: DESIGN OF AN IMAGING CHAMBER FOR BIOMEDICAL APPLICATIONS USING BOWTIE ANTENNAS
Muhammad Hassan Khalil, Tsinghua University, China; Xu Jiadong, Northwestern Polytechnical University, China; Maokun Li, Fan Yang, Shenheng Xu, Tsinghua University, China
TU-A3.1A: ADVANCES IN INTEGRAL EQUATION MODELING

TU-A3.1A.1: EFFICIENT ANALYSIS OF EM SCATTERING FROM 3D COMPLEX CONDUCTING OBJECTS BURIED UNDER GROUND

Min Meng, Yongpin Chen, Wan Luo, Zaiping Nie, Jun Hu, University of Electronic Science and Technology of China, China

TU-A3.1A.2: INVESTIGATION OF ERROR SOURCE IN EQUIVALENCE PRINCIPLE ALGORITHM (EPA)

Mojtaba Fallahpour, Weng Cho Chew, University of Illinois at Urbana-Champaign, United States

TU-A3.1A.3: A NEW FAMILY OF RADIAL ANGULAR TRANSFORMATIONS FOR THE NEAR-SINGULARITY CANCELLATION TECHNIQUE

Li Li, Kun Wang, Thomas Eibert, Technische Universität München, Germany

TU-A3.1A.4: MAGNETOQUASISTATIC POSITION MEASUREMENT ABOVE EARTH USING THE EXACT INTEGRAL SOLUTIONS

Darmindra Arumugam, Jet Propulsion Laboratory, United States

TU-A3.1A.5: EFFICIENT INTERPOLATION SCHEME FOR MULTILEVEL FAST MULTIPOLE ALGORITHM

Chunbei Luo, Yong Zhang, Hai Lin, State Key Lab of CAD&CG, Zhejiang University, China

TU-A3.1A.6: HADAMARD-FINITE-PART SIMULTANEOUS INFRARED AND ULTRAVIOLET SELF-REGULARIZATION OF UNIVERSAL FUNCTIONS IN ELECTRODYNAMICS

Alireza Baghai-Wadji, University of Cape Town, South Africa

TU-A3.1A.7: HADAMARD-FINITE-PART SIMULTANEOUS INFRARED AND ULTRAVIOLET SELF-REGULARIZATION OF UNIVERSAL FUNCTIONS IN ELECTROSTATIC LIMIT

Alireza Baghai-Wadji, University of Cape Town, South Africa

TU-A3.1A.8: PERFORMANCE OF PARALLEL OUT-OF-CORE MOM ACCELERATED BY SSD

Xunwang Zhao, Zhongchao Lin, Yu Zhang, Xidian University, China

TU-A3.1A.9: EFFICIENT ANALYSIS OF ANTENNAS ON AN ELECTRICALLY LARGE PLATFORM

Wei-Jiang Zhao, Institute of High Performance Computing, Singapore

TU-A3.1A.10: FULL-WAVE AND APPROXIMATE SOLUTIONS OF LARGE ELECTROMAGNETIC SCATTERING PROBLEMS

Mert Hidayetoglu, Levent Gurel, ABAKUS Computing Technologies, Turkey

TU-A4.2A: SCATTERING FROM ROUGH SURFACES

TU-A4.2A.1: SURFACE WAVE PROPAGATION OVER A ROUGH TALUS SLOPE AT 160 MHZ

Steven Arcone, Daniel Breton, Seth Campbell, Benjamin Barrowes, Nathan Lamie, Cold Regions Research and Engineering Laboratory, United States

TU-A4.2A.2: SCATTERING FROM A TARGET ABOVE A 1-D OCEAN-LIKE SURFACE FROM A FAST RIGOROUS METHOD

Gildas Kubické, DGA Information Superiority, France; Christophe Bourlier, Sami Bellez, IETR - Institut d’Electronique et de Télécommunications de Rennes, France

TU-A4.2A.3: AN EFFICIENT SUB-DOMAIN DECOMPOSITION ITERATIVE METHOD FOR THE SCATTERING FROM A LARGE HIGHLY-CONDUCTING ROUGH SEA SURFACE

Christophe Bourlier, Sami Bellez, IETR - Institut d’Electronique et de Télécommunications de Rennes, France; Gildas Kubické, DGA/DT/MI, France
TU-A4.2A.4: BACKSCATTERING FROM 3-D TIME-EVOLVING SEA SURFACE AND DOPPLER SPECTRAL ANALYSIS
Conghui Qi, Zhiqin Zhao, Wei Yang, University of Electronic Science and Technology of China, China; Qing Huo Liu, Duke University, United States

TU-A4.2A.5: A NOVEL METHOD OF SIMULATING SEA SURFACE OF CONTROLLING REFLECTIVITY BASING ON THE BRAGG STRUCTURE
Li Li, Zichang Liang, Shanghai Radio Equipment Institute, China; Wei Gao, Xiaobing Wang, Science and Technology on Electromagnetic Scattering Laboratory, China

TU-A1.4A: NOVEL AND BROADBAND SLOT ANTENNAS

TU-A1.4A.1: COMPACT SIZE ANNULAR-RING SLOT ANTENNA WITH BROAD CIRCULARLY POLARIZED BANDWIDTH
Chow-Yen-Desmond Sim, Chin Ku, Feng Chia University, Taiwan; Horng-Dean Chen, National Kaohsiung Normal University, Taiwan; Tuan-Yung Han, National Taitung College, Taiwan; Hua-Ming Chen, National Kaohsiung University of Applied Sciences, Taiwan

TU-A1.4A.2: TAPERED SLOT WAVEGUIDE ANTENNA FOR KU-BAND PHASED ARRAY APPLICATIONS
Jia-Chi Chieh, Mike Civerolo, Anna Leese de Escobar, Space and Naval Warfare Systems Center, Pacific, United States

TU-A1.4A.3: A CIRCULARLY POLARIZED MONOPOLE SLOT ANTENNA FOR MULTI-SYSTEM APPLICATIONS
Yen-Ting Lin, Wen-Bin Tsai, Meng-Hong Shih, Chien-Jen Wang, National University of Tainan, Taiwan

TU-A1.4A.4: CAPACITIVELY-FED MODIFIED FOLDED SLOT ANTENNA FOR BODY AREA NETWORK APPLICATIONS
Emmanuel Valentín, Rafael Rodríguez Solís, University of Puerto Rico, Puerto Rico

TU-A1.4A.5: AN OCTAVE BANDWIDTH CIRCULARLY POLARIZED PRINTED MONOPOLE SLOT ANTENNA
Reza Pazoki, Iran University of Science and Technology, Iran; Ali Kiaee, Pedram Mousavi, University of Alberta, Canada

TU-A1.4A.6: DESIGN OF A THREE-DIMENSIONAL FOLDED SLOT ANTENNA WITH QUASI-ISOTROPIC RADIATION PATTERN
Changjiang Deng, Yue Li, Zhijun Zhang, Zhenghe Feng, Tsinghua University, China

TU-A4.3A: PROPAGATION THROUGH VEGETATION

TU-A4.3A.1: UNCERTAINTY DISTRIBUTION OF VARIATION OF RECEIVED SIGNAL STRENGTH DUE TO SEASONAL EFFECT ON CONIFEROUS TREES
Hassan El-Sallabi, Polaris Wireless Inc., United States

TU-A4.3A.2: LARGE-SCALE, FULL-WAVE SCATTERING PHENOMENOLOGY CHARACTERIZATION OF REALISTIC TREES
DaHan Liao, Traian Dogaru, Army Research Laboratory, United States

TU-A4.3A.3: MODELING INDOOR VEGETATION RE-RADIATION PATTERN WITH DYNAMIC MULTIVARIATE POLYNOMIAL REGRESSIONS
Paula Gómez-Pérez, Centro Universitario de la Defensa, Spain; Marcos Crego-García, Iñigo Cuinías, Universidade de Vigo, Spain

TU-A4.3A.4: EVOLUTION OF RECEIVED POWER TIME-VARIABILITY RANGE WITH DISTANCE AT DECIDUOUS FORESTS
Iñigo Cuínías, Universidade de Vigo, Spain; José Antonio Gay-Fernández, Monet Tecnología e Innovación, Spain
TU-A4.3A.5: AN INNOVATIVE APPROACH FOR MEDIA-BASED MODULATION BASED ON TIME-VARYING PLASMA
Min Yang, Xiaoping Li, Kai Xie, Yanming Liu, Xidian University, China

TU-SP.1P: PASSIVE AND ACTIVE NANO-ANTENNAS

TU-SP.1P.5: NANOANTENNAS FROM THE VISIBLE TO THE MID-INFRARED: MATERIALS CONSIDERATIONS AND APPLICATIONS
Stefan Maier, Imperial College London, United Kingdom

TU-SP.1P.6: ALL-DIELECTRIC OPTICAL NANOANTENNAS
Andrey Miroshnichenko, Australian National University, Australia

TU-SP.1P.7: NANO-SCALE DIELECTRIC RESONATOR ANTENNAS AS BUILDING BLOCKS FOR EFFICIENT MANIPULATION OF LIGHT
Christophe Fumeaux, Chengjun Zou, Withawat Withayachumnankul, University of Adelaide, Australia; Longfang Zou, Imperial College London, United Kingdom; Madhu Bhaskaran, Sharath Sriram, RMIT University, Australia

TU-SP.2P: ADDITIVE MANUFACTURING OF ANTENNAS AND ELECTROMAGNETIC STRUCTURES

TU-SP.2P.1: THREE-DIMENSIONAL GRADIENT-INDEX OPTICS VIA INJET-AIDED ADDITIVE MANUFACTURING TECHNIQUES
Sawyer D. Campbell, Donovan E. Brocker, Douglas H. Werner, Pennslyvania State University, United States; Charles Dupuy, Sang-Ki Park, Paul Harmon, Voxel Inc., United States

TU-SP.2P.2: POST-PROCESS FABRICATION OF MULTILAYER MM-WAVE ON-PACKAGE ANTENNAS WITH INJET PRINTING
Bijan Tehrani, Benjamin Cook, Manos Tentzeris, Georgia Institute of Technology, United States

TU-SP.2P.3: FABRICATION OF AN X-BAND CONFORMAL ANTENNA ARRAY ON AN ADDITIVELY MANUFACTURED SUBSTRATE
Isaac Ehrenberg, Sanjay Sarma, Massachusetts Institute of Technology, United States; Thomas Steffen, Bae-Ian Wu, Air Force Research Laboratory, United States

TU-SP.2P.4: INCORPORATION OF ACTIVE RF CIRCUIT ELEMENTS INTO ADDITIVELY MANUFACTURED SUBSTRATES
Isaac Ehrenberg, Sanjay Sarma, Massachusetts Institute of Technology, United States; Thomas Steffen, Bae-Ian Wu, Air Force Research Laboratory, United States

TU-SP.2P.9: CONFORMAL DIRECT WRITTEN ANTENNA ON STRUCTURAL COMPOSITES
Michael Wright, Mohammad Ali, University of South Carolina, United States; William Baron, Jason Miller, James Tuss, David Zeppettella, Air Force Research Laboratory, United States

TU-SP.2P.10: MICROFABRICATED DUAL-POLARIZED, W-BAND ANTENNA ARCHITECTURE FOR SCALABLE LINE ARRAY FEED
Benjamin Cannon, Kenneth Vanhille, Nuvotronics, United States; Gregory Sadowy, Jet Propulsion Laboratory, United States

TU-A1.1P: MULTI-BAND ANTENNAS FOR WIRELESS COMMUNICATIONS

TU-A1.1P.1: A COMPACT MULTIBAND MICROSTRIP PATCH ANTENNA WITH U-SHAPED PARASITIC ELEMENTS
Sajid Asif, Adnan Iftikhar, Muhammad Rafiq, Benjamin Braaten, North Dakota State University, United States; Muhammad Khan, University of Padova, Italy; Dimitris E. Anagnostou, Tarron Teeslink, South Dakota School of Mines and Technology, Italy
TU-A1.1P.2: DUAL-BAND WLAN ANTENNA ARRAY WITH INTEGRATED BANDPASS FILTERS FOR HARMONIC SUPPRESSION 619
Waqas Ahmad, Djuradj Budimir, University of Westminster, United Kingdom

TU-A1.1P.3: A TUNABLE DUAL-BAND SQUARE SLOT ANTENNA WITH STUB FOR DCS, ISM, AND WIMAX APPLICATIONS 621
Ali Hammoodi, Hussain Al-Rizzo, Ayman Isaac, University of Arkansas at Little Rock, United States; Haider Khaleel, Sonoma State University, United States

TU-A1.1P.4: HIGH GAIN ANTENNA BY COMBINATION WITH DIELECTRIC BICONVEX LENS AND SPIRAL RADIATOR 623
Kyeong-Sik Min, Korea Maritime and Ocean University, Republic of Korea

TU-A1.1P.5: A MINIATURIZED DUAL-BAND ANTENNA WITH SPIRAL AND MEANDER LINES FOR WLAN APPLICATIONS 625
Xinbo Liu, Yingsong Li, Harbin Engineering University, China; Wenhua Yu, Harbin Engineering University, China; 2COMU, Inc., United States

TU-A1.1P.6: DUAL BAND HYBRID BASE STATION ANTENNAS .. 627
Lin-Ping Shen, Nasrin Hojjat, Hua Wang, Jaccob Van Beek, Minya Gavrilovic, Communication Components Antenna, Inc., Canada

TU-A1.1P.7: ENHANCING CIRCULAR POLARIZATION CHARACTERISTICS OF A DIPOLE-FED CROSS SPIRAL ANTENNA 629
Mayumi Matsunaga, Ehime University, Japan

TU-A1.1P.8: MULTI-BAND META-MATERIAL ANTENNA WITH ASYMMETRIC COPLANAR STRIP-FED STRUCTURE 631
Mahmoud Abdalla, MTC College, Egypt; Ahmed Ibrahim, El Minia University, Egypt

TU-A1.1P.9: TRIPLE BAND PLANAR INVERTED-F ANTENNA LOADED WITH LC RESONATOR .. 633
Kushmanda Saurav, Sanampudi Venkatrami Reddy, Debdeep Sarkar, Archana Rajput, Kumar Vaibhav Srivastava, Indian Institute of Technology Kanpur, India

TU-A1.1P.10: BROADBAND FOLDED PRINTED QUADIFILAR HELICAL ANTENNA PERFORMANCE IMPROVEMENT N/A
Pooria Salami, Gholamreza Moradi, Reza Sarraf Shirazi, Amirkabir University of Technology, Iran

TU-A1.2P: ANTENNA DESIGN

TU-A1.2P.1: PRINTED HIGH GAIN BEAM STEERABLE PATCH ANTENNA USING PARASITIC PIXEL .. 637
Parisa Lotfi Poshtgol, Saber Soltani, Ross D. Murch, Hong Kong University of Science and Technology, Hong Kong SAR of China

TU-A1.2P.2: SPACE-TIME MODULATED NONRECIPROCAL MIXING, AMPLIFYING AND SCANNING LEAKY-WAVE ANTENNA SYSTEM .. 639
Sajjad Taravati, Christophe Caloz, Polytechnique de Montréal, Canada

TU-A1.2P.3: DUAL-POLARIZED TURN-STYLE PATCH ANTENNA FOR WEARABLE APPLICATIONS .. 641
Kun Li, Yuta Ishisaka, Kazuhiro Honda, Koichi Ogawa, Toyama University, Japan

TU-A1.2P.4: A SUPERCELL BASED DUAL BEAM DIELECTRIC GRATING ANTENNA FOR 60 GHZ APPLICATION 643
Zi Long Ma, University of Hong Kong, Hong Kong SAR of China; Chi Hou Chan, Kung Bo Ng, City University of Hong Kong, Hong Kong SAR of China; Li Jun Jiang, University of Hong Kong, Hong Kong SAR of China

TU-A1.2P.5: A NEW APPROACH FOR NEAR-FIELD SYNTHESIS ... 645
Sebastien Clauzier, Said Mikki, Yahia M.M. Antar, Royal Military College of Canada, Canada
TU-A1.2P.6: SELF-MIXING ANTENNA ARRAYS WITH WIDE RECEIVING ANGULAR RANGE .. 647
Kun Wang, Thomas Wächter, Hyazinth Hartmuth, Hong Fei, Gerhard Hamberger, Thomas Eibert, Technische Universität München, Germany

TU-A1.2P.7: ARRAYS OF 1-DIMENSIONAL ANTENNAS ... 649
Steven Weiss, Army Research Laboratory, United States; Walter Kahn, George Washington University, United States

TU-A1.2P.8: NOVEL MINIATURIZATION BROADBAND CIRCULAR POLARIZATION ANTENNA USING SINGLE PLATE 651
Haiyan Tian, Jinchun Gao, Ming Su, Yuanan Liu, Beijing University of Posts and Telecommunications, China

TU-A1.2P.9: ANALYSIS OF RECTANGULAR PATCH ANTENNA WITH TRAPEZOIDAL SLOT AS A WIDEBAND ANTENNA
Zahra Manzoor, Gholamreza Moradi, Amirkabir University of Technology, Iran

TU-A2.1P: WAVE GUIDANCE PHENOMENA IN METAMATERIALS

TU-A2.1P.1: DEGENERATE BAND EDGE IN PERIODICALLY-LOADED CIRCULAR WAVEGUIDES 655
Mohamed Othman, Filippo Capolino, University of California, Irvine, United States

TU-A2.1P.3: REAL-K-SPACE ANALYSIS OF ELECTROMAGNETIC WAVES IN A PLASMONIC WAVEGUIDE METAMATERIAL
Iman Aghanejad, Kenneth Chau, Loic Markley, University of British Columbia, Canada

TU-A2.1P.4: SURFACE WAVE POLARIZATION CONVERTER .. 659
Ryan Quarfoth, Amit Patel, HRL Laboratories, LLC, United States

TU-A2.1P.5: EFFECTIVE PERMITTIVITY AND PERMEABILITY OF DIELECTRIC RESONATOR ARRAYS IN RECTANGULAR WAVEGUIDE FOR METAMATERIAL APPLICATIONS
Gizem Kalender, Yasar University, Turkey; Yesim Zoral, Dokuz Eylul University, Turkey; Mustafa Secmen, Yasar University, Turkey

TU-A2.1P.6: LATERALLY ASYMMETRIC PARTICLE ARRAYS FOR ONE-WAY GUIDING .. 663
Yarden Mazor, Yakir Hadad, Ben Steinberg, Tel Aviv University, Israel

TU-A2.1P.7: RAPID SURFACE-WAVE ANALYSIS OF CORRUGATED RODS USING ASYMPTOTIC CORRUGATIONS BOUNDARY CONDITIONS
Iustyna Shevchenko, Malcolm Ng Mou Kehn, National Chiao Tung University, Taiwan

TU-A2.1P.8: A PARAMETRIC STUDY ON A 2D LUNEBURG’S LENS MADE OF THIN DIELECTRIC CYLINDERS
Eran Falek, Reuven Shavit, Ben Gurion University of the Negev, Israel

TU-A2.1P.9: MEASUREMENT, SIMULATION, AND THEORY OF A NON-FOSTER UNIT CELL WITH PARASITIC RESISTANCE
Kathryn Smith, Thomas Weldon, Ryan Adams, University of North Carolina at Charlotte, United States

TU-A1.3P: NOVEL SLOT AND APERTURE ARRAY ANTENNAS

TU-A1.3P.1: A COMPACT AND HIGH-GAIN KA-BAND MULTIBEAM CONTINUOUS TRANSVERSE STUB ANTENNA
Mauro Ettorre, Francesco Foglia Manzillo, Institut d’Electronique et de Télécommunications de Rennes (IETR), UMR CNRS 6164, Université de Rennes 1, France; Massimiliano Casaletti, Laboratoire d’Electronique et Electromagnétisme (L2E), Pierre and Marie Curie University - Paris 6, France; Ronan Sauleau, Institut d’Electronique et de Télécommunications de Rennes (IETR), UMR CNRS 6164, Université de Rennes 1, France; Nicolas Capet, Centre national d’études spatiales (CNES), France

...
TU-A1.3P.2: PILLBOX ANTENNA WITH MONOPULSE TECHNIQUE AND WIDE SCANNING 673
Karim Tekkouk, Mauro Ettorre, Ronan Sauleau, Institut d’Electronique et de Télécommunications de Rennes-Université de Rennes 1, France

TU-A1.3P.3: A COMPACT S-BAND NARROW-WALL COMPLEMENTARY-SPLIT-RING SLOTTED WAVEGUIDE ANTENNA FOR HIGH POWER APPLICATIONS 675
Xuyuan Pan, Christos Christodoulou, University of New Mexico, United States

TU-A1.3P.4: SINGLE-FED HIGH-GAIN CIRCULARLY POLARIZED SLOTTED CAVITY ANTENNA USING TE330 MODE 677
Wangwang Han, Feng Yang, Jun Ouyang, Peng Yang, University of Electronic Science and Technology of China, China

TU-A1.3P.5: L-SHAPED SLOT ANTENNA DESIGN FOR LOAD-MODULATED BEAMSPACE-MIMO SYSTEM 679
Il-Do Choi, Kyoungtae Lee, JuYong Lee, Korea Advanced Institute of Science and Technology, Republic of Korea

TU-A4.1P: RADAR IMAGING

TU-A4.1P.1: IMAGING EFFECTIVENESS OF MULTISTATIC RADAR FOR HUMAN BODY IMAGING 681
Borja Gonzalez-Valdes, Carey Rappaport, Jose Angel Martinez Lorenzo, Northeastern University, United States; Yuri Álvarez, Fernando Las-Heras, University of Oviedo, Spain

TU-A4.1P.2: IDENTIFYING WEAK DIELECTRIC OBJECTS ON CONDUCTIVE SURFACES IN MILLIMETER-WAVE IMAGING 683
Thurston Brevett, Borja Gonzalez-Valdes, Carey Rappaport, Northeastern University, United States

TU-A4.1P.3: SYNTHETIC APERTURE RADAR IMAGING USING A SMALL CONSUMER DRONE 685
Chenchen Li, Hao Ling, University of Texas at Austin, United States

TU-A4.1P.4: FAST QUANTITATIVE MICROWAVE IMAGING BASED ON MEASURED POINT SPREAD FUNCTIONS AND INVERSION IN REAL SPACE 687
Denys Shumakov, Sheng Tu, Natalia Nikolova, McMaster University, Canada

TU-A4.1P.5: IMPLEMENTATION OF AN ADVANCED TOMOGRAPHIC ALGORITHM FOR GPR REALISTIC SOUNDING 689
Davide Comite, Alessandro Galli, Sapienza University of Rome, Italy; Ilaria Catapano, Francesco Soldovieri, IREA - CNR, Italy; Elena Pettinelli, Roma Tre University, Italy

TU-A4.1P.6: INVESTIGATION OF GAPS BETWEEN BLOCKS IN MICROWAVE IMAGES OF MULTILAYERED WALLS 691
Kai Ren, Robert Burkholder, Ohio State University, United States; Jie Chen, Chinese Academy of Sciences Institute of Electronics, China

TU-A4.1P.7: FAST RADAR IMAGING ALGORITHM FOR THE DETECTION OF OBJECTS EMBEDDED IN A STRATIFIED MEDIUM 693
Jie Chen, Chinese Academy of Sciences Institute of Electronics, China; Kai Ren, Robert Burkholder, Ohio State University, United States

TU-A4.1P.8: ALL-DIRECTIONS THROUGH THE WALL RADAR IMAGING ENHANCEMENT USING ORTHOGONAL POLARIZATIONS AND GENERALIZED PENCIL OF FUNCTION METHOD 695
Behzad Yektakhah, Kamal Sarabandi, University of Michigan, United States

TU-A4.1P.9: GENERALIZED THREE-DIMENSIONAL HARMONIC IMAGING OF BURIED NONLINEARLY LOADED SCATTERERS 697
DaHan Liao, Army Research Laboratory, United States
TU-A4.1P.10: AN IMPROVED 3-D NEAR-FIELD ISAR IMAGING TECHNIQUE WITH EXTENDED FAR-FIELD RCS EXTRACTION
Thomas Vaupel, Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, Germany

TU-A5.1P: MIMO ANTENNAS

TU-A5.1P.1: A SPHERICAL MULTIPLE ELEMENT ANTENNA CONCEPT
Jane Yun, TE Connectivity, United States; Rodney Vaughan, Simon Fraser University, Canada

TU-A5.1P.2: PLANAR DUAL-MODE MIMO ANTENNA WITH ENHANCED BANDWIDTH
Adam Narbudowicz, RWTH Aachen University, Germany; Slawomir Koziel, Reykjavik University, Iceland; Max Ammann, Dublin Institute of Technology, Ireland; Dirk Heberling, RWTH Aachen University, Germany

TU-A5.1P.3: AN INTEGRATED TWO MIMO ANTENNA SYSTEM BASED ON DIRECTIVE PRINTED DIPOLES
Youssef Tawk, Christos Christodoulou, Joseph Costantine, University of New Mexico, United States

TU-A5.1P.4: A LOW PROFILE DUAL-BAND DRA-BASED MIMO ANTENNA SYSTEM FOR WIRELESS ACCESS POINTS
Mohammad S. Sharawi, King Fahd University of Petroleum and Minerals, Saudi Arabia; Symon K. Podilchak, Queens University at Kingston, Canada; Yahia M.M. Antar, Royal Military College of Canada, Canada

TU-A5.1P.5: DISK-LOADED MONOPOLE STACKED WITH PATCH ANTENNA
Kohei Omote, Toyama University, Japan; Hiroshi Sato, Panasonic System Networks Co., Ltd., Japan; Kun Li, Kazuhiro Honda, Toyama University, Japan; Yoshio Koyanagi, Panasonic System Networks Co., Ltd., Japan; Koichi Ogawa, Toyama University, Japan

TU-A5.1P.6: A NOVEL DUAL-BAND AND DUAL-POLARIZED SLOT ANTENNA FOR WLAN APPLICATIONS
Hesheng Lin, Yi-Cheng Lin, National Taiwan University, Taiwan

TU-A5.1P.7: MUTUAL COUPLING EFFECTS ON THE MIMO CAPACITY USING DUAL BAND WI-FI DOUBLE-T PRINTED ANTENNAS
Christos Kalialakis, Aristotle University of Thessaloniki, Greece; Dimitris E. Anagnostou, Michael Chryssomallis, Democritus University of Thrace, Greece

TU-A5.1P.8: S- AND C-BAND OMNI-DIRECTIONAL ANTENNAS IN MIMO ARRANGEMENT ON BENT GROUND PLANE FOR A CONDUCTING CYLINDRICAL SURFACE
Tavis Hall, Satish Sharma, San Diego State University, United States

TU-A5.1P.9: 4-ELEMENT PLANAR MIMO RECONFIGURABLE ANTENNA SYSTEM FOR COGNITIVE RADIO APPLICATIONS
Rifaqat Hussain, Mohammad S. Sharawi, King Fahd University of Petroleum and Minerals, Saudi Arabia

TU-A5.1P.10: ANTENNA ARRAY CONFIGURATIONS FOR 3D MIMO SYSTEM IN HIGH SPEED RAILWAY SCENARIO
Yiru Liu, Bo Ai, Ke Guan, Binghao Chen, Beijing Jiaotong University, China

TU-A5.2P: ADVANCES IN RF AND MICROWAVE MEDICAL DEVICES

TU-A5.2P.1: UWB BABY AND SLEEP APNEA MONITOR
Lingyun Ren, Md Sakib Hasan, University of Tennessee, United States; Ranzie A. Fathy, Farragut High School, United States; Syed Islam, Aly E. Fathy, University of Tennessee, United States

TU-A5.2P.2: DEVELOPMENT OF TISSUE COAGULATION FORCEPS BY MICROWAVE ENERGY
Naoyuki Ogawara, Yuta Endo, Kazuyuki Saito, Koichi Ito, Chiba University, Japan
TU-A5.2P.3: CONFORMAL SENSOR ACCURACY FOR DEEP TISSUE BIOMEDICAL IMAGING .. 725
Md Asiful Islam, Asimina Kiourti, John L. Volakis, Ohio State University, United States

TU-A5.2P.4: NUMERICAL SIMULATION OF THZ REFLECTION IMAGING OF BREAST CANCER 727
TISSUE
Abayomi Omolewu, Tyler Bowman, Magda El-Shenawee, University of Arkansas, United States

TU-A5.2P.5: RUDIMENTARY DEEP TISSUE IMAGING THROUGH A WEARABLE REAL-TIME MONITORING SYSTEM 729
Safa Salman, Asimina Kiourti, John L. Volakis, The ElectroScience Lab at OSU, United States

TU-A5.2P.6: POLARIMETRIC TERAHertz PROBE FOR ENDOSCOPIC ASSESSMENT OF MALIGNANCIES 730
Georgios C. Trichopoulos, Kubilay Sertel, Ohio State University, United States

TU-A5.2P.7: A WEARABLE DUAL-BAND SQUARE SLOT ANTENNA WITH STUB FOR ISM AND WIMAX APPLICATIONS 732
Ali Hammoodi, Hussain Al-Rizzo, Ayman Isaac, University of Arkansas at Little Rock, United States

TU-A5.2P.8: MODIFIED RECTANGULAR PATCH ANTENNA FOR IMPROVING HEATING UNIFORMITY IN HYPERTHERMIA APPLICATION 734
Seonho Lim, Woo Cheol Choi, Yonsei University, Republic of Korea; Hyungrak Kim, Daelim University College, Republic of Korea; Young Joong Yoon, Yonsei University, Republic of Korea

TU-A5.2P.9: HIGHLY SENSITIVE MINIATURIZED BIO-SENSOR USING 2-LAYER DOUBLE SPLIT RING RESONATORS 736
Mohammad Abdolrazzaghi, University of Alberta, Canada; Ali Abdolali, Iran University of Science and Technology, Iran; Mojgan Daneshmand, University of Alberta, Canada

TU-A3.1P: FAST AND WELL-CONDITIONED INTEGRAL EQUATION SOLVERS

TU-A3.1P.1: FAST DIRECT SOLUTION OF 3-D DYNAMIC ELECTROMAGNETIC PROBLEMS BY METHOD OF MOMENTS ... 738
Yan-Nan Liu, Ming-Ming Xu, Beijing Institute of Technology, China; Cong-Jun Jin, Science and Technology on Space System Simulation Laboratory, China; Xiao-Min Pan, Xin-Qing Sheng, Beijing Institute of Technology, China

TU-A3.1P.2: MINIMAL-RANK H2-MATRIX-BASED ITERATIVE AND DIRECT VOLUME INTEGRAL EQUATION SOLVERS FOR LARGE-SCALE SCATTERING ANALYSIS 740
Dan Jiao, Saad Omar, Purdue University, United States

TU-A3.1P.3: A HERMITIAN AND WELL-CONDITIONED EFIE FOR FAST ITERATIVE AND DIRECT SOLVERS 742
Simon Adrian, Institut Mines-Télécom / Télécom Bretagne, Germany; Francesco P. Andriulli, Télécom Bretagne / Institut Mines-Télécom, France; Thomas Eibert, Technische Universität München, France

TU-A3.1P.4: AN INTEGRAL EQUATION METHOD BASED ON VECTOR AND SCALAR POTENTIAL FORMULATIONS 744
Qin Liu, Sheng Sun, University of Hong Kong, Hong Kong SAR of China; Weng Cho Chew, University of Illinois at Urbana-Champaign, United States

TU-A3.1P.5: DECOUPLED POTENTIAL INTEGRAL EQUATION APPLIED TO COMPLEX GEOMETRIES 746
Felipe Vico, Miguel Ferrando-Bataller, Tomás Bernabeu-Jiménez, Antonio Berenguer, UPV, Spain

TU-A3.1P.6: EFFICIENT PRECONDITIONING BASED ON ORTHOGONALIZATION OF METHOD OF MOMENTS EQUATIONS 748
Milan Kostic, WIPL-D d.o.o., Serbia; Branko Kolundzija, University of Belgrade, Serbia
TU-A3.1P.7: IMPROVING THE PERFORMANCE OF NULL-FIELD GENERATION BASED PRECONDITIONER WITH APPROXIMATE MLFMA TECHNIQUE
Yong Zhang, Hai Lin, State Key Lab of CAD&CG, Zhejiang University, China

TU-A3.1P.8: SKELETON BASED FAST SOLUTION OF MOM SYSTEM WITH MANY RIGHT HAND SIDES
Kai-Jiang Xu, Si-Lu Huang, Xiao-Min Pan, Xin-Qing Sheng, Beijing Institute of Technology, China

TU-A3.1P.9: FAST SPATIAL FREQUENCY BASED ANALYSIS TECHNIQUE FOR ELECTROMAGNETIC SCATTERING
Dayalan Kasilingam, Anthony Fascia, Mohammad Ahmad, John Summerfield, University of Massachusetts Dartmouth, United States

TU-A3.1P.10: MIC ACCELERATED LU DECOMPOSITION FOR METHOD OF MOMENTS
Guanghui Zhang, Yan Chen, Yu Zhang, Shugang Jiang, Xunwang Zhao, Xidian University, China

TU-A4.2P: RCS AND SCATTERING

TU-A4.2P.1: ON BEAMWIDTH EFFECTS ON RCS OF OBJECTS IN RANDOM MEDIA FOR E-WAVE POLARIZATION
Hosam El-Ocla, Lakehead University, Canada

TU-A4.2P.2: ELECTROMAGNETIC SCATTERING FROM LARGE RAIN DROPS VERSUS MELTING HAIL
Elene Chobanyan, Merhala Thurai, V. N. Bringi, Branislav M. Notaros, Colorado State University, United States

TU-A4.2P.3: ESTIMATING IMPULSE RESPONSE USING ONLY MAGNITUDE OF RADAR BACKSCATTER
Ismail Jouny, Lafayette College, United States

TU-A4.2P.4: A 3D MODEL TO CHARACTERIZE HIGH-FREQUENCY SCATTERING: APPLIED TO SYNTHESIZE SAR DATA
N. T. Minh Nguyen, International University, Vietnam National University Ho Chi Minh City, Viet Nam

TU-A4.2P.5: AN EFFECTIVE RCS CALCULATION TECHNIQUE FOR COMPOSITE COATED TARGETS
Caiyun Wang, Yong Wang, Shuxia Wu, Nanjing University of Aeronautics and Astronautics, China; Xiaochun Liu, Shining Sun, Aviation Key Laboratory of Science and Technology on High Performance Electromagnetic Windows, China

TU-A1.4P: SMALL ANTENNAS: DESIGN CHALLENGES AND APPLICATIONS

TU-A1.4P.1: ELECTRICALLY SMALL ANTENNAS DESIGN CHALLENGES
Mohammad Abdallah, Walid Dyab, Tapan Sarkar, Syracuse University, United States; Magdalena Salazar-Palma, Universidad Carlos III de Madrid, Spain

TU-A1.4P.2: FUNDAMENTAL DESIGN ANALYSIS OF SMALL IMPLANTABLE DIPOLE ANTENNAS
Sofia Bakogianni, Stavros Koulouridis, University of Patras, Greece

TU-A1.4P.3: DESIGN OF A MINIATURIZED ANTENNA FOR BLUETOOTH-ENABLED HEARING AID DEVICES
Zhichao Li, George Shaker, University of Waterloo, Canada; Mohammad-Reza Nezhad-Ahmadi, ON-Semiconductors, Canada; Safieddin Safavi-Naeini, University of Waterloo, Canada

TU-A1.4P.4: A NOVEL PRINTED STUB-LOADED SQUARE HELICAL ANTENNA
Syed Abdullah Nauroze, Manos Tentzeris, Georgia Institute of Technology, United States
TU-A1.4P.5: FEASIBILITY OF AN ULTRA NARROW BAND ANTENNA FOR THE INTERNET OF THINGS
Fabien Ferrero, Leonardo Lizzi, University of Nice Sophia, France

TU-A4.3P: THEORY AND APPLICATIONS OF COMPRESSIVE SENSING

TU-A4.3P.1: SAMPLING OF SPARSE INFORMATION IN ELECTROMAGNETISM
Marco Donald Migliore, University of Cassino and Southern Lazio, Italy

TU-A4.3P.2: RECONSTRUCTION OF MISSING SECTIONS OF RADIATION PATTERNS USING COMPRESSION SENSING
Berenice Verdin, Patrick Debroux, Army Research Laboratory, United States

TU-A4.3P.4: DEMONSTRATION OF THE DIRECT MAPPING METHOD FOR LOCATING MULTIPLE EMITTERS
Andrew Kintz, Inder Gupta, Ohio State University, United States

TU-A4.3P.5: THROUGH-THE-WALL IMAGING OF 3D OBJECTS
George Cheng, Yong Zhu, Jan Grzesik, Allwave Corporation, United States

TU-A2.2P: SURFACE MODES, DISPERSION AND ABSORPTION IN MATERIALS

TU-A2.2P.1: CHARACTERIZATION OF A PERFECT ABSORBER
Michael Kreiczer, Raphael Kastner, Tel Aviv University, Israel

TU-A2.2P.2: COLOR-CORRECTING GRADIENT-INDEX INFRARED SINGLET BASED ON SILICON AND GERMANIUM MIXING
Donovan E. Brocker, Sawyer D. Campbell, Douglas H. Werner, Pennsylvania State University, United States

TU-A2.2P.3: SURFACE-PLASMON-LIKE MODES ON STRUCTURED METAL SURFACE WITH PERIODIC SUBWAVELENGTH RECTANGULAR GROOVES PARTIALLY FILLED WITH DIELECTRIC
Kazuo Nishimura, Ryukoku University, Japan

TU-A2.2P.4: SURFACE-PLASMON-LIKE MODES ON A PERIODIC SUBWAVELENGTH SLOT ARRAY WITH VERY SHORT PERIOD ON AN OPTICALLY PLASMA INDUCED SEMICONDUCTOR SLAB
Kazuo Nishimura, Ryukoku University, Japan

WE-SP.1A: MEMORIAL SESSION FOR JULIEN PERRUISSEAU-CARRIER

WE-SP.1A.2: FULL-DIMENSION MIMO ARRAYS WITH LARGE SPACINGS BETWEEN ELEMENTS
Xavier Artiga, Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Spain

WE-SP.1A.4: FAST CONSTRUCTION OF THE MOM MATRIX FOR REFLECTARRAYS THROUGH A SMART TABULATION
Erdinc Ercil, Lale Alatan, Ozlem Civi, Middle East Technical University, Turkey

WE-SP.1A.5: BROADBAND FABRY-PÉROT ANTENNA WITH NON-FOSTER METASURFACE - HOW TO TEST THE BASIC IDEA?
Silvio Hrabar, University of Zagreb, Croatia; Tomislav Deboovic, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

WE-SP.1A.6: GRAPHENE PLASMONICS: THEORY AND EXPERIMENTS
Juan Sebastian Gomez-Diaz, Andrea Alù, University of Texas at Austin, United States
WE-SP.1A.7: PLASMONIC DEVICES AND SPATIAL DISPERSION EFFECTS IN GRAPHENE .. 802
TECHNOLOGY FOR TERAHERTZ APPLICATIONS
Diego Correas-Serrano, Universidad Politécnica de Cartagena, Spain; Juan Sebastian Gomez-Diaz, University of Texas at Austin, United States; Alejandro Alvarez-Melcon, Universidad Politécnica de Cartagena, Spain

WE-SP.2A: 4D ANTENNA ARRAYS: THEORY, TECHNIQUES AND APPLICATIONS

WE-SP.2A.1: A DUAL CHANNEL AM RECEIVER STRUCTURE IN 4D ARRAYS ... 804
Yasin Yavuz, Mert Karahan, Ertugrul Aksoy, Gazi University, Turkey

WE-SP.2A.2: TIME MODULATED ARRAY FOR DUAL FUNCTION RADAR AND COMMUNICATION 806
Jérome Euzière, Régis Guinvarc’h, Israel Hinostroza, Supelec, France; Bernard Uguen, University of Rennes 1, France; Raphael Gillard, INSA Rennes, France

WE-SP.2A.3: DYNAMIC WIRELESS POWER TRANSFER BY TIME-MODULATED ARRAYS ... 808
Roman Marchukov, Diego Masotti, Alessandra Costanzo, University of Bologna, Italy

WE-SP.2A.4: NONSINUSOIDAL TMA BASIS FUNCTIONS AND THE DVOR ... 810
William Barott, Embry-Riddle Aeronautical University, United States

WE-SP.2A.5: ADVANCED HARMONIC RADIATIONS DESIGN IN TIME-MODULATED ANTENNA ARRAYS 812
Lorenzo Poli, Paolo Rocca, Federico Viani, Andrea Massa, ELEDIA Research Center, University of Trento, Italy

WE-SP.2A.6: TIME-DOMAIN ANTENNA ARRAYS FOR FUTURE PHASED ARRAY APPLICATIONS 814
Chong He, Xianling Liang, Xudong Bai, Jumping Geng, Ronghong Jin, Shanghai Jiao Tong University, China

WE-SP.2A.7: TIME-MODULATED ARRAYS FOR DIGITAL COMMUNICATIONS IN MULTIPATH 816
SCENARIOS
Roberto Maneiro-Catoira, Julio Bregains, Jose A. Garcia-Naya, Luis Castedo, Universidade da Coruña, Spain

WE-SP.2A.8: BASIC MULTIPATH ANALYSIS OF LFM-CW-FDA .. 820
N/A
Cagri Cetintepe, Simsek Demir, Middle East Technical University, Turkey

WE-SP.2A.9: 4D ANTENNA ARRAYS FOR LFM SIGNAL TRANSMISSION ... 822
Jixin Guo, Shiwen Yang, Quanjiang Zhu, Zaiping Nie, University of Electronic Science and Technology of China, China

WE-A1.1A: SMALL MULTI-BAND ANTENNAS

WE-A1.1A.1: DUAL BAND METAMATERIAL-STRUCTURED ANTENNA WITH COPLANAR WAVEGUIDES 822
AND RADIAL FEED STUB
Miroslav Pajovic, Zlatko Potocnik, MP RF-Antenna-EMC Consulting, United States; Velimir Djeric, Milara, Inc., United States

WE-A1.1A.2: DESIGN FOR SUPPRESSED UNDESIRED REFLECTIONS FROM FREQUENCY-SELECTIVE SURFACES EMPLOYED IN MULTIBAND SECTOR ANTENNA .. 824
Hideya So, Atsuya Ando, Takatoshi Sugiyama, NTT Corporation, Japan; Keizo Cho, Chiba Institute of Technology, Japan

WE-A1.1A.3: INCORPORATION OF SQUARE PATCH AND SRR METAMATERIALS FOR DUAL-BAND PRINTED ANTENNA 826
Mohammad Arif Harfianto, Suprayogi Suprayogi, Telkom University, Indonesia; Achmad Munir, Institut Teknologi Bandung, Indonesia

WE-A1.1A.4: AN ULTRA WIDEBAND (UWB) PRINTED SLOTTED MONOPOLE ANTENNA WITH MULTI-FUNCTIONAL CHARACTERISTICS ... 828
Chinmoy Saha, Indian Institute of Space Science and Technology, India; Jawad Y. Siddiqui, University of Calcutta, India; Latheef Ahmed Shaik, Indian Institute of Space Science and Technology, India; Yahia M.M. Antar, Royal Military College of Canada, Canada

...
WE-A1.1A.5: UWB PRINTED MONOPOLE ANTENNA WITH CONTROLLABLE MULTI NOTCH
FUNCTION USING ROTATIONAL CIRCULAR SRRS
Chinmoy Saha, Latheef Ahmed Shaik, Indian Institute of Space Science and Technology, India; Jawad Y. Siddiqui, University of Calcutta, India; Yahia M.M. Antar, Royal Military College of Canada, Canada

WE-A1.1A.6: SIR DOUBLE PERIODIC CRLH LOADED DIPOLE ANTENNA
Mahmoud Abdalla, MTC College, Egypt; Mohamed Abo El-Dahab, Mohamed Ghouz, Arab Academy for Science, Technology, and Maritime Transport, Egypt

WE-A1.1A.7: COMPACT AND TUNABLE ACS-FED MONOPOLE ANTENNA
Ahmed Ibrahim, El Minia University, Egypt; Mahmoud Abdalla, MTC College, Egypt; Xianjun Huang, Zhirun Hu, Manchester University, United Kingdom

WE-A1.1A.8: SINGLE FEED DUAL-FREQUENCY ORTHOGONAL LINEAR-POLARIZATION MICROSTRIP PATCH ANTENNA WITH LARGE FREQUENCY RATIO
Fanji Meng, University of Electronic Science and Technology of China, China; Sharma Satish, San Diego State University, United States

WE-A1.1A.9: A METAMATERIAL-INSPIRED TRIPLE BAND DUAL POLARIZED MONOPOLE ANTENNA
Debdeep Sarkar, Kushmanda Saurav, Archana Rajput, Kumar Vaibhav Srivastava, Indian Institute of Technology Kanpur, India

WE-A1.1A.10: A HEXAGONAL MULTIBAND FRACTAL PATCH ANTENNA
Mukh Ram Rajbhar, Sushrut Das, Indian School of Mines, India; Ram Lal Yadava, Galgotias College of Engineering & Technology, India

WE-A1.2A: ANTENNA THEORY I

WE-A1.2A.1: WHY CURRENT DECAY ON A WIRE CAUSES RADIATION
Edmund Miller, Los Alamos National Laboratory (retired), United States

WE-A1.2A.2: SCATTERING PROPERTIES OF THE IDEAL ANTENNA IN RECEIVE MODE
Michael Kreiczer, Raphael Kastner, Tel Aviv University, Israel

WE-A1.2A.3: METHODS OF TRANSMITTING A WIDEBAND SIGNAL THROUGH AN ELECTRICALLY SMALL ANTENNA
Majid Manteghi, Virginia Polytechnic Institute and State University, United States

WE-A1.2A.4: EQUIVALENT CIRCUIT MODELING OF PLANAR MOBILE PHONE INTENNA
Bum-Kyum Kim, Taeyeop Lee, Kwyro Lee, Korea Advanced Institute of Science and Technology, Republic of Korea

WE-A1.2A.5: CAVITY MATCHING OF HIGH DIELECTRIC CONSTANT SIW H-PLANE HORN ANTENNA
Nima Bayat-Makou, Ahmed A. Kishk, Concordia University, Canada

WE-A1.2A.6: PHYSICS-BASED CIRCUIT MODELS FOR MIMO ANTENNAS USING CHARACTERISTIC MODES
Jacob Adams, Binbin Yang, North Carolina State University, United States

WE-A1.2A.7: A MODIFICATION OF THE TWO-ANTENNA METHOD TO DETERMINE THE PHASE CENTER LOCATION AS WELL AS THE GAIN OF A WIDEBAND ANTENNA
Herbert Aumann, University of Maine, United States; Tyler Schmitt, University of Lowell, United States; David Mooradd, MIT Lincoln Laboratory, United States

WE-A1.2A.8: PATTERN RIPPLE IN NEAR-TO-FAR-FIELD RECONSTRUCTION
Jan Grzesik, Allwave Corporation, United States

WE-A1.2A.9: THE RELATION BETWEEN FRACTIONAL BANDWIDTH AND Q FACTOR
Miloslav Capek, Lukas Jelinek, Czech Technical University in Prague, Czech Republic
WE-A1.1A.10: THE BEAM WIDENING FACTOR OF LINEAR DOLPH-CHEBYSHEV END-FIRE ARRAYS
Jia Cao, Zheng-Hui Xue, Weiming Li, Wu Ren, Beijing Institute of Technology, China

WE-A2.1A: METASURFACE INNOVATIONS I

WE-A2.1A.1: LOW PROFILE LENS ANTENNAS: COLLIMATING LEAKY-WAVE RADIATION WITH METASURFACES
Carl Pfeiffer, Anthony Grbic, University of Michigan, United States

WE-A2.1A.2: USING SMALL METASURFACE LENS FOR ANTENNA GAIN ENHANCEMENT
Hailiang Zhu, S.W. Cheung, T.I. Yuk, University of Hong Kong, Hong Kong SAR of China

WE-A2.1A.3: COUPLING LOCALIZED SOURCES TO CONTROLLED POLARIZED BROADSIDE RADIATION USING HUYGENS METASURFACES
Ariel Epstein, George V. Eleftheriades, University of Toronto, Canada

WE-A2.1A.4: A HIGH-GAIN LENS ANTENNA BASED ON GRADIENT-INDEX METAMATERIAL
Elham Erfani, Institut National de la Recherche Scientifique (INRS), Canada; Mahmoud Niroo-jazi, Concordia University, Canada; Tayeb A. Denidni, Serioja Ovidiu Tatu, Institut National de la Recherche Scientifique (INRS), Canada

WE-A2.1A.5: HOMOGENIZED DYADIC GREEN’S FUNCTIONS FOR ELECTRIC DIPOLE EXCITATION OVER METASURFACES
Feng Liang, University of Electronic Science and Technology of China, China; George W. Hanson, University of Wisconsin-Milwaukee, United States; Giampiero Lovat, Rodolfo Araneo, Paolo Burghignoli, La Sapienza University of Rome, Italy; Alexander B. Yakovlev, University of Mississippi, United States

WE-A2.1A.6: VARIABLE REFLECTION ANGLE META-SURFACE USING DOUBLE LAYERED FSS
Ryuji Kuse, Toshikaçu Hori, Mitoshi Fujimoto, University of Fukui, Japan

WE-A2.1A.7: ANGULARLY-INDEPENDENT HUYGENS’ METASURFACES
Younes Ra’di, Sergei Tretyakov, Aalto University, Finland

WE-A2.1A.8: HYPERBOLIC METASURFACES
Juan Sebastian Gomez-Diaz, Mykhailo Tymchenko, Andrea Alù, University of Texas at Austin, United States

WE-A2.1A.9: BIREFRINGENT “GENERALIZED REFRACTIVE” METASURFACE
Karim Achouri, Mohamed A. Salem, Christophe Caloz, Polytechnique de Montréal, Canada

WE-A2.1A.10: A NOVEL CIRCULARLY POLARIZED / DUAL BAND DUAL POLARIZED ANTENNA USING METASURFACE
Basudev Majumder, Krishnamoorthy Kandasamy, Jayanta Mukherjee, IIT Bombay, India; Kama Prasan Ray, Society for Applied Microwave Electronic Engineering and Research, India

WE-A2.2A: FREQUENCY SELECTIVE SURFACES: RECONFIGURABLE

WE-A2.2A.1: ACTIVE FREQUENCY SELECTIVE SURFACES USING CANTILEVER SWITCHES FOR 60-GHZ APPLICATIONS
Arun Kesavan, Bybi P. Chacko, Tayeb A. Denidni, National Institute of Scientific Research, Canada

WE-A2.2A.2: ELECTRONICALLY TUNABLE FREQUENCY SELECTIVE SURFACE AT 60 GHZ FOR BEAM-STEERING APPLICATIONS
Gijo Augustin, Bybi P. Chacko, Tayeb A Denidni, National Institute of Scientific Research (INRS), Canada

WE-A2.2A.3: MILLIMETER-WAVE ACTIVE FSS STRUCTURE WITH CANTILEVER SWITCHES FOR BEAM-SWITCHING ANTENNA APPLICATIONS
Bybi P Chacko, Gijo Augustin, Tayeb A Denidni, National Institute of Scientific Research (INRS), Canada
WE-A2.2A.4: EXPLOITING MECHANICAL FLEXURE TO DESIGN TUNABLE PERIODIC STRUCTURES
Seyed Mohamad Amin Momeni Hasan Abadi, John H. Booske, Nader Behdad, University of Wisconsin-Madison, United States

WE-A2.2A.5: RECONFIGURABLE BAND REJECTION AND BAND-PASS FREQUENCY SELECTIVE STRUCTURES
Jeffrey Kula, Prabhakar H. Pathak, John L. Volakis, Ohio State University, United States

WE-A2.2A.6: MAGNETICALLY TUNABLE GRAPHENE PATCH FREQUENCY SELECTIVE SURFACE (FSS)
Lin Lin, Lin-Sheng Wu, Shanghai Jiao Tong University, China; Wen-Yan Yin, Zhejiang University, China; Jun-Fa Mao, Shanghai Jiao Tong University, China

WE-A4.1A: INVERSE PROBLEMS IN ELECTROMAGNETICS

WE-A4.1A.1: QUASI-BORN APPROXIMATION PREFILTERING FOR NONITERATIVE INVERSE SCATTERING
Edwin Marengo, Jing Tu, Northeastern University, United States

WE-A4.1A.2: FAST 3D NONLINEAR INVERSION METHOD FOR AIRBORNE ELECTROMAGNETIC EXPLORATION
Yu Jia, Qing Huo Liu, Duke University, United States

WE-A4.1A.3: SUBSPACE-BASED OPTIMIZATION METHOD COUPLED WITH MULTIPLICATIVE REGULARIZATION FOR EDGE-PRESERVING INVERSION
Xudong Chen, National University of Singapore, Singapore; Kuiwen Xu, Fazhong Shen, Lixin Ran, Zhejiang University, China; Yu Zhong, Institute of High Performance Computing, Singapore

WE-A4.1A.4: A LEARNING-BY-EXAMPLES APPROACH FOR NON-DESTRUCTIVE LOCALIZATION AND CHARACTERIZATION OF DEFECTS THROUGH EDDY CURRENT MEASUREMENTS
Marco Salucci, Giacomo Oliveri, Federico Viani, ELEDIA Research Center, University of Trento, Italy; Roberto Miorelli, Christophe Reboud, Pierre Calmon, CEA LIST, France; Andrea Massa, ELEDIA Research Center, University of Trento, Italy

WE-A4.1A.5: INVASION PATTERNS DERIVED FROM INVERSION OF LOGGING-WHILE-DRILLING MEASUREMENTS
Zhong Zhang, Zhejiang University, China; Jun Cai, CNOOC, China

WE-A4.1A.6: INVERSION FOR TILTED TRIAXIAL CONDUCTIVITY IN DIPPING LAYERED FORMATIONS
Yu Jia, Duke University, United States; Gong Li Wang, Aria Abubakar, Schlumberger, United States

WE-A4.1A.7: TWO-DIMENSIONAL INVERSION OF TRIAXIAL INDUCTION LOGGING DATA IN TRANSVERSELY ISOTROPIC FORMATION
Su Yan, University of Illinois at Urbana-Champaign, United States; Gong Li Wang, Aria Abubakar, Schlumberger, United States

WE-A4.1A.8: USING A CONTRACTION MAPPING METHOD TO DETERMINE COMPLEX PERMITTIVITY FROM ELECTROMAGNETIC PROPAGATION MEASUREMENTS
Tianxia Zhao, Gong Li Wang, Keli Sun, Aria Abubakar, Fernando Garcia-Osuna, Schlumberger, United States

WE-A4.1A.9: NUMERICAL STUDY OF RESOLUTION IN NEAR FIELD MICROSCOPY FOR DIELECTRIC SAMPLES
Zhun Wei, Xudong Chen, National University of Singapore, Singapore

WE-A4.1A.10: A FAST ALGEBRAIC RECONSTRUCTION METHOD FOR INVERSE PROBLEM
Chuan Lin, Jiefeng Zang, Anyong Qing, University of Electronic Science and Technology of China, China
WE-A4.2A: PROPAGATION CHARACTERIZATION IN TERRESTRIAL ENVIRONMENT

WE-A4.2A.1: STRATOSPHERIC PLATFORM FOR TELECOMMUNICATION MISSIONS .. 914
Fabien Baurreau, Robert Staraj, Fabien Ferrero, Leonardo Lizzi, Jean-Marc Ribero, Laboratoire d’Electronique, Antennes et Télécommunications, France; Jean-Philippe Chessel, Thales Alenia Space, France

WE-A4.2A.2: X-BAND BEACON-RECEIVER ARRAY EVAPORATION DUCT HEIGHT ESTIMATION 916
Jonathan Pozderac, Joel Johnson, Caglar Yardim, Ohio State University, United States

WE-A4.2A.3: MULTIPATH FADING EFFECT ON TERRESTRIAL MICROWAVE LOS RADIO LINKS 918
Polat Goktas, Satilmis Topcu, Ezhan Karasan, Ayhan Altintas, Bilkent University, Turkey

WE-A4.2A.4: PROPAGATION EXPERIMENT IN THE LITTORAL AT 94 GHZ .. 920
Andreas Danklmayer, Stefan Sieger, Fraunhofer FHR, Germany

WE-A4.2A.5: SHADOW FADING CORRELATIONS IN A EUROPEAN FOREST ENVIRONMENT 922
Alexandros Palaios, Janne Riihijärvi, Petri Mähönen, RWTH Aachen University, Germany

WE-A5.1A: ADVANCES IN MOBILE ANTENNA DESIGN

WE-A5.1A.1: DESIGN OF COMPACT DUAL-BAND DUAL-PORT WLAN MIMO ANTENNAS USING 924
Saber Soltani, Parisa Lotfi Poshtgol, Ross D. Murch, Hong Kong University of Science and Technology, Hong Kong SAR of China

WE-A5.1A.2: DESIGNING ANTENNA BOOSTER CASES FOR MOBILE PHONES USING CAPACITIVE 926
Jungyub Lee, Junsig Kum, Dohyuk Ha, Youngju Lee, Samsung Electronics, Republic of Korea

WE-A5.1A.3: HIGH PERFORMANCE MULTIBAND RADIO ANTENNA ... 928
Yu-Jiun Ren, Jessie Ren, Nokia, United States; Huan-Sheng Hwang, Intel Corporation, United States

WE-A5.1A.4: A FLEXIBLE AND TRANSPARENT ANTENNA ON A POLYIMIDE SUBSTRATE FOR 930
Seungman Hong, Younsung Kim, Changmin Lee, Chang Won Jung, Seoul National University of Science and Technology, Republic of Korea

WE-A5.1A.5: VERY SMALL CHIP ANTENNA SUPPORTING MULTIPLE RADIO PROTOCOLS 932
Jessie Ren, Yu-Jiun Ren, Nokia, United States

WE-A5.1A.6: A DUAL-POLARIZED TRIPLE-BAND MIMO ANTENNA FOR WLAN/WIMAX APPLICATIONS 934
Yan Pan, Yuehui Cui, RongLin Li, South China University of Technology, China; Manos Tentzeris, Georgia Institute of Technology, United States

WE-A5.1A.7: A DUAL-BAND PRINTED ANTENNA WITH METAL BACK-COVER FOR WBAN 936
Wonseok Lee, Jaehoon Choi, Hanyang University, Republic of Korea

WE-A5.1A.8: WEARABLE ANTENNA DESIGN ON FINITE-SIZE HIGH IMPEDANCE SURFACES FOR 938
Ting-Yu Ku, Yen-Sheng Chen, National Taipei University of Technology, Taiwan

WE-A5.1A.9: EFFECTIVE MISSMATCH LOSSES IN HANDHELD ANTENNAS ... 940
Pedro Luís Carro, Jesus de Mingo, Nerea González-Vázquez, Paloma García-Díscar, Antonio Valdovinos, University of Zaragoza, Spain
WE-A5.2A: WIRELESS SYSTEMS FOR BIOMEDICAL APPLICATIONS

WE-A5.2A.1: SUB-1 GHZ FAR-FIELD POWERING OF IMPLANTABLE MEDICAL DEVICES: DESIGN AND SAFETY CONSIDERATIONS
Sofia Bakogianni, Stavros Koulouridis, University of Patras, Greece

WE-A5.2A.2: EVALUATION AND OPTIMIZATION OF NEAR-FIELD INDUCTIVE COUPLED WIRELESS POWER LINKS IN RAT MODEL
Kush Agarwal, National University of Singapore, Singapore; Rangarajan Jegadeesan, Singapore Institute for Neurotechnology, Singapore; Yongxin Guo, National University of Singapore, Singapore; Nitish Thakor, Singapore Institute for Neurotechnology, Singapore

WE-A5.2A.3: WIRELESS BIOMEDICAL TELEMETRY USING A FULLY-PASSIVE BRAIN IMPLANT
Cedric Lee, Asimina Kiourti, John L. Volakis, Ohio State University, United States

WE-A5.2A.4: NOVEL IMPLANTABLE MINIATURIZED CIRCULAR MICROSTRIP ANTENNA FOR BIOMEDICAL TELEMETRY
Raed Shubair, Amer Salah, Alaa Abbas, Khalifa University, United Arab Emirates

WE-A5.2A.5: STUB-LOADED COMPACT DUAL-BAND IMPLANTABLE ANTENNA FOR BIOTELEMETRY
Yijun Liu, Yifan Chen, South University of Science and Technology of China, China; Haiili Lin, Jinghong Commu. Tech. Co., Ltd., China

WE-UB.1A: METAMATERIAL LENSES AND LENS ANTENNAS

WE-UB.1A.7: SPLINE-ENHANCED SYNTHESIS OF METAMATERIAL LENSES FOR LINEAR ARRAY MINIATURIZATION BY THE SBD-QCTO
Lorenza Tenuti, Giacomo Oliveri, Federico Viani, Andrea Massa, ELEDIA Research Center, University of Trento, Italy

WE-UB.1A.8: DESIGN OF THE SPOT-FOCUSBING METAL PLATE LENS ANTENNA FOR HIGH-TEMPERATURE MEASUREMENT
Gaofeng Guo, Yunpeng Zhang, En Li, University of Electronic Science and Technology of China, China

WE-UB.1A.9: TOWARDS CIRCULARLY POLARIZED RECONFIGURABLE HUYGENS SOURCE
Adam Narbudowicz, RWTH Aachen University, Germany; Max Ammann, Dublin Institute of Technology, Ireland; Dirk Heberling, RWTH Aachen University, Germany

WE-A3.1A: INTEGRAL EQUATION METHODS FOR ADVANCED APPLICATIONS

WE-A3.1A.1: CHARACTERISTICS MODE ANALYSIS OF A DIPOLE ANTENNA LOADED WITH DNG MATERIAL
David Zeppettella, Air Force Research Laboratory, United States; Mohammad Ali, University of South Carolina, United States

WE-A3.1A.2: FAST MBF ANALYSIS OF PRINTED FSS STRUCTURES
Shambhu Nath Jha, ICOMS Detections S.A., Belgium; Ha Bui Van, Christophe Craeye, Université Catholique de Louvain, Belgium

WE-A3.1A.3: EQUIVALENCE PRINCIPLE ALGORITHM FOR ANALYSIS OF METAMATERIALS AND RECONFIGURABLE PIXELLED ANTENNAS
Mojtaba Fallahpour, Weng Cho Chew, University of Illinois at Urbana-Champaign, United States

WE-A3.1A.4: A NEW APPROACH FOR THE ANALYSIS OF THICK WIRE ANTENNAS
Yigit Haykir, Adnan Köksal, Hacettepe University, Turkey

WE-A3.1A.5: A DELTA GAP SOURCE FOR LOCALLY CORRECTED NYSTRÖM DISCRETIZED INTEGRAL EQUATIONS
John C. Young, University of Kentucky, United States; Stephen Gedney, University of Colorado Denver, United States
WE-A3.1A.6: BOUNDARY ELEMENT METHOD FOR THE ELECTROMAGNETIC ANALYSIS OF METAMATERIALS
Diego Martínez Solís, Marta Gómez Araújo, José Luis Rodríguez Rodríguez, Fernando Obelleiro Basteiro, Universidade de Vigo, Spain; José Manuel Taboada Varela, Luis Landesa Porras, Universidad de Extremadura, Spain

WE-A3.1A.7: A FAST FULL-WAVE ANALYSIS SCHEME OF HIGH-GAIN SUPERSTRATE ANTENNAS
Ha Bui Van, Université Catholique de Louvain, Belgium; Shambhu Nath Jha, ICOMS Detections S.A., Belgium; Christophe Craeye, Université Catholique de Louvain, Belgium

WE-A3.1A.8: FULL-WAVE FREQUENCY-DOMAIN ELECTROMAGNETIC MODELLING OF RF FIELDS IN MRI APPLICATIONS
Milan Ilic, Ivana Perovic, University of Belgrade, Serbia; Pranav Athalye, Nada Sekeljic, Colorado State University, United States; Alexey Tonyushkin, Massachusetts General Hospital, United States; Branislav M. Notaros, Colorado State University, United States

WE-A3.1A.9: EFFICIENT MODELLING OF ANTENNAS CONFORMAL TO CYLINDRICAL MEDIUM
Jun Wu, Chao-Fu Wang, National University of Singapore, Singapore

WE-A3.1A.10: ANALYSIS OF ELECTRICALLY LARGE SLOTTED WAVEGUIDE ARRAY USING HIGH-ORDER MOM
Yong Wang, Yanyan Li, Xunwang Zhao, Yu Zhang, Yan Chen, Xidian University, China

WE-A4.3A: RADAR METROLOGY AND CLUTTER MODELING

WE-A4.3A.1: WAVEFORMS AND SIGNAL PROCESSING FOR HIGH-ACCURACY MICROWAVE METROLOGY
Kojo Zilevu, Jason Hodkin, Matthew Sharp, Thomas Comberiate, Jeffrey Nanzer, Johns Hopkins University Applied Physics Laboratory, United States

WE-A4.3A.2: MEASUREMENT AND CHARACTERIZATION OF WINTER PRECIPITATION AT MASCRA D SNOW FIELD SITE
Branislav M. Notaros, V. N. Bringi, Cameron Kleinkort, Gwo-Jong Huang, Elene Chobanyan, Merhala Thurai, Olivera Notaros, Ana Manic, Patrick Kennedy, Milan Ilic, Colorado State University, United States; Andrew Newman, John Hubbert, Timothy Lim, William Brown, National Center for Atmospheric Research, United States

WE-A4.3A.3: PRELIMINARY EXPERIMENTAL RESULT OF AIRCRAFT POSITIONING BY USING ISDB-T DELAY SIGNAL
Junichi Honda, Takuya Otsuyama, Electronic Navigation Research Institute, Japan

WE-A4.3A.4: LOW-CHARGED BATTERY COMPATIBLE HARMONIC REFLECTOR INTEGRATED IN A MOBILE DEVICE FOR DETECTION OF TRAPPED VICTIMS
Dohyuk Ha, Junsig Kum, Jungyub Lee, Youngju Lee, Samsung Electronics, Republic of Korea

WE-A4.3A.5: SIMULATION OF TARGET TO CLUTTER RATIO FOR PASSIVE PHASE-CONJUGATION RADAR IN TIME-VARYING ENVIRONMENTS
Joonsuk Kim, Yonsei University, Republic of Korea; Il-Suek Koh, Inha University, Republic of Korea; Yongshik Lee, Yonsei University, Republic of Korea

WE-A2.3A: FREQUENCY SELECTIVE SURFACES: APPLICATIONS

WE-A2.3A.1: FREQUENCY SELECTIVE SURFACES FOR UHF RFID APPLICATIONS
Khaled ElMahgoub, Trimble Navigation / MIT, United States

WE-A2.3A.2: DOUBLE-FED MULTILEVEL FREQUENCY SELECTIVE SURFACE FOR LOW-PROFILE PLANAR LENS
Daniel Sánchez-Escuderos, Marta Cabedo-Fabrés, Eva Antonino-Daviu, Miguel Ferrando-Bataller, Universitat Politècnica de València, Spain
WE-A2.3A.3: APPROXIMATION OF EFFECTIVE DIELECTRIC CONSTANT FOR FSS IN LAYERED DIELECTRICS USING CONFORMAL MAPPING
Dustin Pieper, Kristen Donnell, Missouri University of Science and Technology, United States

WE-A2.3A.4: A CYLINDRICAL THIN LENS FOR 79GHZ APPLICATIONS
Hadi Amarloo, Mohammad-Reza Nezhad-Ahmadi, Saeedeh Khojastepour, University of Waterloo, Canada

WE-A2.3A.5: A NOVEL FRACTAL FSS FOR ENERGY SAVING GLASS
Ghaffer Kiani, Rabah W. Aldhaheri, King Abdulaziz University, Saudi Arabia

WE-A4.4A: OUTDOOR PROPAGATION

WE-A4.4A.1: RADIOFREQUENCY SPECKLE IN MOUNTAINOUS TERRAIN
Daniel Breton, Steven Arcone, Cold Regions Research and Engineering Laboratory, United States

WE-A4.4A.2: A VERTICAL REFLECTION IONOSPHERIC CLUTTER MODEL FOR HIGH FREQUENCY SURFACE WAVE RADAR
Shuyan Chen, Weimin Huang, Eric Gill, Memorial University, Canada

WE-A4.4A.3: IMPACT OF WINDMILLS ON THE AM PROPAGATION OVER THE GROUND
Shambhu Nath Jha, ICOMS Detections S.A., Belgium; Christophe Craeye, Université Catholique de Louvain, Belgium; Pierre-Antoine Mali, GreenPlug Sprl, Belgium

WE-A4.4A.4: LONG-TERM TRENDS IN SPACE-GROUND ATMOSPHERIC PROPAGATION MEASUREMENTS
Michael Zemba, Jacquelynne Morse, James Nessel, NASA Glenn Research Center, United States

WE-A4.4A.5: ON TERRAIN EFFECTS ON PATH LOSS MODELS
Oluwaseun Kolawole, Nasir Faruk, University of Ilorin, Nigeria

WE-A4.5A: PROPAGATION FOR MILLIMETER-WAVE COMMUNICATIONS

WE-A4.5A.1: HIGH SPEED TRANSMISSION AT 60 GHZ FOR 5G COMMUNICATIONS
Edgar Lemos Cid, Manuel Garcia Sanchez, Ana Vazquez Alejos, University of Vigo, Spain

WE-A4.5A.2: IMPACT OF CLUSTERING AT MMW BAND FREQUENCIES
Maria-Teresa Martinez-Ingles, Universidad Politécnica de Cartagena, Spain; Davy P. Gaillot, University of Lille 1, France; Juan Pascual-Garcia, Jose-Maria Molina-Garcia-Pardo, Universidad Politécnica de Cartagena, Spain; Martine Lienard, University Lille 1, France; Jose-Victor Rodriguez, Leandro Juan-Llacer, Universidad Politecnica de Cartagena, Spain

WE-A4.5A.3: IMPLEMENTATION AND PERFORMANCE EVALUATION OF MMWAVE CHANNEL SOUNING SYSTEM
Heon-Kook Kwon, Myung-Don Kim, Young-jun Chong, Electronics and Telecommunications Research Institute (ETRI), Republic of Korea

WE-A4.5A.4: INITIAL 75-110 GHZ INDOOR PROPAGATION MEASUREMENTS
Maria-Teresa Martinez-Ingles, Universidad Politécnica de Cartagena, Spain; Davy P. Gaillot, University Lille 1, France; Juan Pascual-Garcia, Jose-Maria Molina-Garcia-Pardo, Jose-Victor Rodriguez, Universidad Politécnica de Cartagena, Spain; Lorenzo Rubio, Universitat Politécnica de Valéncia, Spain; Leandro Juan-Llacer, Universidad Politecnica de Cartagena, Spain

WE-A4.5A.5: BIT-ERROR-RATE (BER) PERFORMANCE IN DISPERSION CODE MULTIPLE ACCESS (DCMA)
Shulabh Gupta, Lianfeng Zou, Mohamed Ahmed Salem, Christophe Caloz, Polytechnique de Montréal, Canada
WE-SP.1P: EXPLORING INNOVATIVE WAYS TO REVITALIZE EM EDUCATION GLOBALLY

WE-SP.1P.1: GLOBALIZATION OF ELECTROMAGNETIC EDUCATION INITIATIVE .. 1017
Parveen Wahid, University of Central Florida, United States; Krishnaswamy Selvan, SSN College of Engineering, India

WE-SP.1P.2: TECHNOLOGY-BASED GLOBAL REVITALIZATION OF ELECTROMAGNETIC EDUCATION 1019
Magdy F. Iskander, University of Hawaii, United States

WE-SP.1P.3: TEACHING ELECTROMAGNETICS VIA VIRTUAL TOOLS ... 1021
Levent Sevgi, Okan University, Turkey

WE-SP.1P.4: EUROPEAN SCHOOL OF ANTENNAS: TEN YEARS OF TEACHING .. 1023
Stefano Maci, University of Siena, Italy

WE-SP.1P.5: SAVE AND IEMPT: THE EM REVITALIZATION PROGRAM IN TAIWAN .. 1025
Tzyh-Ghuang Ma, Wen-Jiao Liao, National Taiwan University of Science and Technology, Taiwan; Zuo-Min Tsai, National Chung Cheng University, Taiwan; Shih-Yuan Chen, Tzong-Lin Wu, Reey-Beei Wu, National Taiwan University, Taiwan; Yi-Hsin Pang, National University of Kaohsiung, Taiwan; Heng-Tung Hsu, Song Tsuen Peng, Yuan Ze University, Taiwan; Hui-Hung Yu, Jiao-Ming Tu, His-Ching Lin, National Center for High-Performance Computing, Taiwan

WE-SP.1P.7: CO-FLIPPED TEACHING: EXPERIENCES SHARING THE FLIPPED CLASS 1027
Cynthia Furse, Donna Ziegenfuss, University of Utah, United States

WE-SP.1P.9: EM EDUCATION FOR NON-EE UNDERGRADUATE STUDENTS ... 1029
Koichi Ito, Chiba University, Japan

WE-SP.2P: METATRONICS: THEORY, METHODS AND APPLICATIONS

WE-SP.2P.4: HIGH NUMERICAL APERTURE ALL-DIELECTRIC METASURFACE MICRO-LENSES 1030
Fabrizio Silvestri, Giampiero Gerini, Netherlands Organization for Applied Scientific Research, TNO - Eindhoven University of Technology, TU/e, Netherlands; Elvira Pisano, Vincenzo Galdi, University of Sannio, Italy

WE-SP.2P.5: A SYSTEM-BY-DESIGN APPROACH FOR THE SYNTHESIS OF METAMATERIAL PRINTED WAIMS 1032
Francesca Apolloni, Giacomo Oliveri, Federico Viani, Andrea Massa, ELEDIA Research Center, University of Trento, Italy

WE-SP.2P.7: RECIPROCAL AND NON-RECIPROCAL SIGNAL MANIPULATION THROUGH HORN ANTENNAS LOADED WITH METAMATERIAL-INSPIRED PARTICLES .. 1034
Davide Ramaccia, Filiberto Bilotti, Alessandro Toscano, “RomaTre” University, Italy; Mirko Barbuto, “Niccolò Cusano” University, Italy; Dimitrios Sounas, Andrea Alù, University of Texas at Austin, United States

WE-SP.2P.8: A BROADBAND WIDE-ANGLE POLARIZER THROUGH FIELD TRANSFORMATION 1036
Junming Zhao, Nanjing University, China; Lianhong Zhang, Yang Hao, Queen Mary University of London, United Kingdom; Yijun Feng, Nanjing University, China

WE-SP.2P.9: CLOSED-FORM SOLUTIONS FOR THE ANALYSIS OF ARTIFICIAL DIELECTRIC LAYERS UNDER GENERIC FIELD INCIDENCE ... 1038
Daniele Cavallo, Waqas H. Syed, Andrea Neto, Delft University of Technology, Netherlands

WE-A1.1P: WAVEGUIDE ANTENNAS AND FEEDING STRUCTURES

WE-A1.1P.1: DESIGN OF A X/KU MULTIBAND FEED ANTENNA FOR SATELLITE ... 1040
Communications
Stephen Targonski, MIT Lincoln Laboratory, United States
WE-A1.1P.2: A DIPLEXING ANTENNA SYSTEM IN SUBSTRATE INTEGRATED WAVEGUIDE TECHNOLOGY
Zamzam Kordiboroujeni, Lisa Locke, Jens Bornemann, University of Victoria, Canada

WE-A1.1P.3: MINIATURIZED MULTI-SECTION CROSSOVER WITH OPEN STUB
Taewon Kim, Jaehoon Choi, Hanyang University, Republic of Korea

WE-A1.1P.4: THREE-WAY DUAL-BAND PLANAR SERIES-TYPE POWER DIVIDER FOR DIFFERENT TERMINATED IMPEDANCES
Yongle Wu, Yangyang Guan, Weimin Wang, Yuanan Liu, Beijing University of Posts and Telecommunications, China

WE-A1.1P.5: A NOVEL MULTIPACTOR SUPPRESSION METHOD TOWARDS HIGH-POWER MICROWAVE SWITCH
Wanzhao Cui, Yun Li, Rui Wang, China Academy of Space Technology (Xi’an), China

WE-A1.1P.6: TRANSMISSION CHARACTERISTICS OF CIRCULAR WAVEGUIDE WITH COAXIAL-TO-CIRCULAR WAVEGUIDE TRANSITIONS
Tetsuya Yamamoto, Kei Urabe, Hiroshi Tsuda, National Institute of Advanced Industrial Science and Technology (AIST), Japan

WE-A1.1P.7: IMPLEMENTATION OF HIGH PERFORMANCE AND BROADBAND CROSSOVER JUNCTION IN BUTLER MATRIX DESIGN
Guo Chao Huang, Magdy F. Iskander, University of Hawaii, United States; Mahbub Hoque, Steven R. Goodal, Timothy Bocskor, Space and Terrestrial Communications, CERDEC, APG, United States

WE-A1.1P.8: NOVEL QUADPLEXER SYNTHESIS PROCEDURE
Jaakko Juntunen, Jussi Rahola, Optenni Ltd., Finland; Edgar Schmidhammer, EPCOS AG, Germany

WE-A1.1P.9: DESIGN OF COAXIAL WAVEGUIDE FEED HORN
Sohyeun Yun, Manseok Uhm, Inbok Yom, Electronics and Telecommunications Research Institute (ETRI), Republic of Korea

WE-A1.1P.10: CORRUGATED MATCHED HORN WITH LOW SIDE-LOBES FOR HIGH PERFORMANCE OFFSET REFLECTOR SYSTEMS
Cheng Yang, Junsheng Yu, Yuan Yao, Xiaoming Liu, Beijing University of Posts and Telecommunications, China; Liang Xu, Xiaodong Chen, Queen Mary University of London, United Kingdom

WE-A1.2P: ANTENNA THEORY II

WE-A1.2P.1: AN APPLICATION OF HEISENBERG’S UNCERTAINTY PRINCIPLE TO LINE SOURCE RADIATION
Jeffrey Young, Christopher Wilson, University of Idaho, United States

WE-A1.2P.2: IDENTIFYING RADIATION MECHANISMS ON SMALL CONDUCTING OBJECTS USING RADIATION MODES
Kurt Schab, Jennifer Bernhard, University of Illinois at Urbana-Champaign, United States

WE-A1.2P.3: THE QUALITY FACTOR QZ OF THE COMBINED TE10 / TM10 SPHERICAL MODE
Lukas Jelinek, Miloslav Capek, Czech Technical University in Prague, Czech Republic

WE-A1.2P.4: LAUNCHING OAM-CARRYING WAVES BY A LEAKY CIRCULAR CURRENT LOOP
Mohamed A. Salem, Christophe Caloz, Polytechnique de Montréal, Canada

WE-A1.2P.5: ON-BODY FAR FIELD DESCRIPTION BY TWO EQUIVALENT ELECTRIC SOURCES
Markus Grimm, Dirk Manteuffel, University of Kiel, Germany

WE-A1.2P.6: BROADBAND ARRAY ANTENNA DESIGN BY COUPLING TECHNIQUE USING 180 DEGREE PHASE SHIFTER
Mohammad Mahdi Honari, Pedram Mousavi, University of Alberta, Canada
WE-A1.2P.7: FAST DESIGN OF ROTMAN LENS AND ITS APPLICATION IN ROTMAN-DRA PHASED ARRAY
Mohammad Ranjbar Nikkhah, University of Montreal, Canada; Manish Hiranandani, Intel Corporation, United States; Ahmed A. Kishk, Concordia University, Canada; Ke Wu, University of Montreal, Canada

WE-A1.2P.8: MULTI-RESOLUTION BCS-BASED APPROACH FOR DOA ESTIMATION
Matteo Carlin, Paolo Rocca, Federico Viani, Giacoamo Oliveri, Andrea Massa, ELEDIA Research Center, University of Trento, Italy

WE-A1.2P.9: NOVEL VORTEX BEAM ANTENNAS WITH ORBITAL ANGULAR MOMENTUM IN THE RADIO FREQUENCY DOMAIN
Yi Zhang, Zhengzhou Information Science and Technology Institute, China; Zhijun Zhang, Zhenghe Feng, Tsinghua National Laboratory for Information Science and Technology, China

WE-A1.2P.10: STATISTICAL CHARACTERIZATION OF PHYSICALLY TRANSIENT ANTENNAS
Yifan Chen, Qingfeng Zhang, South University of Science and Technology of China, China; Akram Alomainy, Queen Mary University of London, United Kingdom; Patri Sant Anwar, Limin Huang, South University of Science and Technology of China, China

WE-A1.2P.11: EFFICIENT MODELING OF A SMALL CIRCULAR LOOP COUPLING TO A SINGLE WIRE ABOVE A LOSSY HALF-SPACE
Yifeng Qin, Donovan E. Brocker, Pinjuan Werner, Douglas H. Werner, Pennsylvania State University, United States; Chenming Zhou, Joseph Waynert, National Institute for Occupational Safety and Health, United States

WE-A2.1P: METASURFACE INNOVATIONS II

WE-A2.1P.1: EFFICIENT ANALYSIS OF METASURFACES IN A PLANAR LAYERED MEDIUM
David González Ovejero, Goutam Chattopadhyay, California Institute of Technology, United States; Stefano Maci, University of Siena, Italy

WE-A2.1P.2: GIANT NONLINEAR PROCESSES IN PLASMONIC METASURFACES
Juan Sebastian Gomez-Diaz, Jongwon Lee, Tymchenko Mykhailo, Mikhail A. Belkin, Andrea Alù, University of Texas at Austin, United States

WE-A2.1P.3: GENETIC ALGORITHM SYNTHESES OF METASURFACES WITH IMPROVED SIMILARITY AND ROBUSTNESS FOR HIGH-POWER REFLECTOR ANTENNA APPLICATIONS
Jeremy A. Bossard, Clinton P. Scarborough, Micah D. Gregory, Cooper S. Cicero, Douglas H. Werner, Pennsylvania State University, United States; Scott F. Griffiths, Matthew L. Ketner, Joint Non-Lethal Weapons Directorate, United States

WE-A2.1P.4: ARBITRARY LEAKY-WAVE ANTENNA PATTERNS WITH STACKED METASURFACES
Brian Tierney, Anthony Grbic, University of Michigan, United States

WE-A2.1P.5: LEAKY-WAVE EXPLANATION OF GAIN-BANDWIDTH-ENHANCED FABRY-PÉROT CAVITY ANTENNAS FORMED BY A THICK MULTILAYER PARTIALLY-REFLECTIVE SURFACE
Alister Hosseini, Filippo Capolino, University of California, Irvine, United States; David R. Jackson, University of Houston, United States

WE-A2.1P.6: A SIMPLE ACTIVE HUYGENS SOURCE FOR STUDYING WAVEFORM SYNTHESIS WITH HUYGENS METASURFACES AND ANTENNA ARRAYS
Alex Wong, George V. Eleftheriades, University of Toronto, Canada

WE-A2.1P.7: TOWARDS THE ANALYTICAL DESIGN OF TENSOR METASURFACES
Nikolaos Chiotellis, Anthony Grbic, University of Michigan, United States

WE-A2.1P.8: A WIDE-ANGLE SCANNING LEAKY-WAVE ANTENNA LOADED WITH A WIDEBAND METASURFACE
Trevor Cameron, Aidin Mehdipour, George V. Eleftheriades, University of Toronto, Canada
WE-A2.1P.9: RECONFIGURABLE METASURFACE COMPRISED OF DOGBONE SHAPED CONDUCTOR PAIRS
Andrea Vallecchi, University of Sheffield, United Kingdom; Alexander Schuchinsky, Queen’s University of Belfast, United Kingdom; Filippo Capolino, University of California, Irvine, United States

WE-A2.1P.10: MULTI-OCTAVE OPTICAL SPLITTER SYNTHESISED VIA BÉZIER SURFACES
Peter Sieber, Douglas H. Werner, Pennsylvania State University, United States

WE-A2.2P: ELECTROMAGNETIC BANDGAP SUBSTRATES FOR EFFICIENT PLANAR ANTENNAS
WE-A2.2P.1: MICROWAVE BAND GAPS PRODUCED BY VARYING NUMBERS OF MUSHROOM METAMATERIAL CELLS
Anne Mackenzie, NASA Langley Research Center, United States

WE-A2.2P.2: SPIRAL ANTENNA ON BROADBAND UNIFORM-HEIGHT PROGRESSIVE EBG STRUCTURE WITHOUT VIAS
Sandeep Palreddy, Virginia Polytechnic Institute and State University, United States; Amir Zaghloul, Theodore Anthony, Army Research Laboratory, United States

WE-A2.2P.3: LOW-PERMITTIVITY EBG MATERIALS FOR ANTENNA SUPERSTRATES
Silvio Ceccuzzi, Cristina Ponti, Giuseppe Schettini, Roma Tre University, Italy

WE-A2.2P.4: COMPARISON OF WIDEBAND HIGH-IMPEDANCE SURFACES FOR LOW-PROFILE HIGH-GAIN UHF ANTENNA DESIGN
Nora Mohamed Mohamed-Hicho, Eva Antonino-Daviu, Marta Cabedo-Fabrés, Miguel Ferrando-Bataller, Daniel Sánchez-Escuderos, Universitat Politècnica de València, Spain

WE-A2.2P.5: A NOVEL BROADBAND AMC SURFACE FOR LOWERING THE HEIGHT OF PLANAR ANTENNAS
Fuyun Li, Yuihui Cui, RongLin Li, South China University of Technology, China

WE-A4.1P: PROPAGATION AND SCATTERING IN COMPLEX STRUCTURES AND RANDOM MEDIA
WE-A4.1P.1: SHORTCUT WAVES IN RADIALLY UNIAXIAL SPHERE
Mohsen Yazdani, Jay Lee, Joseph Mautz, Ercument Arvas, Kepei Sun, Syracuse University, United States

WE-A4.1P.2: PORCINE SKIN AS HUMAN BODY PHANTOM AT 60 GHZ
Luca Petrillo, Theodoros Mavridis, Université Libre de Bruxelles, Belgium; Julien Sarrazin, Aziz Benlarbi-Delaï, UPMC, France; Philippe De Doncker, Université Libre de Bruxelles, Belgium

WE-A4.1P.3: RECTANGULAR WAVEGUIDE CONTAINING UNIAXIAL MEDIUM WITH TILTED OPTIC AXIS IN SIDEWALL PLANE
Kepei Sun, Jay Lee, Syracuse University, United States; Jennifer Graham, Syracuse Research Company, United States

WE-A4.1P.4: SIMILARITY AND DISSIMILARITY MEASURES FOR COMPARISON OF PROPAGATION PATTERNS
H. Erin Rickard, J. T. Saeger, Erin E. Hackett, Coastal Carolina University, United States

WE-A4.1P.5: X WAVE TRANSFORMATION UNDER TIME DISCONTINUITY
Zoe-Lise Deck-Leger, Mohamed A. Salem, Christophe Caloz, Polytechnique de Montréal, Canada

WE-A4.1P.6: VISUAL HULL METHOD BASED SHAPE RECONSTRUCTION OF SNOWFLAKES FROM MASC PHOTOGRAPHS
Cameron Kleinkort, Gwo-Jong Huang, Elene Chobanyan, Ana Manic, Milan Ilic, Ali Pezeshki, V. N. Bringi, Branislav M. Notaros, Colorado State University, United States
WE-A4.1P.7: A THREE DIMENSIONAL GAUSSIAN BEAM DIFFRACTION APPROACH TO ANALYSIS OF ...
REFLECTOR ANTENNAS
Liang Xu, Xiaodong Chen, Queen Mary University of London, United Kingdom; Hui Feng, Hao Tu, D. Xiao, S. Wu, East China
Research Institute of Electronic Engineering, China

WE-A4.1P.8: AN EFFICIENT HIGH FREQUENCY METHOD TO COMPUTE ELECTROMAGNETIC ...
SCATTERING OF LARGE 3D TARGET ON ROUGH SURFACE
Wei Yang, Tse-Tong Chia, Chun-Yun Kee, Chao-Fu Wang, National University of Singapore, Singapore

WE-A4.1P.9: CONFORMAL CIRCULAR PATCH ANTENNA ARRAY DESIGN FOR USE IN JET ENGINES
Aparna Krishna, Tamer Khattab, Qatar University, Qatar; Aya Abdelaziz, Cairo University, Egypt; Mohzen Guizani, Qatar
University, Qatar

WE-A4.1P.10: ANALYSIS AND MEASUREMENT OF RADIANT WAVELENGTH OF MICROWAVE
FOCUSED LENSES
Yunpeng Zhang, En Li, Chao Wang, University of Electronic Science and Technology of China, China

WE-UB.3P: ANTENNA MEASUREMENT CONCEPTS AND TECHNIQUES

WE-UB.3P.9: VERY-NEAR-FIELD TESTING OF LARGE ANTENNAS IN LAB ENVIRONMENT
Kasra Payandehjoo, Ruska Patton, EMSCAN, Canada

WE-A5.1P: ANTENNA DESIGN FOR 4G COMMUNICATION

WE-A5.1P.1: FREQUENCY TUNABLE ANTENNA FOR LTE (4G) HANDSETS OPERATING IN THE
2.3-2.7GHz GLOBAL ROAMING BAND
Tayfun Ozdemir, Yuriy Goykhman, Monarch Antenna, Inc., United States; Andrew Brown, A. Brown Design, United States;
Benjamin Crowgey, Edward Rothwell, Prem Chahal, Michigan State University, United States

WE-A5.1P.2: INFLUENCE OF COMPONENT ESR ON A 4G FREQUENCY RECONFIGURABLE
ANTENNA
Le Huy Trinh, Fabien Ferrero, Robert Staraj, Jean-Marc Ribero, Université Nice-Sophia Antipolis, CNRS, LEAT-Laboratoire
d’Electronique, d’Antennes et Telecommunications, UMR 7248, France

WE-A5.1P.3: COMPACT AND PRINTED MULTIBAND ANTENNAS FOR 2G/3G/4G SMARTPHONES
Sultan Shoaib, Imran Shoaib, Xiaodong Chen, Clive Parini, Queen Mary University of London, United Kingdom

WE-A5.1P.4: ANTENNA DESIGN CONSIDERATIONS FOR LTE ENABLED TABLETS
Derek Campbell, C.J. Reddy, Altair Engineering, Inc., United States

WE-A5.1P.5: PLANAR LTE/WWAN MONOPOLE ANTENNA FOR 4G TABLET COMPUTER
Jui-Han Lu, Yu-Ming Yan, National Kaohsiung Marine University, Taiwan

WE-A5.1P.6: A PRINTED MULTI-BAND SLOT ANTENNA FOR LTE/WLAN APPLICATIONS
Min-Chi Chang, Wei-Chung Weng, National Chi Nan University, Taiwan

WE-A5.1P.7: MINIATURIZED ANTENNA FOR LTE WIRELESS USB DONGLE APPLICATIONS
Wen-Shan Chen, Ching-Yu Huang, Southern Taiwan University of Science and Technology, Taiwan

WE-A5.1P.8: COMPACT DESIGN OF MIMO ANTENNAS FOR LTE 700 APPLICATION
Wen-Shan Chen, Kuan-Hsun Lai, Southern Taiwan University of Science and Technology, Taiwan

WE-A5.1P.9: A COMPACT MULTIBAND ANTENNA USING THREE MONOPOLES FOR MOBILE
PHONE APPLICATIONS
Min Li, S.W. Cheung, Y.F. Cao, T.I. Yuk, University of Hong Kong, China

WE-A5.1P.10: A COMPACT MULTI-BAND TUNABLE LTE ANTENNA FOR MOBILE APPLICATIONS
Hanyue Xia, Hao Wang, Lingqin Meng, Guangli Yang, Shanghai University, China
WE-A3.1P: NOVEL INTEGRAL EQUATION FORMULATIONS

WE-A3.1P.1: FREQUENCY INTERPOLATION IN THE METHOD OF MOMENTS USING THE DISCRETE EMPIRICAL INTERPOLATION METHOD
Matteo Alessandro Francavilla, Giorgio Giordanengo, Marco Righero, Istituto Superiore Mario Boella, Italy; Giuseppe Vecchi, Francesca Vipiana, Politecnico di Torino, Italy

WE-A3.1P.2: NONCONFORMING DISCRETIZATION OF THE COMBINED-FIELD INTEGRAL EQUATION WITH VOLUMETRIC TESTING
Eduard Ubeda, Juan M. Rius, Alex Heldring, Universitat Politècnica de Catalunya, Spain

WE-A3.1P.3: TIME DOMAIN AUGMENTED EFIE BASED ON NUMERICAL CONVOLUTION TECHNIQUE
Miao Miao Jia, Yan Wen Zhao, University of Electronic Science and Technology of China, China; Sheng Sun, University of Hong Kong, Hong Kong SAR of China

WE-A3.1P.4: HYBRID SURFACE INTEGRAL EQUATIONS FOR OPTIMAL ANALYSIS OF PERFECTLY CONDUCTING BODIES
Bariscan Karaosmanoglu, Ozgur Ergul, Middle East Technical University, Turkey

WE-A3.1P.5: RECENT ADVANCES IN THE METHOD OF MOMENTS TO MODEL SURFACE JUNCTIONS
Guido Lombardi, Roberto D. Graglia, Politecnico di Torino, Italy

WE-A3.1P.6: CHARACTERISTIC MODE THEORY BASED ON COMBINED FIELD INTEGRAL EQUATION
Qi I. Dai, Hui Gan, Weng Cho Chew, University of Illinois, United States; Qin Liu, Sheng Sun, University of Hong Kong, Hong Kong SAR of China

WE-A3.1P.7: POWER SERIES/MOM SOLUTION TO EM SCATTERING BY ELECTRICALLY LARGE PEC OBJECTS
Sadasiva Rao, Naval Research Laboratory, United States

WE-A3.1P.8: HIERARCHICAL EQUIVALENT SOURCE ALGORITHM BASED ON RELAXED SPHERICAL EQUIVALENCE SURFACE
Xin Fu, Li Jun Jiang, University of Hong Kong, Hong Kong SAR of China; Hong Tat Ewe, Universiti Tunku Abdul Rahman, Malaysia

WE-A3.1P.9: TESTING OVER THE BOUNDARY INTERFACE FOR THE NONCONFORMING DISCRETIZATION OF THE ELECTRIC-FIELD INTEGRAL EQUATION
Eduard Ubeda, Ivan Sekulic, Juan M. Rius, Alex Heldring, Universitat Politècnica de Catalunya, Spain

WE-A3.1P.10: ACCURATE ELECTROMAGNETIC ANALYSIS OF TRANSMISSION LINE STRUCTURES WITH FINITE-THICKNESS CONDUCTORS
Chao Nan Xu, Jian Zhang, Peng Zhao, Xin Zhou Zhao, Mei Song Tong, Tongji University, China

WE-A2.3P: MEASUREMENT OF MATERIAL AND RADIATION PROPERTIES

WE-A2.3P.1: A DIFFERENTIAL FORM OF THE KRAMERS-KRONIG RELATION FOR DETERMINING A LORENTZ-TYPE OF REFRACTIVE INDEX
Sung Kim, David Novotny, Joshua Gordon, Jeffrey Guerrieri, National Institute of Standards and Technology, United States

WE-A2.3P.2: USING 3D FIELD SENSOR FOR MEASURING THE SPECTRUM OF GLASS INSULATORS
Haslan Pedro, Glauco Fontgalland, University of Campina Grande, Brazil

WE-A2.3P.3: MEASURE THE RADIATION EFFICIENCY OF ANTENNAS IN A REVERBERATION CHAMBER WITHOUT CALIBRATION
Qian Xu, Yi Huang, Xu Zhu, Lei Xing, Zhihao Tian, University of Liverpool, United Kingdom
WE-A2.3P.4: NON-CONTACT SURFACE WAVE SENSING OF WIRE FAULT PRECURSORS ... 1180
Nazmul Alam, David Coats, Roger Dougal, University of South Carolina, United States; Yong-June Shin, Yonsei University, Republic of Korea; Mohammad Ali, University of South Carolina, United States

WE-A2.3P.5: USING SPHERICAL NEAR FIELD MEASUREMENTS IN COMPUTATIONAL EMC 1182
Lars Jacob Foged, Lucia Scialacqua, Francesco Saccardi, Francesca Mio, Microwave Vision Group, Italy; Morten Sørensen, Bang & Olufsen A/S, Denmark; David Tallini, CST, Germany

WE-A2.3P.6: A SHIELDING EFFECTIVENESS TEST SYSTEM BASED ON MICROSTRIP LINE 1184
Likun Chang, Gaofeng Guo, Minhui Zeng, En Li, University of Electronic Science and Technology of China, China

WE-A1.5P: METAMATERIAL-BASED ANTENNAS AND ARRAYS

WE-A1.5P.2: DESIGN TECHNIQUES FOR LOSS MITIGATION IN METAMATERIAL REFLECTOR 1186
ANTENNAS
Zachary C.P.O. Morgan, Kenneth L. Morgan, Jeremy A. Bossard, Cooper S. Cicero, Micah D. Gregory, Pingjuan L. Werner, Douglas H. Werner, Pennsylvania State University, United States; Scott F. Griffiths, Matthew L. Ketner, Joint Non-Lethal Weapons Directorate, United States

WE-A1.5P.3: HYBRID TERMINATION OF METAMATERIAL CRLH ANTENNAS ... 1188
Mahmoud Abdalla, MTC College, Egypt; Fady Sadek, MSA University, Egypt

WE-A1.5P.4: ULTRAT COMPACT TRIPLE BAND D-CRLH METAMATERIAL ANTENNA 1190
Mahmoud Abdalla, Ahmed Fouad, MTC College, Egypt

WE-A1.5P.5: DESIGN OF SRR LOADED RECONFIGURABLE ANTENNA FOR UWB AND NARROW BAND APPLICATIONS
Krishnamoorthy Kandasamy, Basadev Majumder, Jayanta Mukherjee, Indian Institute of Technology Bombay, India; Kamla Prasan Ray, Society for Applied Microwave Electronic Engineering and Research, India

WE-A2.4P: MEASURED ELECTROMAGNETIC PROPERTIES OF MATERIALS

WE-A2.4P.1: HIGH-ACCURACY CONDUCTIVE TEXTILES FOR EMBROIDERED ANTENNAS AND CIRCUITS 1194
Asimina Kiourti, John L. Volakis, Ohio State University, United States

WE-A2.4P.2: ACCURATE RF PERFORMANCE OF THERMOPLASTICS AT SUB-MILLIMETRE WAVE FREQUENCIES 1195
Elena Sáenz, Luis Rolo, European Space Agency, Netherlands

WE-A2.4P.3: ANALYSIS OF FREE SPACE MATERIAL CHARACTERIZATION USING GENETIC ALGORITHMS 1197
Raenita Fenner, Loyola University Maryland, United States

WE-A2.4P.4: PERMITTIVITY MEASUREMENT OF COMMON SOLVENTS USING THE CSRR BASED SENSOR 1199
Md. Arif Ansari, Abhishek Jha, Jaleel Akhtar, Indian Institute of Technology Kanpur, India

TH-SP.1A: POWER-EFFICIENT, WEARABLE AND WIRELESS BIOMEDICAL SENSORS

TH-SP.1A.1: EVALUATION OF AN IMPLANTABLE PASSIVE SENSOR FOR WIRELESS INTRACRANIAL PRESSURE MONITORING
Mohammadhossein Behfar, Elham Moradi, Toni Björninen, Lauri Sydänheimo, Leena Ukkonen, Tampere University of Technology, Finland
TH-SP.1A.2: ELECTRO-TEXTILES - THE ENABLING TECHNOLOGY FOR WEARABLE ANTENNAS 1203
IN WIRELESS BODY-CENTRIC SYSTEMS
Karoliina Koski, Elham Moradi, Masouneh Hasani, Johanna Virkki, Toni Björninen, Leena Ukkonen, Tampere University of Technology, Finland; Yahya Rahmat-Samii, University of California, Los Angeles, United States

TH-SP.1A.3: APPLYING QMSIW TECHNIQUE IN TEXTILE FOR COMPACT WEARABLE DESIGN 1205
AND HIGH BODY-ANTENNA ISOLATION
Sam Agneessens, Sam Leme, Hendrik Rogier, Thomas Vervust, Jan Vanfleteren, Ghent University, Belgium

TH-SP.1A.4: WIRELESS POWERING OF BIOMEDICAL IMPLANTS BY COMFORMAL STRONGLY 1207
COUPLED MAGNETIC RESONATORS
Hao Hu, Stavros V. Georgakopoulos, Florida International University, United States

TH-SP.1A.5: EBG INTEGRATED TEXTILE MONOPOLE ANTENNA FOR SPACE HEALTH 1209
MONITORING APPLICATION
Ala Alemaryeen, Sima Noghanian, Reza Fazel-Rezai, University of North Dakota, United States

TH-SP.1A.7: WEARABLE FABRIC RECONFIGURABLE BEAM STEERING ANTENNA FOR 1211
ON/OFF-BODY COMMUNICATION SYSTEM
Seonghun Kang, Chang Won Jung, Seoul National University of Technology, Republic of Korea

TH-SP.1A.8: WIRELESS ENERGY HARVESTING FOR MEDICAL APPLICATIONS 1213
Brock DeLong, Chi-Chih Chen, John L. Volakis, Ohio State University, United States

TH-SP.1A.9: FLEXIBLE ANTENNA FOR WIRELESS BODY AREA NETWORK 1214
Patrick Freihl, Tyler Przybylski, Christopher McDonald, Milad Mirzaei, Sima Noghanian, Reza Fazel-Rezai, University of North Dakota, United States

TH-SP.1A.10: WEARABLE ANTENNA DESIGN FOR SPACESUIT .. 1216
Tahmid Rashid, Sima Noghanian, Reza Fazel-Rezai, Pablo de León, University of North Dakota, United States

TH-A5.1A: MIMO ANTENNAS FOR PORTABLE DEVICES

TH-A5.1A.1: DAUGHTER BOARD ANTENNA FOR COMPACT POLARIZATION DIVERSITY ON MIMO 1218
DEVICES
Abhijit Bhattacharya, Rodney Vaughan, Simon Fraser University, Canada

TH-A5.1A.2: 10-ANTENNA ARRAY IN THE SMARTPHONE FOR THE 3.6-GHZ MIMO OPERATION 1220
Jun-Yu Lu, Hsuan-Jui Chang, Kin-Lu Wong, National Sun Yat-sen University, Taiwan

TH-A5.1A.3: DESIGN OF MULTI-BAND UNIPLANAR MIMO ANTENNA FOR MOBILE DEVICES WITH 1222
LTE/WLAN OPERATION
Christopher Arnold, Magda El-Shenawee, University of Arkansas, United States

TH-A5.1A.4: IMPROVEMENT OF OUTAGE BY RETROFIT OF ANTIREFLECTION ANTENNA DIVERSITY FOR MIMO 1224
ON A PCB M2M SYSTEM
Maryam Dehghani Estarki, Maryam Razmhosseini, Abhijit Bhattacharya, Ying Chen, Simon Fraser University, Canada; Chris Tumpach, Rainforest Automation Inc., Canada; Lee Vishlfo, Tech-Knows Services Inc., Canada; Rodney Vaughan, Simon Fraser University, Canada

TH-A5.1A.5: A WIDE BAND MIMO SLOT ANTENNA FOR 5G WI-FI ... 1226
Sema Dumanli, David R. Gibbins, Ian J. Craddock, Toshiba Research Europe Ltd, United Kingdom

TH-A5.1A.6: SIMPLE ASSESSMENT OF SPECIFIC ABSORPTION RATE (SAR) FOR MIMO 1228
TERMINALS
Hui Li, Buon Kiong Lau, Lund University, Sweden

TH-A5.1A.7: ACCURACY OF MODELING FOR EVALUATION OF AN INTEGRATED DIVERSITY 1230
WIRELESS SYSTEM ON A SMALL PCB
Maryam Razmhosseini, Rodney Vaughan, Simon Fraser University, Canada
TH-A5.1A.8: NOVEL PHASE SHIFTERS USING SHORT-CIRCUITED CROSS-SLOTTED PATCH

Xianshi Jing, Sheng Sun, University of Hong Kong, China

TH-A5.1A.9: A POLARIZATION-CONTROLLED MIMO ANTENNA WITH AN OPTIMUM PHASE SHIFT

In Accordance with Various Use Scenarios
Kazuhiro Honda, Yoshihiko Kabeya, Kento Karitani, Kun Li, Koichi Ogawa, Toyama University, Japan; Yoshio Koyanagi, Hiroshi Sato, Ritsu Miura, Panasonic System Networks Co., Ltd., Japan

TH-A1.1A: SMALL ANTENNAS: MINIATURIZATION AND BANDWIDTH

TH-A1.1A.1: ELECTRICALLY SMALL ANTENNAS WITH DIMENSIONS DOWN TO ONE-FIFTEENTH AND ONE-THIRTIETH OF WAVELENGTH

Mai Sallam, American University in Cairo, Egypt; Guy A. E. Vandenbosch, KU Leuven, Belgium; Walter De Raedt, IMEC, Belgium; Ezzeldin Soliman, American University in Cairo, Egypt

TH-A1.1A.2: SUPER-MINIATURIZED DIELECTRIC-METALLIC RESONATOR ANTENNAS

Atabak Rashidian, Lotfollah Shafai, University of Manitoba, Canada

TH-A1.1A.3: MINIATURIZED UHF ANTENNA USING A MAGNETO-DIELECTRIC SUPERSTRATE FOR M2M COMMUNICATIONS

Qianyun Zhang, Yue Gao, Clive Parini, Queen Mary University of London, United Kingdom

TH-A1.1A.4: ELECTRICALLY SMALL FRACTAL ANTENNAS

James Baker, Marine Corps Tactical Systems Support Activity, United States; Magdy F. Iskander, University of Hawaii at Manoa, United States

TH-A1.1A.5: EVALUATION OF MINIATURIZING FACTOR FOR FOLDED INVERTED-L ANTENNAS

Akihiro Tanaka, Keisuke Noguchi, Shigeru Makino, Tetsuo Hiroti, Kenji Itoh, Kanazawa Institute of Technology, Japan

TH-A1.1A.6: ELECTRICALLY SMALL ANTENNAS UNDER MATCHED CONDITIONS

Mohammad Abdallah, Walid Dyab, Tapan Sarkar, Syracuse University, United States; Magdalena Salazar-Palma, Universidad Carlos III de Madrid, Spain

TH-A1.1A.7: NONLINEAR EFFECTS OF NON-FOSTER MATCHING NETWORKS

Minu Jacob, Jiang Long, Daniel Sievenpiper, University of California, San Diego, United States

TH-A1.1A.8: NON-FOSTER MATCHING OF ELECTRICALLY SMALL BOWTIE ANTENNA COVERING 600 MHZ TO 1100 MHZ

Ghanshyam Mishra, Satish Sharma, San Diego State University, United States; Gabriel Rebeiz, University of California, San Diego, United States

TH-A1.1A.9: EFFECT OF ELECTRONIC COMPONENTS ON THE CHARACTERISTICS OF SMALL ANTENNAS

Abdul Razzaq, Mario Orefice, Politecnico di Torino, Italy

TH-A1.1A.10: COMPACT ANTENNA DESIGN WITH BANDWIDTH ENHANCEMENT

Chichang Hung, Hungchen Chen, Tayeh Lin, Tsenchieh Chiu, National Central University, Taiwan

TH-A2.1A: FREQUENCY SELECTIVE SURFACES: MULTI-LAYER AND 3D

TH-A2.1A.1: A NOVEL THREE-DIMENSIONAL WIDEBAND ACTIVE FREQUENCY SELECTIVE SURFACE UNIT-CELL

Suhair Mahmood, Tayeb A. Denidni, Institut National de la Recherche Scientifique (INRS), Canada

TH-A2.1A.2: SQUARE LOOP COMPLEMENTARY FREQUENCY SELECTIVE SURFACES

Syed Sheheryar Bukhari, William Whittow, Yiannis Vardaxoglou, Loughborough University, United Kingdom; Stefano Maci, University of Siena, United Kingdom
TH-A2.1A.3: MULTI-BAND SECOND-ORDER BANDSTOP FREQUENCY SELECTIVE STRUCTURE 1260
WITH CONTROLLABLE BAND RATIOS
Ahmed Abdelmottaleb Omar, Zhongxiang Shen, Nanyang Technological University, Singapore

TH-A2.1A.4: A VIA-BASED METHODOLOGY FOR FREQUENCY SELECTIVE SURFACE 1262
MINIMIZATION
Yi-Min Yu, Tzong-Lin Wu, National Taiwan University, Taiwan

TH-A2.1A.5: RECONFIGURABLE DUAL-BAND 3D FREQUENCY SELECTIVE SURFACE UNIT-CELL 1264
Moufida Bousslama, Moncef Traïi, Ali Gharsallah, Faculty of Science of Tunis, Tunisia; Tayeb A. Denidni, University of Quebec, INRS-EMT, Canada

TH-A2.1A.6: DESIGN OF WIDEBAND ABSORBERS USING SIMPLE CLOSEDFORM SOLUTIONS 1266
Jun-Ho Lee, Bomson Lee, Kyung Hee University, Republic of Korea

TH-A2.1A.7: IMPLEMENTATION OF THREE-DIMENSIONAL BANDPASS FREQUENCY SELECTIVE 1268
STRUCTURE USING MULTILAYER PCB TECHNOLOGY
Bo Li, Yiming Tang, Nanjing University of Posts and Telecommunications, China; Ali Qasim, Zhongxiang Shen, Nanyang Technological University, Singapore

TH-A2.1A.8: DUAL-LAYER FREQUENCY SELECTIVE SURFACE FOR WIDE STOP-BAND 1270
APPLICATIONS
Irfan Sohail Syed, Mohd Zarar Mohd Jenu, Universiti Tun Hussein Onn Malaysia, Malaysia

TH-A2.1A.9: DESIGN OF MULTIPLE DUAL-BAND FSS REFLECTOR PLATE APPLIED TO 1272
REFLECTOR ANTENNA
Wen Jiang, Xidian University, China; Tao Dong, Space Star Technology Co., Ltd, China; Shuxi Gong, Xidian University, China

TH-A2.1A.10: A NOVEL DUAL-LAYER FREQUENCY SELECTIVE SURFACE WITH GRATING LOBES 1274
SUPPRESSION
Bingyuan Liang, Beihang University, China; Zheng-Hui Xue, Beijing Institute of Technology, China; Jungang Miao, Ming Bai, Beihang University, China

TH-A2.1A.11: EQUIVALENT CIRCUIT MODEL OF MULTILAYER DOUBLE SQUARE LOOP FSS 1276
USING VECTOR-FITTING
Payal Majumdar, Zhiya Zhao, Chunlin Ji, Ruopeng Liu, Kuang-Chi Institute of Advanced Technology, China

TH-A5.2A: ANTENNAS AND CIRCUITS FOR ENERGY HARVESTING

TH-A5.2A.1: AN ARRAY OF INVERTED-F ANTENNAS FOR RF ENERGY HARVESTING 1278
Youssef Tawk, Firas Ayoub, Christos Christodoulou, Joseph Costantine, University of New Mexico, United States

TH-A5.2A.2: DESIGN OPTIMIZATION OF AN ENERGY HARVESTING RF-DC CONVERSION 1280
CIRCUIT OPERATING AT 2.45GHZ
Jung Hun Kim, Jo Bito, Manos Tentzeris, Georgia Institute of Technology, United States

TH-A5.2A.3: DESIGN OF A TRANSPARENT SPIRAL ANTENNA FOR ENERGY HARVESTING 1282
Maria Zamudio, Youssef Tawk, Joseph Costantine, Firas Ayoub, Christos Christodoulou, University of New Mexico, United States

TH-A5.2A.4: A 2.45-GHZ HIGH-EFFICIENCY LOOP-SHAPED PIFA RECTENNA FOR PORTABLE 1284
DEVICES AND WIRELESS SENSORS
Jiunn-Kai Huang, Wan-Ting Hung, Tzu-Heng Cheng, Shih-Yuan Chen, National Taiwan University, Taiwan

TH-A5.2A.5: DESIGNING DUAL-PORT PIXEL ANTENNA FOR AMBIENT RF ENERGY HARVESTING 1286
USING GENETIC ALGORITHM
Shanpu Shen, Ross D. Murch, Hong Kong University of Science and Technology, Hong Kong SAR of China
TH-A5.2A.6: A DUAL-MODE ANTENNA FOR WIRELESS CHARGING AND NEAR FIELD ... 1288
COMMUNICATION
Ming-An Chung, Yu-Lun Chien, Liang Cho, Pao-Hsin Hsu, Chang-Fa Yang, National Taiwan University of Science and Technology, Taiwan

TH-A5.2A.7: THREE-BAND RF-DC CONVERTERS FOR AMBIENT WIRELESS ENERGY .. N/A
HARVESTING
Yong Zhou, University of Texas at Brownsville, United States; Cesar Huerta, Jaime Hinojosa, CEMEX, United States

TH-A5.2A.8: EM/LIGHT HYBRID ENERGY HARVESTING WITH DIRECTIONAL DIPOLE ANTENNA 1292
FOR IOT SENSOR
In-June Hwang, DukSoo Kwon, Dong-Jin Lee, Jong-Won Yu, Korea Advanced Institute of Science and Technology, Republic of Korea; Wang-Sang Lee, Gyeongsang National University, Republic of Korea

TH-A5.2A.10: A HIGH-IMPEDANCE WIDEBAND CARD-TYPE FOLDED DIPOLE ANTENNA ... 1294
Nao Nambo, Keisuke Noguchi, Kenji Itoh, Jiro Ida, Kanazawa Institute of Technology, Japan

TH-A5.2A.11: WIDE POWER RANGE RF ENERGY HARVESTING CIRCUIT ... 1296
Mahmoud Abdallah, American University of Beirut, Lebanon; Joseph Costantine, American University of Beirut, Lebanon; The University of New Mexico, United States; Ali Ramadan, American University of Beirut, Lebanon; Youssef Tawk, University of New Mexico; Notre Dame University Louaize, United States; Firas Ayoub, Christos Christodoulou, University of New Mexico, United States; Karim Y. Kabalan, American University of Beirut, Lebanon

TH-A4.1A: MICROWAVE AND THZ 2-D AND 3-D IMAGING

TH-A4.1A.1: THREE-DIMENSIONAL MICROWAVE IMAGING THROUGH A MULTI-ZOOMING INEXACT-NEWTON APPROACH
Marco Salucci, Giacomo Oliveri, ELEDIA Research Center, University of Trento, Italy; Andrea Randazzo, Matteo Pastorino, University of Genoa, Italy; Federico Viani, Andrea Massa, ELEDIA Research Center, University of Trento, Italy

TH-A4.1A.2: ENHANCEMENT OF TERAHERTZ IMAGING OF PACKAGED POWER ELECTRONIC DEVICES
Nathan Burford, Magda El-Shenawee, University of Arkansas, United States

TH-A4.1A.3: SUPERRESOLUTION IMAGING BY COMPUTATIONAL TIME REVERSAL IN SCATTERING MEDIA
Wolfgang J. R. Hoefer, University of Victoria, Canada

TH-A4.1A.4: CONSENSUS-BASED IMAGING USING ADMM FOR A COMPRESSIVE REFLECTOR ANTENNA
Juan Heredia Juesas, Gregory Allan, Ali Molaei, Luis Tirado, Northeastern University, United States; William Blackwell, Massachusetts Institute of Technology, United States; Jose Angel Martinez Lorenzo, Northeastern University, United States

TH-A4.1A.5: IMAGING THE PEC SCATTERER VIA T-MATRIX BASED INVERSION METHOD
Xiuzhu Ye, Beihang University, China

TH-A5.3A: NOVEL MATERIALS AND CONDUCTIVE INKS FOR ADDITIVE MANUFACTURING OF ANTENNAS

TH-A5.3A.1: DEVELOPING FLEXIBLE 3D PRINTED ANTENNA USING CONDUCTIVE ABS MATERIALS
Milad Mirzaee, Sima Noghanian, Lindsey Wiest, Isaac Chang, University of North Dakota, United States

TH-A5.3A.2: HIGH FREQUENCY CHARACTERIZATION OF CONDUCTIVE INKS EMBEDDED WITHIN A STRUCTURAL COMPOSITE
Peter Pa, Mark Mirotznik, Shridhar Yarlagadda, University of Delaware, United States
TH-A5.3A.3: INKJET-PRINTED MONOPOLE ANTENNA AND VOLTAGE DOUBLER ON CARDBOARD 1312
FOR RF ENERGY HARVESTING
Zahra Khonsari, Toni Björninen, Lauri Sydänheimo, Tampere University of Technology, Finland; Manos Tentzeris, Georgia Institute of Technology, United States; Leena Ukkonen, Tampere University of Technology, Finland

TH-A5.3A.4: BRUSH-PAINTED SILVER UHF RFID TAGS ON ENVIRONMENTAL-FRIENDLY AND 1314
FLEXIBLE SUBSTRATES
Yanan Ren, Johanna Virkki, Lauri Sydänheimo, Leena Ukkonen, Tampere University of Technology, China; Yan-Cheong Chan, City University of Hong Kong, Hong Kong SAR of China

TH-A5.3A.5: POSSIBILITIES OF 3D DIRECT WRITE DISPENSING FOR TEXTILE UHF RFID TAG 1316
MANUFACTURING
Toni Björninen, Johanna Virkki, Lauri Sydänheimo, Leena Ukkonen, Tampere University of Technology, Finland

TH-A5.3A.6: IN-PLANE CHARACTERIZATION OF GRADED DIELECTRICS FABRICATED THROUGH 1318
ADDITIVE MANUFACTURING
Austin Good, David Roper, Mark Mirotznik, University of Delaware, United States

TH-A5.3A.8: ULTRAWIDEBAND BALLISTIC RADOME WITH SOLID DYNEEMA® CORE 1320
Mark Mirotznik, Shridhar Yarlagadda, University of Delaware, United States; Lewis Kolak, DSM, United States

TH-A5.3A.10: LIGHTWEIGHT 3D PRINTED MICROWAVE WAVEGUIDES AND WAVEGUIDE SLOT 1322
ANTENNA
Garret McKerricher, Ahmed Nafe, Atif Shamim, King Abdullah University of Science and Technology, Saudi Arabia

TH-A3.1A: ELECTROMAGNETIC DESIGN OPTIMIZATION METHODS

TH-A3.1A.1: COMPLEX RADOME DESIGN THROUGH THE SYSTEMS-BY-DESIGN APPROACH 1324
Matteo Carlin, Marco Salucci, Lorenza Tenuti, Paolo Rocca, Federico Viani, Andrea Massa, ELEDIA Research Center, University of Trento, Italy

TH-A3.1A.2: MULTI-OBJECTIVE OPTIMIZATION FOR GRIN LENS DESIGN .. 1326
Jogender Nagar, Sawyer D. Campbell, Douglas H. Werner, Pennsylvania State University, United States

TH-A3.1A.3: OPTIMIZATION OF PIXELATED ANTENNAS ... 1328
Gregory Kiesel, Kevin Cook, Georgia Tech Research Institute, United States

TH-A3.1A.4: ANTENNA ARRAY OPTIMIZATION USING SURROGATE-MODEL AWARE EVOLUTIONARY ALGORITHM WITH LOCAL SEARCH .. 1330
Bo Liu, Glyndwr University, United Kingdom; Slawomir Koziel, Reykjavik University, Iceland

TH-A3.1A.5: A COMPARISON OF MULTI-OBJECTIVE OPTIMIZERS USING A MICROSTRIP PATCH ANTENNA TEST PROBLEM ... 1332
Jogender Nagar, Douglas H. Werner, Pennsylvania State University, United States

TH-A3.1A.6: HYBRID GENETIC PROGRAMMING WITH ACCELERATING OPTIMIZER FOR 3D METAMATERIAL DESIGN .. 1334
Jennifer Rayno, Magdy F. Iskander, University of Hawaii at Manoa, United States

TH-A3.1A.7: SPARSE ARRAY DESIGN BY MEANS OF SOCIAL NETWORK OPTIMIZATION 1336
Alessandro Niccolai, Carlo Andrea Gonano, Francesco Grimaccia, Marco Mussetta, Riccardo Enrico Zich, Politecnico di Milano, Italy; Paola Pirinoli, Politecnico di Torino, Italy

TH-A3.1A.8: ANTENNA SWITCH OPTIMIZATIONS USING GENETIC ALGORITHMS ACCELERATED WITH THE MULTILEVEL FAST MULTipoLE ALGORITHM 1338
Can Onol, Bariscan Karaosmanoglu, Ozgur Ergul, Middle East Technical University, Turkey

TH-A3.1A.9: ARRAY OPTIMIZATION BY MEANS OF BLACK-HOLE PSO ... 1340
Matteo Ruello, Carlo Andrea Gonano, Francesco Grimaccia, Marco Mussetta, Riccardo Enrico Zich, Politecnico di Milano, Italy; Paola Pirinoli, Politecnico di Torino, Italy
TH-A3.1A.10: FAST MULTI-OBJECTIVE OPTIMIZATION OF SHAPED OFFSET GREGORIAN REFLECTOR SYSTEMS
Dirk De Villiers, Stellenbosch University, South Africa; Slawomir Koziel, Reykjavik University, Iceland

TH-A3.1A.11: A LINEAR OPTIMIZATION METHOD TO SOLVE 2D INVERSE SCATTERING PROBLEM WITH MASKED DOMAIN
Giuseppe Labate, Paola Pirinoli, Ladislau Matekovits, Politecnico di Torino, Italy

TH-A5.4A: APPLICATIONS IN MAGNETIC RESONANCE IMAGING

TH-A5.4A.1: RF EXCITATION IN 7 TESLA MRI SYSTEMS USING MONOFILAR AXIAL-MODE HELICAL ANTENNA
Milan Ilic, University of Belgrade, Serbia; Alexey Tonyushkin, Massachusetts General Hospital, United States; Nada Sekeljic, Pranav Athalye, Branislav M. Notaros, Colorado State University, United States

TH-A5.4A.2: MRI COILS USING METAMATERIALS
Xianning Qing, Zhi Ning Chen, Siew Bee Yeap, Mei Sun, Chean Khan Goh, Xinyi Tang, Institute for Infocomm Research (I²R), Singapore

TH-A5.4A.3: ANALYSIS OF TEMPERATURE RISE GENERATED BY A TITANIUM IMPLANT INSIDE 1.5T MRI WHOLE BODY COIL
Mikhail Koizlov, Gregor Schaefer, MR:comp GmbH Services for MR Safety & Compatibility, Germany

TH-A5.4A.4: SAFETY EXCITATION EFFICIENCY OF MRI 300MHZ DUAL-ROW TRANSMIT ARRAYS
Mikhail Koizlov, Harald Möller, Max Planck Institute for Human Cognitive and Brain Sciences, Germany

TH-A5.4A.5: MODIFIED DESIGN OF THE COIL PROBE FOR HIGH FIELD MRI
Bahram Seif, Elena Semouchkina, Warren Perger, Michigan Technological University, United States; Gang Chea Lee, Thomas Neuberger, Michael Lanagan, Pennsylvania State University, United States

TH-A4.2A: INVERSE SCATTERING AND SENSING

TH-A4.2A.1: MONTE CARLO BASED NON-RADIATING OBJECTIVE FUNCTION MINIMIZATION FOR PERMITTIVITY PROFILE ESTIMATION
Shahed Shahir, Jeff Orchard, Safieeddin Safavi-Naeini, University of Waterloo, Canada

TH-A4.2A.2: NOVEL ETHANOL CHEMICAL SENSOR USING MICROFLUIDIC METAMATERIAL
Hyung Ki Kim, Minyeong Yoo, Sungjoon Lim, Chung-Ang University, Republic of Korea

TH-A4.2A.3: FULL-WAVE EM MODELING IN TILTED CYLINDRICALLY-LAYERED MEDIA
Kamalesh Sainath, Haksu Moon, Fernando Teixeira, Ohio State University, United States

TH-A4.2A.4: AN OBLIQUE-ANGLE INFRARED CIRCULAR POLARIZATION FILTER USING A BEZIER SURFACE REPRESENTATION
Jason Ashbach, Douglas H. Werner, Pennsylvania State University, United States

TH-A4.2A.5: ENHANCED RESOLUTION OF SLOTS BASED ON TIME REVERSAL METHOD
Zhi-Min Zhang, Bing-Zhong Wang, Ren Wang, Ya-Qing Wen, University of Electronic Science and Technology of China, China

TH-A4.2A.6: HUMIDITY SENSOR DEVICES USING PEDOT:PSS
M. Ali Babar Abbasi, Photos Vryonides, Symeon Nikolaou, Frederick University, Cyprus

TH-SP.1P: INTERNATIONAL COLLABORATIONS ON NEXT-GENERATION RADIO ASTRONOMICAL INSTRUMENTATION I

TH-SP.1P.2: SKA LOW FREQUENCY APERTURE ARRAY
Andrew Faulkner, University of Cambridge, United Kingdom; Jan Geralt Bij de Vaate, ASTRON, Netherlands
TH-SP.1P.3: DERIVING AN OPTIMUM SHAPED REFLECTOR SYSTEM FOR THE SKA SINGLE PIXEL FEEDS
Robert Lehmensiek, Isak Theron, EMSS Antennas (Pty) Ltd, South Africa; Dirk de Villiers, University of Stellenbosch, South Africa

TH-SP.1P.4: UAV-BASED PATTERN MEASUREMENT OF THE SKALA
Fabio Paonessa, Giuseppe Virona, Giuseppe Addamo, Oscar Antonio Peverini, Riccardo Tascone, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni (IEIIT) - Consiglio Nazionale delle Ricerche (CNR), Italy; Pietro Bolli, Osservatorio Astrofisico di Arcetri (OAA) - Istituto Nazionale di Astrofisica (INAF), Italy; Eloy de Lera Acedo, Edgar Colin-Beltran, Nima Razavi-Ghods, University of Cambridge, United Kingdom; Giuseppe Pupillo, Giovanni Naldi, Jader Monari, Istituto di RadioAstronomia (IRA) - Istituto Nazionale di Astrofisica (INAF), Italy; Andrea Maria Lingua, Marco Piras, Irene Aicardi, Paolo Maschio, Politecnico di Torino, Italy

TH-SP.1P.6: EFFICIENT WIDEBAND GAIN MODELING FOR INTERFEROMETRIC IMAGING ARRAYS IN RADIO ASTRONOMY
Andre Young, David Davidson, Stellenbosch University, South Africa; Stefan Wijnholds, Netherlands Institute for Radio Astronomy, Netherlands; T. D. Carozzi, Rob Maaskant, Marianna Valerievna Ivashina, Chalmers University of Technology, Sweden

TH-SP.1P.8: A 19 ELEMENT CRYOGENIC PHASED ARRAY FEED FOR THE GREEN BANK TELESCOPE
D. Anish Roshi, National Radio Astronomy Observatory, United States; Karl F. Warnick, Brigham Young University, United States; Joe Brandt, J. Richard Fisher, Pam Ford, National Radio Astronomy Observatory, United States; Brian D. Jeffs, Brigham Young University, United States; Paul Marganian, Morgan McLeod, Melinda Mello, Matthew Morgan, Roger Norrod, William Shillue, Robert Simon, Steven White, National Radio Astronomy Observatory, United States

TH-SP.1P.9: UNIVERSITY OF CALGARY PARTICIPATION IN CCAT CHAI DEVELOPMENT
Eugene Zailer, Hao Xie, Nan Zhang, Rene Plume, Leonid Belostotski, Michal Okoniewski, University of Calgary, Canada

TH-SP.2P: SPECIAL SESSION TO HONOUR THE CAREER OF PROF. P.L.E. USLENGHI

TH-SP.2P.3: DIFFRACTION BY TWO WEDGES
Vito G. Daniele, Istituto Superiore Mario Boella - Politecnico di Torino, Italy; Rodolfo S. Zich, Istituto Superiore Mario Boella-Politecnico di Torino, Italy

TH-SP.2P.5: ISOREFRACTIVITY: TEACHING AND RESEARCH PERSPECTIVES
Danilo Erricolo, University of Illinois at Chicago, United States

TH-A1.1P: BROADBAND ANTENNA FEEDS AND NON-FOSTER MATCHING TECHNIQUES

TH-A1.1P.1: WIDEBAND TWO-PORT INJECTION MATCHED ANTENNA
Yasin Kabiri, Peter Gardner, Costas Constantinou, University of Birmingham, United Kingdom

TH-A1.1P.2: STABLE BAND-PASS NON-FOSTER CIRCUITS
Stephen D. Stearns, Northrop Grumman Corporation, United States

TH-A1.1P.3: A TAPPED STUB-BASED COMPACT BALUN
Mi Zhou, Jin Shao, Bayaner Arigong, Han Ren, Jun Ding, Hualiang Zhang, University of North Texas, United States

TH-A1.1P.4: AN ULTRA WIDEBAND, 1 - 20 GHZ BALUN IN AN ELECTRICALLY SMALL CONDUCTING ENCLOSURE
Sean Sengele, Brad Baker, Jonathan Holmes, Glenn Hopkins, Jared Walker, Georgia Tech Research Institute, United States; Kenneth Reigle, Exelis, Inc., United States

TH-A1.1P.5: COMPACT NARROWBAND AND WIDEBAND CIRCULARLY-POLARIZED FILTERING ANTENNAS
Zhi Hao Jiang, Douglas H. Werner, Pennsylvania State University, United States
TH-A1.1P.6: BANDWIDTH UPPER BOUNDS FOR MATCHING COUPLED LOADS
Ding Nie, Bertrand Hochwald, University of Notre Dame, United States

TH-A1.1P.7: NON-FOSTER MATCHING NETWORK FOR A SMALL, BLADE-TYPE MONOPOLE IN THE VHF BAND
Fernando Albarracin Vargas, Daniel Segovia Vargas, Universidad Carlos III in Madrid, Spain; Vicente Gonzalez Posadas, Politecnico University of Madrid, Spain

TH-A1.1P.8: A NEW IMPEDANCE-MATCHING TECHNIQUE FOR DUAL-BAND RF CIRCUITS AND ANTENNAS
Cuong Huynh, Ho Chi Minh City University of Technology, Viet Nam; Kyoungwoon Kim, Cam Nguyen, Texas A&M University, United States

TH-A1.1P.9: A BROADBAND WAVEGUIDE TO MICROSTRIP-LINE TRANSITION ON MULTI-LAYERED LCP SUBSTRATE
Ryohei Hosono, Yusuke Uemichi, Xu Han, Ning Guan, Yusuke Nakatani, Fujikura Ltd., Japan

TH-A1.1P.10: DESIGN OF BROADBAND PLANAR SUBSTRATE INTEGRATED WAVEGUIDE (SIW) TRANSVAR COUPLER
Ritvik Srivastava, Soumava Mukherjee, Animesh Biswas, Indian Institute of Technology Kanpur, India

TH-A1.2P: SMALL ANTENNAS: IMPROVED PERFORMANCE AND APPLICATIONS

TH-A1.2P.1: SPECTRAL-DOMAIN RADIATION Q ANALYSIS OF A PLANAR DIPOLE OVER A CONDUCTING GROUND PLANE
Do-Hoon Kwon, David M. Pozar, University of Massachusetts Amherst, United States

TH-A1.2P.2: A METHOD TO OBTAIN CURRENT DISTRIBUTIONS ON SMALL ANTENNAS WITH OPTIMUM DIRECTIVITY
Sebastien Clauzier, Said Mikki, Yahia M.M. Antar, Royal Military College of Canada, Canada; Ala Sharaiha, IETR University of Rennes 1, France; Philippe Pouliguen, DGA-DS/MRIS, France

TH-A1.2P.3: PROPOSAL OF A DIPOLE ANTENNA UNIFIED WITH AN AMC SUBSTRATE
Tetsuo Moroya, Masaki Kotaka, Shigeru Makino, Hideyuki Hayashi, Keisuke Noguchi, Tetsuo Hirota, Kenji Itoh, Kanazawa Institute of Technology, Japan

TH-A1.2P.4: A COMPACT HIGH-EFFICIENCY CIRCULARLY POLARIZED ANTENNA WITH THICK EBG CELLS AND INTEGRATED POWER DIVIDER/PHASE SHIFTER
Mehdi Hosseini, David M. Klymyshyn, University of Saskatchewan, Canada

TH-A1.2P.5: A LOW-PROFILE VHF DUAL BAND PRINTED ANTENNA
Anatoliy Boryssenko, Elen Boryssenko, A&E Partnership, United States; Naftali Herscovici, Michelle Champion, Air Force Research Laboratory, United States

TH-A1.2P.6: BIFILAR TRANSVERSE BILATERAL HELICAL ANTENNA FOR BANDWIDTH ENHANCEMENT
Adem Celebi, Illinois Institute of Technology, United States; Mark Kenkel, Shure Incorporated, United States; Thomas Wong, Illinois Institute of Technology, United States

TH-A1.2P.7: MODELING, DESIGN AND EXPERIMENTATION OF A UHF RFID TAG ANTENNA EMBEDDED IN RAILWAY TICKETS
Wei He, Yejun He, Shenzhen University, China; Manos Tentzeris, Georgia Institute of Technology, United States

TH-A1.2P.8: CIRCULAR CO-PLANAR INVERTED-F ANTENNA FOR UHF MACHINE-TO-MACHINE COMMUNICATIONS
Runbo Ma, Yue Gao, Yapeng Wang, Clive Parini, Queen Mary University of London, United Kingdom
TH-A1.2P.9: LOW SAR SHORTED DIPOLE ANTENNA FOR IMPLANTATION APPLICATIONS ... 1420
Shun-Yun Lin Lin, Cheng Shiu University, Taiwan; Yu-Chih Lin, Metal Industries Research & Development Center, Taiwan; Jian-Hua Chen, Cheng Shiu University, Taiwan

TH-UB.1P: FREQUENCY SELECTIVE SURFACES AND EXTRAORDINARY TRANSMISSION

TH-UB.1P.4: PARAMETRIC ANALYSIS OF ELECTROMAGNETICALLY INDUCED TRANSPARENCY (EIT) IN CHIRAL METAMATERIALS .. 1422
Lei Kang, Zhi Hao Jiang, Taiwei Yue, Douglas H. Werner, Pennsylvania State University, United States

TH-A5.1P: ANTENNAS ON AERIAL VEHICLES

TH-A5.1P.1: CIRCULARLY POLARIZED UHF UP- AND DOWNLINK ANTENNAS INTEGRATED WITH CUBESAT SOLAR PANELS ... 1424
Salahuddin Tariq, Reyhan Baktur, Utah State University, United States

TH-A5.1P.2: A NEW UHF DEPLOYABLE ANTENNA FOR CUBESATS ... 1426
Joseph Costantine, Youssef Tawk, Christos Christodoulou, University of New Mexico, United States; Ignacio Maqueda, Maria Sakovsky, Sergio Pellegrino, California Institute of Technology, United States

TH-A5.1P.3: A MICRO AIR VEHICLE DESIGN BASED ON A WIDEBAND ANTENNA ... 1428
Franklin Drummond, Gregory Huff, Texas A&M University, United States

TH-A5.1P.4: CHARACTERISTIC MODE SYNTHESIS OF OMNI-DIRECTIONAL RADIATION PATTERNS FOR ELECTRICALLY SMALL UAV .. 1430
Yikai Chen, Chao-Fu Wang, National University of Singapore, Singapore

TH-A5.1P.5: DESIGN AND DEVELOPMENT OF VHF ANTENNAS FOR SPACE BORNE SIGNAL OF OPPORTUNITY RECEIVERS FOR CUBESAT PLATFORMS .. 1432
Manohar Deshpande, Jeffery Piepmeier, NASA Goddard Space Flight Center, United States

TH-A5.1P.6: PERFORMANCE IMPROVEMENT OF EMBEDDED PLANAR FIXED BEAM ARRAYS IN FLYING UAVS .. 1434
Sameir Deif, Mohammad S. Sharawi, King Fahd University of Petroleum and Minerals, Saudi Arabia; Benjamin Nold, Osamah Rawashdeh, Daniel Aloi, Oakland University, United States

TH-A5.1P.7: DIRECTIONAL BLADE ANTENNA WITH INCREASED SECTORAL GAIN ... 1436
S. Meliksah Yayan, Onurhan Duman, Meteksan Savunma (Defence) Ind. Inc., Turkey

TH-A5.1P.8: ROBERTS BALUN BASED DIPOLE DESIGN FOR TETHERED UNMANNED AERIAL VEHICLES ... 1438
Yizhu Shen, Jian Lu, Tan-Huat Chio, National University of Singapore, Singapore

TH-A5.1P.9: DIRECTIONAL BLADE ANTENNA WITH TILTED BEAM ... 1440
S. Meliksah Yayan, Onurhan Duman, Meteksan Savunma (Defence) Ind. Inc., Turkey

TH-A2.1P: NEW TOOLS AND APPROACHES IN ELECTROMAGNETICS EDUCATION

TH-A2.1P.2: SMALL ANTENNA POSITIONING SYSTEM DESIGN AT WRIGHT STATE UNIVERSITY ... 1442
Ethan Shepherd, Charles Rockett, Torki Almutairi, Emma Sum, Joshua Compaleo, Michael Saville, Wright State University, United States

TH-A2.1P.3: Z0LVER: A CROSS-PLATFORM OPEN-SOURCE APP FOR TRANSMISSION LINE ANALYSIS AND CIRCUIT DESIGN ... 1444
Gregory Huff, Jeffrey Jensen, Jean-Francois Chamberland, Raven Standard LLC, United States
TH-A2.1P: DESIGNING REPLICAS OF HERTZ’S ANTENNAS USING MODERN COMPUTER
Ted Simpson, University of South Carolina, United States; Milos Pavlovic, WIPL-D d.o.o, Serbia; Dragan Olcan, University of Belgrade, Serbia

TH-A5.2P: ON-CHIP ANTENNAS FOR MILLIMETER AND THZ WAVES

TH-A5.2P.1: INTEGRATED STACKED VIVALDI-SHAPED ON-CHIP ANTENNA FOR 180 GHZ
Ronny Hahnel, Bernhard Klein, Dirk Plettemeier, Technische Universität Dresden, Germany

TH-A5.2P.2: V-BAND INTEGRATED ON-CHIP ANTENNA IMPLEMENTED WITH A PARTIALLY REFLECTIVE SURFACE IN STANDARD 0.13-μM BICMOS TECHNOLOGY
Chuan-Chang Liu, Roberto G. Rojas, Ohio State University, United States

TH-A5.2P.3: ON-CHIP FRACTAL BOWTIE-ANTENNA FOR 185 GHZ TO 200 GHZ
Bernhard Klein, Patrick Seiler, Dirk Plettemeier, TU Dresden, Germany

TH-A5.2P.4: WIRELESS INTERCONNECTS FOR 3D NETWORK-ON-CHIP WITH EMBEDDED MICRO THERMOFLUIDIC COOLING CHANNELS
Christopher Caporale, Jayanti Venkataraman, Rochester Institute of Technology, United States

TH-A5.2P.5: A 94 GHZ CMOS BASED OSCILLATOR TRANSMITTER WITH AN ON-CHIP MEANDERED DIPOLE ANTENNA
Hammad M. Cheema, National University of Sciences & Technology (NUST), Pakistan; Farhan A. Ghaffar, Muhammad Arsalan, Arif Shamim, King Abdullah University of Science and Technology, Saudi Arabia

TH-A5.2P.7: BOTTOM-FEED ON-CHIP WAVEGUIDE SLOT ANTENNA FOR THZ APPLICATIONS
Zheng Wang, Peyman Nazari, Payam Heydari, University of California, Irvine, United States

TH-A5.2P.9: ON-CHIP BI-SEMICIRCULAR SLOT ANTENNA AT 550 GHZ FOR 2×4 COHERENT SOURCE ARRAY IN 65NM CMOS TECHNOLOGY
Hsin-Chia Lu, Hong-Pei Chen, National Taiwan University, Taiwan; Yan Zhao, Mau-Chung Frank Chang, University of California, Los Angeles, United States

TH-A5.2P.10: DESIGN OF A NOVEL GRAPHENE TERAHERTZ ANTENNA AT 500GHZ WITH RECONFIGURABLE RADIATION PATTERN
HaiQiang Xia, QinXu Pan, Jun Hu, Wen-Yan Yin, Zhejiang University, China

TH-A3.1P: OTHER NUMERICAL METHODS I

TH-A3.1P.1: EFFICIENT PARTICLE LOCATOR FOR UNSTRUCTURED-GRID PIC SIMULATIONS
Haksu Moon, Dongyeop Na, Fernando Teixeira, Ohio State University, United States; Yuri Omelchenko, SciberQuest Inc., United States

TH-A3.1P.2: CHARGE-CONSERVING GATHER-SCATTER ALGORITHM FOR PIC SIMULATIONS ON UNSTRUCTURED GRIDS
Haksu Moon, Fernando Teixeira, Ohio State University, United States; Yuri Omelchenko, SciberQuest Inc., United States

TH-A3.1P.3: PREDICTING ISOLATION BETWEEN AIRBORNRE ANTENNAS USING EQUIVALENT MODELS
Siping Gao, Huapeng Zhao, Binfang Wang, Weijiang Zhao, Jason Ching Eng Png, Institute of High Performance Computing, Singapore

TH-A3.1P.4: TRACKING OF CHARACTERISTIC MODES THROUGH FAR-FIELD PATTERN
Zachary Miers, Buon Kiong Lau, Lund University, Sweden
TH-A3.1P.5: EQUIVALENT CURRENT MODELING OF ANTENNA RADIATION
Alper Kursat Ozturk, ASELSAN Inc., Turkey

TH-A3.1P.6: CHARACTERISTIC MODE ANALYSIS OF PEC BODIES USING COMBINED FIELD INTEGRAL EQUATION
Yikai Chen, Chao-Fu Wang, National University of Singapore, Singapore

TH-A3.1P.7: STUDYING MICROSTRIP PATCH ANTENNAS USING THE THEORY OF CHARACTERISTIC MODES
Hamad Alroughani, Pennsylvania State University, United States

TH-A3.1P.8: BROADBAND BOUNDED MEDIUM GREEN’S FUNCTION AND APPLICATIONS TO FAST ELECTROMAGNETIC MODELING OF HIGH SPEED INTERCONNECTS
Shaowu Huang, Leung Tsang, University of Washington, United States

TH-A3.1P.9: A NUMERICAL METHOD FOR THE ELECTROMAGNETIC FIELD TIME DOMAIN PROPAGATOR EQUATIONS
Jongchul Shin, Hasan Tahir Abbas, Robert Nevels, Texas A&M University, United States

TH-A3.2P: HYBRIDIZATION OF NUMERICAL METHODS

TH-A3.2P.1: PARALLEL HYBRID FINITE DIFFERENCE TIME DOMAIN AND MULTILEVEL FAST MULTIPOLE ALGORITHM BASED ON EQUIVALENT-PRINCIPLE
Shugang Jiang, Qin Su, Yu Zhang, Yong Wang, Xunwang Zhao, Zhongchao Lin, Xidian University, China

TH-A3.2P.2: ANTENNA PLACEMENT BASED ON ACCURATE MEASURED SOURCE REPRESENTATION AND NUMERICAL TOOLS
Lars Jacob Foged, Lucia Scialacqua, Francesco Saccardi, Francesca Mioc, Microwave Vision Group, Italy; Javier Leonardo Araque-Quijano, Universidad Nacional de Colombia, Colombia; Giuseppe Vecchi, Politecnico di Torino, Italy

TH-A3.2P.3: THE APPLICATION OF COMPRESSED SENSING THEORY IN WAVELET METHOD OF MOMENTS
Zhe Wang, Bing-Zhong Wang, Ya-Qing Wen, Ren Wang, Institute of Applied Physics, China

TH-A3.2P.4: ELECTROMAGNETIC MODELING FOR A MINIATURIZED PATCH ANTENNA WITH THIN FERRITE FILMS
Jian Zhang, Rui Peng Chen, Peng Cheng Wang, Mei Song Tong, Tongji University, China

TH-A3.2P.5: AIM-AWE TECHNIQUE FOR SURFACE-WIRE INTEGRAL EQUATION
Xing Wang, Hai-Lin Dong, Shu-Xi Gong, Yan-Ping Li, Wen Jiang, Xidian University, China

TH-A3.3P: PO AND DIFFRACTION TECHNIQUES

TH-A3.3P.1: CALCULATING THE SCATTERED FIELDS FROM THE FOCK CURRENTS OF THE 3-D CONVEX SCATTERERS BY THE INCREMENTAL LENGTH DIFFRACTION TECHNIQUE
Yu Mao Wu, Key Laboratory for Information Science of Electromagnetic Waves (MoE), School of Information Science and Technology, Fudan University, Shanghai, 200433, China; Weng Cho Chew, University of Illinois at Urbana-Champaign, United States; Tie Jun Cui, State Key Laboratory of Millimeter Waves, Southeast University, China; Ya-Qiu Jin, Key Laboratory for Information Science of Electromagnetic Waves (MoE), School of Information Science and Technology, Fudan University, Shanghai, 200433, China; Li Jun Jiang, University of Hong Kong, China
TH-A3.3P.2: REVISITING LEVIN+LI ACCELERATION METHOD FOR RAPID DIFFRACTION .. 1496
ANALYSIS OF REFLECTOR ANTENNAS
Arthur Densmore, Yahya Rahmat-Samii, University of California, Los Angeles, United States

TH-A3.3P.3: OPTIMIZING ITERATIVE PHYSICAL OPTICS BY USING AN ACA COMPRESSION ON 1498
INTERACTION MATRICES
Antoine Thomet, IETR - Institut d'Electronique et de Télécommunications de Rennes, France; Gildas Kubické, DGA Information Superiority, France; Christophe Bourlier, IETR - Institut d'Electronique et de Télécommunications de Rennes, France; Philippe Pouliguen, DGA/DS/MRIS (Direction Générale de l'Armement – Direction de la Stratégie – Mission pour la Recherche et l'Innovation Scientifique), France

TH-A3.3P.4: GPU IMPLEMENTATION OF HYBRID GO/PO BVH-BASED ALGORITHM FOR RCS 1500
PREDICTIONS
Alfonso Breglia, Amedeo Capozzoli, Claudio Curcio, Angelo Liseno, Jonas Piccinotti, Università di Napoli Federico II, Italy

TH-A3.3P.5: FAST SHADOWING TECHNIQUE BASED ON Z-BUFFER ALGORITHM FOR GAUSSIAN N/A
BEAM APPLICATIONS
Chuan Wu, Feng Yang, Jun Ouyang, Peng Yang, Fei Yan, University of Electronic Science and Technology of China, China

TH-A3.4P: TECHNIQUES FOR TRANSIENT SIMULATIONS

TH-A3.4P.1: SOURCE DECOMPOSITION AS A GLOBAL ABSORBING BOUNDARY CONDITION FOR 1504
MULTI-REGION PROBLEMS
Naor Shay, Raphael Kastner, Tel Aviv University, Israel; Daniel S. Weile, University of Delaware, United States

TH-A3.4P.2: STABILITY ANALYSIS OF TIME DOMAIN FEM BY APPLYING ROUTH-HURWITZ 1506
STABILITY CRITERION
Xia Wu, Tongji University, China

TH-A3.4P.3: TRANSIENT ANALYSIS OF PLASMONIC NANOSTRUCTURES USING AN ... 1508
MOT-PMCHWT SOLVER
Ismail Enes Uysal, Huseyin Arda Ulku, Hakan Bagci, King Abdullah University of Science and Technology, Saudi Arabia

TH-A3.4P.4: TRANSIENT ANALYSIS OF CIRCULAR WAVEGUIDE PROBE EXCITATION USING 1510
CAVITY MODAL EXPANSION
Ahmed Abdel-Rahman, Tamer Abulfadl, Cairo University, Egypt

TH-A3.4P.5: MARCHING-ON IN DEGREE METHOD FOR ELECTROMAGNETIC ANALYSIS OF N/A
TRANSIENT SCATTERING FROM THIN WIRE ANTENNA EXCITED BY RADIATED
RECTANGULAR CAVITY
Dorsaf Omri, Taoufik Agdali, National Engineering School of Tunis ENIT, Tunisia

FR-SP.1A: INTERNATIONAL COLLABORATIONS ON NEXT-GENERATION RADIO
ASTRONOMICAL INSTRUMENTATION II

FR-SP.1A.1: A 64 ELEMENT, 70-95 GHZ FOCAL PLANE PHASED ARRAY ... 1514
Neal Erickson, Gopal Narayanan, Joseph Bardin, University of Massachusetts, United States; Karl F. Warnick, Brian D. Jeffs, Junning Diao, Brigham Young University, United States

FR-SP.1A.3: QUAD-MODE ANTENNA FOR WIDE-SCAN SPARSE ARRAYS .. 1516
David Schalk Prinsloo, Petrie Meyer, Stellenbosch University, South Africa; Rob Maaskant, Marianna Valerievna Ivashina, Chalmers University of Technology, Sweden

FR-SP.1A.4: STATISTICAL PERFORMANCE OF REFERENCE ANTENNA BASED SPATIAL RFI 1518
MITIGATION FOR RADIO ASTRONOMY
Gregory Hellbourg, Aaron Chippendale, John Tuthill, CSIRO, Australia; Brian D. Jeffs, Brigham Young University, United States
FR-SP.1A.6: DIFFRACTION AND PATTERN PERTURBATION EFFECTS IN OFFSET GREGORIAN
Dirk De Villiers, Stellenbosch University, South Africa; Marianna Valeriavna Ivashina, Chalmers University of Technology, Sweden

FR-SP.1A.7: ANALYSIS OF OFFSET GREGORIAN REFLECTOR WITH PHASED ARRAY FEED FOR
Stephanie Smith, Stuart Hay, CSIRO, Australia

FR-SP.1A.8: A DENSE DIPOLE ARRAY FOR MID-FREQUENCY APERTURE ARRAYS
Jacki Gilmore, David Davidson, Stellenbosch University, South Africa; Jan Noordam, Netherlands Institute for Radio Astronomy, Netherlands

FR-SP.1A.9: HOLOGRAPHIC MEASUREMENT OF KAT-7 PRIMARY BEAMS
Mattieu de Villiers, SKA SA, South Africa

FR-SP.1A.10: MUTUAL COUPLING ANALYSIS IN NON-REGULAR ARRAYS OF SKALA ANTENNAS
Quentin Gueuning, Christopher Raucy, Christophe Craeye, Université catholique de Louvain, Belgium; Edgar Colin-Beltran, Eloy de Lera Acedo, University of Cambridge, United Kingdom

FR-SP.2A.1: NOVEL 11 GHZ 2-PORT ANTENNA ARRAY INTEGRATED AT A CORNER OF MOBILE
Wei-Yu Li, Wei Chung, Tune-Hune Kao, Meng-Chi Huang, Ming-Tsung Hong, ITRI, Taiwan

FR-SP.2A.3: DESIGN OF A 28/38 GHZ DUAL-BAND PRINTED SLOT ANTENNA FOR THE FUTURE 5G
Osama Haraz, Mohamed Ali, Assiut University, Saudi Arabia; Saleh Alshebeili, King Saud University, Saudi Arabia; Abdel-Razik Sebak, Concordia University, Canada

FR-SP.2A.5: 60 GHZ ANTENNAS IN PACKAGE FOR PORTABLE APPLICATIONS
Duixian Liu, Xiaoxiong Gu, Christian Baks, Alberto Valdes-Garcia, IBM T. J. Watson Research Center, United States

FR-SP.2A.7: CHALLENGES OF 60 GHZ ON-CHIP ANTENNA MEASUREMENTS
Edmund Lee, Russell Soerens, Edward Szpindor, Per Iversen, MVG-ORBIT/FR, United States

FR-SP.2A.9: A CONTINUOUS KA-BAND BEAM-SCANNING REFLECTARRAY INTEGRATED WITH BST
Kalyan Karnati, Xun Gong, University of Central Florida, United States

FR-SP.2A.10: 60-GHZ DUAL-POLARIZED TWO-DIMENSIONAL SWITCH-BEAM WIDEBAND ANTENNA
Yujian Li, Kwai-Man Luk, City University of Hong Kong, Hong Kong SAR of China

FR-A1.1A: ADAPTIVE, ACTIVE AND SMART ANTENNAS

FR-A1.1A.1: DUAL-POLARIZED WIDEBAND MULTI-BEAM ARRAYS IN WIRELESS
Lin-Ping Shen, Hua Wang, Des Bromley, Minya Gavrilovic, Communication Components Antenna, Inc., Canada

FR-A1.1A.2: ANALYSIS OF A PLL-BASED DOWN CONVERTER AND PHASE DETECTION CIRCUIT
Andreas Winterstein, Achim Dreher, German Aerospace Center (DLR), Germany

FR-A1.1A.3: IDENTIFICATION OF PARALLEL RUNNING VEHICLES BY RBF NEURAL NETWORK
Hiroki Tsutsumi, Yoshihiko Kuwahara, Shizuoka University, Japan; Hiroyuki Kamo, Nidec Elesys, Japan
FR-A1.1A.4: A NEW APPROACH TO RESOLVING EMITTER LOCATIONS IN THE PRESENCE OF ANTENNA MANIFOLD MISMATCH
Andrew Kintz, Inder Gupta, Ohio State University, United States

FR-A1.1A.5: ACCURATE AND ROBUST DOA ESTIMATION USING UNIFORM CIRCULAR DISPLACED ANTENNA ARRAY
Ahmed Kulaib, Raed Shubair, Mahmoud Al-Quayri, Jason Ng, Khalifa University, United Arab Emirates

FR-A1.1A.6: MULTI-LAYER SWITCHED BEAM FABRY-PEROT LEAKY WAVE ANTENNA
Mohamed Aymen El Cafsi, Lotfi Osman, Ali Gharsallah, University of Tunis El Manar, Tunisia; Mourad Nedil, Université du Québec en Abitibi-Témiscamingue, Canada; Azzeddine Djaiz, Yanbu Industrial College, Saudi Arabia

FR-A1.1A.7: STABILITY ANALYSIS OF RESONANT TUNNELLING DIODE FOR RESISTIVE MATCHING OF AN ELECTRICALLY SMALL ANTENNA
Deepak Singh Nagarkoti, Peter Alizadaeh, Yang Hao, Khalid Z. Rajab, Queen Mary University of London, United Kingdom

FR-A1.1A.8: DESIGN AND ANALYSIS OF VHF VECTOR SENSOR ANTENNA
Amir Musicant, Ben-Gurion University of the Negev, Israel; Benny Almog, Nadav Oxenfeld, Elta Electronics Industries, Israel; Reuven Shavit, Ben-Gurion University of the Negev, Israel

FR-A1.1A.9: HIGH-IMPEDANCE AMPLIFIER ENABLING AN EASY IMPLEMENTABLE INTERFACE FOR A DIVERSITY SYSTEM OF WINDOW-PRINTED ANTENNAS
Alexander Boege, Leopold Reiter, Stefan Lindenmeier, University of the Bundeswehr Munich, Germany

FR-A1.1A.10: LOW-Q ANTENNAS MINIATURIZED WITH ADAPTIVE TUNING FOR SMALL-PLATFORM APPLICATIONS
Johnson Wang, Wang Electro-Opto Corporation, United States

FR-A1.1A.11: PORT ISOLATION ENHANCEMENT VIA ACTIVE INTEGRATION FOR A UWB MIMO ANTENNA SYSTEM
Sagar Dhar, Mohammad S. Sharawi, King Fahd University of Petroleum and Minerals, Saudi Arabia; Fadhil Ghannouchi, University of Calgary, Canada

FR-A5.1A: RFID ANTENNAS
FR-A5.1A.1: SLIM UHF TAG APPLICABLE TO METALLIC FILM CANS
Jingtian Xi, Hong Kong R&D Centre for Logistics and Supply Chain Management Enabling Technologies, Hong Kong SAR of China

FR-A5.1A.2: A STRUCTURAL ANTENNA FOR UHF-RFID IMPLANT INTO LIMB PROSTHESIS
Rossella Lodato, Pier Paolo Valentini, Gaetano Marrocco, University of Roma Tor Vergata, Italy

FR-A5.1A.3: A CIRCULARLY POLARIZED PLANAR ANTENNA FOR NEAR FIELD AND FAR FIELD COMMUNICATION SYSTEMS
Takashi Yamagajo, Manabu Kaji, Fujitsu Laboratories Limited, Japan

FR-A5.1A.4: ANALYSIS AND DESIGN OF A METAL-BACKED RFID TAG ANTENNA
Ayman Elboussy, Electronics Research Institute, Egypt; Osama Haraz, Assiut University, Egypt; Khalid Jamil, Prince Sultan Advanced Tech. Research Institute, Saudi Arabia; Abdel-Razik Sebak, Concordia University, Canada

FR-A5.1A.5: AN ANTENNA FOR RFID TAG PRINTED ON PAPER SUBSTRATE USING CONDUCTIVE INK
Robson Valmiero, Silvio Barbin, University of São Paulo, Brazil

FR-A5.1A.6: OPTIMIZED NEAR-FIELD ANTENNA FOR UHF RFID SMART SHELF APPLICATIONS
Andrey Andrenko, SYSU-CMU Shunde International Joint Research Institute, China

FR-A5.1A.7: DESIGN OF MINIATURIZED UHF RFID TAG ANTENNA ATTACHED TO DIELECTRIC AND METALLIC OBJECTS
Yun Jing Zhang, Jian Zhang, Guo Chun Wan, Mei Song Tong, Tongji University, China
FR-A5.2A.4: BANDWIDTH ENHANCEMENT OF PLATFORM-MOUNTED HF ANTENNAS USING THE FEATURED MODES THEORY
Ting-Yen Shih, Nader Behdad, University of Wisconsin-Madison, United States

FR-A5.2A.5: CAPACITIVELY LOADED HIGH FREQUENCY MONOPOLE ANTENNA FOR VEHICULAR COMMUNICATIONS
Bradley Allen, Maxim Ignatenko, Dejan Filipovic, University of Colorado Boulder, United States

FR-A5.2A.6: STUDY ON PROPAGATION LOSS CHARACTERISTICS CONSIDERING CAR ANTENNA POSITION FOR INTER-VEHICLE COMMUNICATIONS USING 700MHZ BAND AT INTERSECTION
Suguru Imai, Kenji Taguchi, Takeshi Kawamura, Tatsuya Kashiwa, Kitami Institute of Technology, Japan

FR-A5.2A.7: CONFORMAL PRINTED TRAVELING WAVE ANTENNA COMPOSED OF INTERDIGITAL CAPACITOR STRUCTURE
Achmad Munir, Institut Teknologi Bandung, Indonesia; Cahya Edi Santosa, National Institute of Aeronautics and Space, Indonesia

FR-A5.2A.8: SLOTTED PATCH ANTENNAS WITH WIDE AXIAL RATIO BEAMWIDTH FOR PASSIVE KEYLESS ENTRY SYSTEM
Bo Yuan, Xiao Hong Zhang, Zhi Fang Hu, Guo Qing Luo, Hangzhou Dianzi University, China

FR-A2.2A: RECENT TRENDS IN ELECTROMAGNETIC THEORY

FR-A2.2A.1: A COMPLETE EXPANSION SET FOR FREE-SPACE GREEN FUNCTION USING The Kontorovich-Lebedev Transform
Mohamed A. Salem, Christophe Caloz, Polytehnic de Montréal, Canada

FR-A2.2A.2: QUASI PERIODICITY IN MOIRÉ PATTERNS AND A NUMERICAL APPROXIMATION METHOD OF DUAL WEAVES
Erik Sedhed, Andreas Ericsson, Niklas Wellander, Daniel Sjöberg, Lund University, Sweden

FR-A2.2A.3: OPTICAL THEOREM FOR ACTIVE MEDIA
Edwin Marengo, Jing Tu, Northeastern University, United States

FR-A2.2A.4: SCATTERING SIMILARITIES AND DIFFERENCES IN SPACE AND TIME DISCONTINUOUS MEDIA
Mohamed A. Salem, Christophe Caloz, Polytehnic de Montréal, Canada

FR-A2.2A.5: INSIGHTS ON THE POSSIBILITY OF CIRCUIT REPRESENTATION FOR SINGLE MAXWELL’S EQUATIONS
Carlo Andrea Gonano, Riccardo Enrico Zich, Politecnico di Milano, Italy

FR-A2.2A.6: MAGNETLESS RING CIRCULATOR BASED ON NONRECIPROCAL PHASERS
Nima Chamanara, Christophe Caloz, Poly-Grames Research Center, Canada

FR-A2.2A.7: SCALE MODEL HORIZONTAL HALFWAVE DIPOLE
Peder Hansen, URS Corporation, United States; Vincent Acevedo, Jefferey Kagan, Wendy Goebel, Doeg Rodriguez, John D. Rockway, Space and Naval Warfare Systems Center, Pacific, United States

FR-A2.2A.8: A GENERAL FLAT LENS CRITERION
Mohammed Al Shakhs, University of British Columbia, Canada; Peter Ott, Heilbronn University, Germany; Henri Lezec, Center for Nanoscale Science and Technology, United States; Kenneth Chau, University of British Columbia, Canada

FR-A2.2A.9: THE EXCITATION EFFICIENCY OF SURFACE WAVES ON A REACTIVE SURFACE BY A FINITE VERTICAL APERTURE
JiXiang Wan, Xi’an Institute of Space Radio Technology, China; Kin Fai Tong, University College London, United Kingdom; ChunBang Wu, Xi’an Institute of Space Radio Technology, China
FR-A2.2A.10: ANALYTICAL EVALUATION OF EM SCATTERING FROM A BURIED ELLIPTICAL CYLINDER
Mohamed Nasr, Islam Eshrah, Essam Hashish, Cairo University, Egypt

FR-A2.3A.1: SURFACE PLASMON MODES IN SELF-BIASED COUPLED GRAPHENE-COATED WIRES
Diego Correas-Serrano, Alejandro Alvarez-Melcon, Universidad Politécnica de Cartagena, Spain; Juan Sebastian Gomez-Diaz, Andrea Ali, University of Texas at Austin, United States

FR-A2.3A.2: APPLICATION OF GRAPHENE NANOHOLES AS A TERAHERTZ POLARIZER
S. Mohsen Raies-Zadeh, Saeedoddin Safavi-Naeini, Terahertz Research Lab, Electrical and Computer Engineering, University of Waterloo, Canada

FR-A2.3A.3: HIE-FDTD METHOD FOR SIMULATING TUNABLE TERAHERTZ GRAPHENE ABSORBER
Meng-Lin Zhai, Hong-Li Peng, Shanghai Jiao Tong University, China; Wen-Yan Yin, Zhejiang University, China; Zhizhang (David) Chen, Dalhousie University, Canada

FR-A2.3A.4: ENHANCED SURFACE PLASMONIC OPTICAL ABSORPTION ENGINEERING OF GRAPHENE: SIMULATION BY BOUNDARY-INTEGRAL SPECTRAL ELEMENT METHOD
Jun Niu, Duke University, United States; Ma Luo, Wave Computation Technologies, United States; Jinfeng Zhu, Xiamen University, China; Qing Huo Liu, Duke University, United States

FR-A2.3A.5: FULL-WAVE THIRD HARMONIC GENERATION ANALYSES OF GRAPHENE-BASED OPTOELECTRONIC DEVICES
Jun Niu, Qing Huo Liu, Duke University, United States; Ma Luo, Wave Computation Technologies, United States

FR-A2.3A.6: ROOM TEMPERATURE DETECTION OF PLASMA RESONANCES USING MULTIPLE 2DEG CHANNELS IN HEMT
Shubhendu Bhardwaj, Siddharth Rajan, John L. Volakis, Ohio State University, United States

FR-A2.3A.7: ABSORPTION EFFICIENCY IN IMPEDANCE MATCHED INFRARED DIPOLE ANTENNA-COUPLED MICROBOLOMETERS
Yuancheng Xu, Brian Lail, Florida Institute of Technology, United States

FR-A2.3A.8: METAMATERIAL EMITTERS WITH CUSTOM ANGLE-DEPENDENT POLARIZATION PROFILES IN THE NEAR-IR
Jeremy A. Bossard, Douglas H. Werner, Pennsylvania State University, United States

FR-A2.3A.9: NEMATIC NANOPARTICLE ARRAYS WITH ANGLE-SELECTIVE EMISSIVITY IN THE NEAR-IR
Jeremy A. Bossard, Douglas H. Werner, Pennsylvania State University, United States

FR-A2.3A.10: A MAGNETICALLY BIASED GRAPHENE BASED CPW SWITCH FOR MICROWAVE APPLICATIONS
Branko Bukvic, University of Belgrade, Serbia; Uros Jankovic, Djuradj Budimir, University of Westminster, United Kingdom

FR-A2.3A.11: A DESIGN OF SPDT SWITCH USING GRAPHENE DEVICE
Fan Yang, Xidong Wu, Xiang Guo, Yang Xu, Zhejiang University, China

FR-A3.1A: PARALLEL AND SPECIAL-PROCESSOR BASED NUMERICAL METHODS
FR-A3.1A.1: EFFICIENT EM SCATTERING ANALYSIS BASED ON MOM, HSS DIRECT SOLVER, AND RRQR DECOMPOSITION
Ana Manic, Colorado State University, United States; François-Henry Rouet, Xiaoye Sherry Li, Lawrence Berkeley National Laboratory, United States; Branislav M. Notaros, Colorado State University, United States
FR-A3.1A.2: ADAPTIVE, SCALABLE DOMAIN DECOMPOSITION METHODS FOR SURFACE INTEGRAL EQUATIONS
Brian MacKie-Mason, Zhen Peng, University of New Mexico, United States

FR-A3.1A.3: GPU PERFORMANCE ESTIMATION OF VARIOUS MATRIX SOLVE OPERATIONS FOR APPLICATION TO 3D PLANAR MOM
Brian J. Rautio, Sonnet Software, United States; Vladimir I. Okhmatovski, University of Manitoba, Canada; Jay Kyoong Lee, Syracuse University, United States

FR-A3.1A.4: EFFICIENT GPU IMPLEMENTATION OF SBR FOR FAST COMPUTATION OF COMPOSITE SCATTERING FROM ELECTRICALLY LARGE TARGET OVER A RANDOMLY ROUGH SURFACE
Pengcheng Gao, Xiaobing Wang, Zichang Liang, Wei Gao, Science and Technology on Electromagnetic Scattering Laboratory, China

FR-A3.1A.5: SOLUTION OF EM PROBLEMS USING HYBRID PARALLEL CPU/GPU IMPLEMENTATION OF HIGHER-ORDER MOM
Zhongchao Lin, Yan Chen, Yu Zhang, Shugang Jiang, Xunwang Zhao, Xidian University, China

FR-A3.1A.6: WIRELESS CHANNEL MODELING USING GPU-BASED 3D RAY-TRACING
Collin Joseph, Ahmed Abdellatif, Ahmed Nashed, Luyao Chen, Gholamreza Rafi, Safieeddin Safari-Naeini, University of Waterloo, Canada

FR-A3.1A.7: A HIGHLY EFFICIENT COMMUNICATION AVOIDING LU ALGORITHM FOR METHODS OF MOMENTS
Yu Zhang, Yan Chen, Guanghui Zhang, Xunwang Zhao, Yong Wang, Zhongchao Lin, Xidian University, China

FR-A3.1A.8: PARALLEL OUT-OF-CORE HIGHER-ORDER METHOD OF MOMENTS ACCELERATED BY GRAPHICS PROCESSING UNITS
Yan Chen, Zhongchao Lin, Yu Zhang, Shugang Jiang, Xunwang Zhao, Xidian University, China

FR-A3.1A.9: ANALYSIS OF AIRBORNE ARRAY USING PARALLEL OUT-OF-CORE HIGHER-ORDER DDM-MOM SOLVER
Yanyan Li, Yu Zhang, Zhongchao Lin, Yong Wang, Xunwang Zhao, Xidian University, China

FR-A3.2A: HYBRIDIZATION OF NUMERICAL METHODS AND HIGH-FREQUENCY TECHNIQUES

FR-A3.2A.1: ENHANCING THE ACCURACY OF HYBRID SBR/MOM METHOD BASED ON NEW INTERACTION
Xiaowei Mei, Hai Lin, State Key Laboratory of CAD&CG, Zhejiang University, China

FR-A3.2A.2: EFFICIENT PROPAGATION MODELING IN RAILWAY ENVIRONMENTS USING A HYBRID VECTOR PARABOLIC EQUATION/RAY-TRACING METHOD
Xingqi Zhang, Neeraj Sood, University of Toronto, Canada; Joseph Siu, Thales Canada Transportation Solutions, Canada; Costas D. Sarris, University of Toronto, Canada

FR-A3.2A.3: A HYBRID METHOD OF ANALYSIS OF SHAPED DIELECTRIC LENS ANTENNAS
Ravishankar Santhanarayanan, Mahesh Appajappaa, R V College of Engineering, India

FR-A3.2A.4: HYBRIDIZATION OF PEPA, EPA AND PO FOR ANALYSIS OF LARGE FINITE ANTENNA ARRAY WITH PERFECT ELECTRICALLY CONDUCTING OBJECT
Kaizhi Zhang, Jun Ouyang, Feng Yang, University of Electronic Science and Technology of China, China

FR-A3.2A.5: EFFICIENT 3D FORWARD MODELING OF GPR SCATTERING FROM ROUGH GROUND
Mohammad Tajdini, Borja Gonzalez-Valdes, Jose Angel Martinez Lorenzo, Ann Morgenthaler, Carey Rappaport, Northeastern University, United States
FR-A3.3A: OTHER NUMERICAL METHODS II

FR-A3.3A.1: ANALYTICAL SOLUTION OF RADIATION BY A HERTZIAN DIPOLE NEAR AN ELECTRICALLY LARGE LAYERED SPHEROID
Chang Liu, Guneet Kaur, Ali E. Yilmaz, University of Texas at Austin, United States

FR-A3.3A.2: ROBUST COMPUTATION OF GEOELECTRIC POTENTIALS IN CYLINDRICALLY STRATIFIED ANISOTROPIC EARTH FORMATIONS
Haksu Moon, Kamalesh Sainath, Fernando Teixeira, Ohio State University, United States; Burkay Donderici, Halliburton Sensor Physics and Technology, United States

FR-A3.3A.3: ELECTROMAGNETIC CHARACTERIZATION FOR GRAPHENE BY THE PEEC METHOD
Ying S. Cao, Li Jun Jiang, University of Hong Kong, Hong Kong SAR of China

FR-SP.1P: INTERNATIONAL COLLABORATIONS ON NEXT-GENERATION RADIO ASTRONOMICAL INSTRUMENTATION III

FR-SP.1P.1: SINGLE FEED CIRCULARLY POLARIZED HALF E-SHAPED ARRAY: A COMPACT ASSEMBLY FOR DUAL-BAND DIRECT-TO-EARTH COMMUNICATIONS IN MARS ROVERS
Jean Paul Santos, Yahya Rahmat-Samii, University of California, Los Angeles, United States; Neil Chamberlain, Richard Hodges, Jet Propulsion Laboratory, United States

FR-SP.1P.3: BROADBAND VHF RADIOMETRY WITH A NOTCH-FILTERED ANTENNA EXHIBITING A LARGE IMPEDANCE MISMATCH
Richard Tillman, Steven Ellingson, Virginia Polytechnic Institute and State University, United States

FR-SP.1P.4: A MULTI-FEATURE VISIBILITY PROCESSING ALGORITHM FOR RADIO INTERFEROMETRIC IMAGING
Mu-Min Chiou, Jean-Fu Kiang, National Taiwan University, Taiwan; Raj Mittra, Pennsylvania State University, United States

FR-SP.1P.5: DIRECTIVITY OPTIMIZATION OF A LOG-PERIODIC ANTENNA FOR THE SKA-AAMID INSTRUMENT
Edgar Colin-Beltran, Eloy de Lera Acedo, University of Cambridge, United Kingdom

FR-SP.1P.6: NORMALIZED PLANE WAVE SPECTRA: QUANTIFICATION OF MEASURED NEAR-FIELD DISTRIBUTIONS FOR THE ISS-RAPIDSCAT USING MEASURED FAR-FIELD PATTERNS
Yahya Rahmat-Samii, University of California, Los Angeles, United States; Luis Amaro, Jet Propulsion Laboratory, United States; Joshua Kovitz, University of California, Los Angeles, United States

FR-SP.2P: FUNDAMENTAL CONSIDERATIONS OF ELECTROMAGNETIC ENERGY AND INTERACTIONS: THEORY AND APPLICATIONS

FR-SP.2P.1: CONSERVATION OF REACTIVE EM ENERGY IN REACTIVE TIME
Gerald Kaiser, Center for Signals and Waves, United States

FR-SP.2P.2: TIME DOMAIN SCHEME FOR STORED ENERGY EVALUATION
Miloslav Capek, Lukas Jelinek, Czech Technical University in Prague, Czech Republic; Guy A. E. Vandenbosch, KU Leuven, Belgium; Pavel Hazdra, Czech Technical University in Prague, Czech Republic

FR-SP.2P.6: EIGENMODE EXPANSION AND MODE-MATCHING ANALYSIS OF BESSEL BEAM LAUNCHERS
Jason Heebl, Anthony Grbic, University of Michigan, United States

FR-SP.2P.7: ANTENNA POSITIONING USING ANGULAR MOMENTUM OF ELECTROMAGNETIC FIELDS
BaiYang Liu, Yuehui Cui, RongLin Li, South China University of Technology, China
FR-A1.1P: MULTI-BAND ANTENNAS FOR MOBILE DEVICES

FR-A1.1P.1: INVERTED LFFL CARD ANTENNA FOR QUAD-BAND OPERATION ... 1712
Hisamatsu Nakano, Yusuke Kobayashi, Junji Yamauchi, Hosei University, Japan

FR-A1.1P.2: A BEZELESS-ENABLING ANTENNA FOR ULTRA-THIN TABLET COMPUTER ... 1714
APPLICATIONS
Hao-Han Hsu, Intel Corporation, United States

FR-A1.1P.3: DESIGN OF A SLOTTED-PATCH MICROSTRIP ANTENNA FOR MOBILE TERMINALS 1716
Masood Ur-Rehman, Shyqyri Haxha, University of Bedfordshire, United Kingdom

FR-A1.1P.4: MULTIPOLARIZED/MULTI-BAND ORTHOGONAL MIMO ANTENNA FOR WIFI AND WIMAX APPLICATIONS 1718
Omer Arabi, Glynndwr University, United Kingdom; Nazar Ali, Khalifa University, United Arab Emirates; Peter Excell, Glynndwr University, United Kingdom; Abdul Muhsin AlTimimi, University of Technology, Iraq; Raed Abd-Alhameed, University of Bradford, United Kingdom

FR-A1.1P.5: MULTIBAND BROADBAND ASYMMETRIC BOW-TIE ANTENNA FOR TABLET .. 1720
COMPUTER APPLICATIONS
I-Fong Chen, Chia-Mei Peng, Su-Me Shen, Wei-Chen Lin, Jinwen University of Science and Technology, Taiwan

FR-A1.1P.6: A HYBRID PIFA/LOOP WLAN ANTENNA .. 1722
Hanyang Wang, Lijun Ying, Huiliang Xu, Lina Chen, Chienming Lee, Xufei Zhang, Huawei Technologies, China; Yi Huang, University of Liverpool, United Kingdom

FR-A1.1P.7: COMPACT AND MULTIBAND DIELECTRIC RESONATOR ANTENNA FOR MOBILE TERMINALS 1724
Yiheng Diao, Ming Su, Yuanan Liu, Shulan Li, Weimin Wang, Beijing University of Posts and Telecommunications, China

FR-A1.1P.8: A NOVEL MULTIBAND SLOT ANTENNA FOR WLAN/4G/WIMAX APPLICATIONS N/A
Zimu Yang, Hou Zhang, Air Force Engineering University, China; Ying Jian, Liyin Jia, Electronic Systems Engineering Corporation of China, China

FR-A1.1P.9: DUAL-BAND OMNIDIRECTIONAL MONOPOLE/DIELECTRIC RESONATOR ANTENNA 1728
FED BY SICL
Xiaowei Zhang, Haiming Wang, Chen Yu, Qi Wu, Wei Hong, Southeast University, China

FR-A1.1P.10: A MULTI-BAND PLANAR INVERTED-F ANTENNA FOR WIRELESS COMMUNICATIONS N/A
APPLICATIONS
Bahareh Mansouri, Zaker Hossein Firouzeh, Reza Safian, Isfahan University of Technology, Iran

FR-A2.1P: METAMATERIAL-ENHANCED ANTENNAS

FR-A2.1P.1: MINIATURIZED METAMATERIAL-LOADED HORN ANTENNAS THROUGH TWO-STEP N/A
QCTE
Ephrem Bekele, Giacomo Oliveri, Federico Viani, Andrea Massa, ELEDIA Research Center, University of Trento, Italy

FR-A2.1P.2: RADIATION CHARACTERISTICS OF MINIATURIZED METAMATERIAL-LINED WAVEGUIDE PROBE ANTENNAS 1734
Justin George Pollock, Ashwin K. Iyer, University of Alberta, Canada

FR-A2.1P.3: EXPERIMENTAL VERIFICATION OF BROADBAND ANTENNAS LOADED WITH METAMATERIALS 1736
Davide Ramaccia, Andrea Verrengia, Filiberto Bilotti, Alessandro Toscano, “RomaTre” University, Italy; Alessio Monti, Mirko Barbuto, “Niccolò Cusano” University, Italy; Fabrizio Trotta, Elettronica S.p.A., Italy; Damir Muha, Silvio Hrabar, University of Zagreb, Croatia
FR-A2.1P.4: CIRCULARLY-POLARIZED ANTENNA USING AN L-SHAPED PSEUDO-TRAVELING WAVE RESONATOR
Keisuke Ninomiya, Tetsuya Ueda, Kyoto Institute of Technology, Japan; Tatsuo Itoh, University of California, Los Angeles, United States

FR-A2.1P.5: COMPACT LEAKY WAVE ANTENNA WITH PERIODICAL SLOTS ON HALF MODE SUBSTRATE INTEGRATED WAVEGUIDE
Manisha Mujumdar, Alphones Arokiaswami, Nanyang Technological University, Singapore; Nasimuddin N, Institute for Infocomm Research (I2R), Singapore

FR-A2.1P.6: SUBWAVELENGTH CONFORMAL FABRY-PEROT CAVITY ANTENNA FOR SECTORAL RADIATION PATTERN
Mohamed Lamine Abdelghani, Tayeb A. Denidni, INRS, Canada

FR-A2.1P.7: INVESTIGATIONS ON HIGH IMPEDANCE SURFACE SIZE EFFECT TO LOW-PROFILE ANTENNA PERFORMANCE
Yizhu Shen, Jian Lu, Tan-Huat Chio, National University of Singapore, Singapore

FR-A2.1P.8: RADIATION PROPERTIES OF A X-BAND HORN ANTENNA COVERED WITH A WIRE MEDIUM STRUCTURE
Antonio Tomaz, Aeronautics Technological Institute (ITA), Brazil; Joaquim J Barroso, National Institute for Space Research-INPE, Brazil

FR-A2.1P.9: MULTIPLE SLOT ARRAY WITH NEAR ZERO REFRACTIVE INDEX SUBSTRATE
Namrata Singh, Rohit Jain, Shobha Sundar Ram, Indraprastha Institute of Information Technology, India

FR-A5.1P: EMERGING APPLICATIONS OF RFID SYSTEMS

FR-A5.1P.1: PERFORMANCE EVALUATION OF WEARABLE PASSIVE RFID TAG FOR HUMAN INDOOR POSITIONING
Masoumeh Hasani, Lauri Sydänheimo, Elena-Simona Lohan, Leena Ukkonen, Tampere University of Technology, Finland

FR-A5.1P.2: A PASSIVE UHF RFID TAG ANTENNA FOR ROAD MARKER NAVIGATION APPLICATION
Jinxi Chen, Yen B. Le, Sungkyun Lim, Georgia Southern University, United States

FR-A5.1P.3: CHARACTERIZATION SYSTEM FOR RADIATION PATTERN AND SENSITIVITY ESTIMATION OF UHF RFID TAGS
Riccardo Colella, Luca Catarinucci, Paolo Coppola, Luciano Tarricone, University of Salento, Italy

FR-A5.1P.4: RFID READABILITY AROUND WINE BOTTLE BOXES
Isabel Expósito, Iñigo Cuínas, Universidade de Vigo, Spain

FR-A5.1P.5: CNT-RFID PASSIVE TAG ANTENNA FOR GAS SENSING IN UNDERGROUND MINE
Iyadh Gammoudi, Brahim Aissa, Mourad Nedil, Université du Québec en Abitibi-Témiscamingue, Canada; Mohamed Mustafa Abdallah, Minia University, Egypt

FR-A5.1P.6: DOA ESTIMATION TECHNIQUES APPLIED TO RFID TAGS USING RECEIVING UNIFORM LINEAR ARRAY
Yassine Mohamedatni, Belkacem Fergani, LCPTS / USTHB, Algeria; Jean-Marc Laheurte, Benoît Poussot, ESYCOM / UPEM, France

FR-A5.1P.7: RFID TAG LOAD IMPEDANCE MEASUREMENT USING BACKSCATTERED SIGNAL
Muhammad Bashir Akbar, Francesco Amato, Gregory Durgin, Georgia Institute of Technology, United States; Greeshma Pisharoty, Seong-Youp Suh, Intel Corporation, United States

FR-A5.1P.8: METAMATERIAL RFID TAG DESIGNS FOR LONG READ RANGE
Dahbia Hamzaoui, Grenoble INP and Béjaia University, France; Tan-Phu Vuong, Grenoble INP, France; Farid Djahlí, Sétif university, Algeria; Ghaffer Kiani, King Abdul Aziz University, Saudi Arabia
FR-A5.1P.9: A SCALABLE MODULAR ANTENNA CONFIGURATION TO EXTEND THE DETECTION 1766
VOLUME OF A NEAR-FIELD UHF-RFID DESKTOP READER
Andrea Michel, Alice Buffi, Roberto Caso, Paolo Nepa, University of Pisa, Italy

FR-A5.1P.10: A NOVEL BOOSTER ANTENNA ON FLEXIBLE SUBSTRATES FOR METAL PROXIMITY 1768
NFC APPLICATIONS
Hossein Saghlatoon, Pedram Mousavi, University of Alberta, Canada

FR-A5.1P.11: HIGH CAPACITY POLARIZATION SENSITIVE CHIPLESS RFID TAG .. 1770
Munawar Masood Khan, Farooq A. Tahir, Hammad M. Cheema, National University of Sciences & Technology (NUST), Pakistan

FR-UK.1P: ABLATION AND HYPERTHERMIA

FR-UK.1P.9: EFFICIENT SAR LOCALIZATION FOR HYPERTHERMIA TREATMENT OF CANCER 1772
CELLS BY APPLYING A DUAL-BAND 8-ELEMENT PHASED-ARRAY
Mohamed Ali, Osama Haraz, Assiut University, Egypt; Ibrahim Elshaify, Saleh Alshebili, King Saud University, Saudi Arabia; Abdel-Razik Sebak, Concordia University, Canada

FR-A4.1P: MODELING AND MEASUREMENT FOR INDOOR PROPAGATION

FR-A4.1P.1: SPACE-TIME FOCUSING PERFORMANCE OF TIME-REVERSAL BEAMFORMING IN 1774
RICH-SCATTERING INDOOR CHANNELS
Carlos Viteri-Mera, Fernando Teixeira, Ohio State University, United States

FR-A4.1P.2: UNCERTAINTY QUANTIFICATION OF RAY-TRACING BASED WIRELESS PROPAGATION 1776
MODELS WITH A CONTROL VARIATE-POLYNOMIAL CHAOS EXPANSION METHOD
Sarthak Garg, Neeraj Sood, Costas D. Sarris, University of Toronto, Canada

FR-A4.1P.3: COMPARISON OF INDOOR PENETRATION LOSS BETWEEN MEASUREMENT 1778
RESULT AND HYBRID METHOD BY RAY-TRACING AND PHYSICAL OPTICS
Hayate Kimoto, Kentaro Nishimori, Niigata University, Japan; Tetsuro Imai, Nobutaka Omaki, Ngochao Tran, NTT DOCOMO, INC., Japan

FR-A4.1P.4: IMPACT OF RECONFIGURABLE POLARIZATION PARAMETER ON TRANSFERRED 1780
SIGNAL POWER IN INDOOR MIMO CHANNELS
Hassan El-Sallabi, Mohamed Abdallah, Texas A&M University at Qatar, Qatar; Jean-Francois Chamberland, Texas A&M University, United States; Khalid Qaraqe, Texas A&M University at Qatar, Qatar

FR-A4.1P.5: TERAHERTZ BAND: INDOOR RAY-TRACING CHANNEL MODEL CONSIDERING 1782
ATMOSPHERIC ATTENUATION
Fawad Sheikh, Mohamed El-Hadjidy, Thomas Kaiser, University of Duisburg-Essen, Germany

FR-A4.1P.6: ACCURATE RAY-TRACING/UTD-BASED MODEL FOR INDOOR STAIRWELLS AT 10 GHZ........ 1784
Vincent Fono, Oussama Abu Safia, Larbi Talbi, Université du Québec en Outaouais, Canada; Mourad Nedil, Université du Québec en Abitibi-Témiscamingue, Canada

FR-A4.1P.7: 24 GHZ INDOOR MIMO CHANNEL MEASUREMENTS ... 1786
Rashid Mehmood, Jon Wallace, Michael Jensen, Brigham Young University, United States

FR-A4.1P.8: EXPERIMENTAL ANALYSIS OF HUMAN BODY EFFECTS ON NLOS 60 GHZ 1788
PROPAGATION CHANNEL
Mohamad Ghaddar, Mourad Nedil, University of Quebec in Abitibi, Canada; Larbi Talbi, University of Quebec in Outaouais, Canada; Jules Lebel, Communications Research Centre Canada, Canada

FR-A4.1P.9: FEMTOCELL COOPERATION BASED ON MULTIPLE-ACCESS CHANNEL MODEL 1790
Yuanyuan Shi, Gang Zhu, State Key Laboratory of Rail Traffic Control and Safety, China
FR-A3.1P.2: ON THE MODELING OF FLUCTUATION-INDUCED PHENOMENA IN INHOMOGENEOUS GEOMETRIES
Athanasios Polimeridis, M. T. Homer Reid, Massachusetts Institute of Technology, United States; Weiliang Jin, Princeton University, United States; Steven Johnson, Jacob White, Massachusetts Institute of Technology, United States; Alejandro Rodriguez, Princeton University, United States

FR-A3.1P.3: AN EFFICIENT EXPLICIT MARCHING ON IN TIME SOLVER FOR MAGNETIC FIELD VOLUME INTEGRAL EQUATION
Sadeed Bin Sayed, Huseyin Arda Ulku, Hakan Bagci, King Abdullah University of Science and Technology, Saudi Arabia

FR-A3.1P.4: A NYSTROM METHOD FOR SOLVING TIME-DOMAIN VOLUME INTEGRAL EQUATIONS
Rui Peng Chen, Dian Jin Li, Yi Tong Kong, Wen Jie Cheng, Mei Song Tong, Tongji University, China

FR-A3.1P.5: COMPUTATIONS OF ELECTROMAGNETIC WAVE SCATTERING FROM ANISOTROPIC AND INHOMOGENEOUS OBJECTS USING VOLUME INTEGRAL EQUATION METHODS
Lin Sun, Youngstown State University, United States

FR-A3.2P: NOVEL TIME-DOMAIN FINITE ELEMENT METHODS

FR-A3.2P.1: TIME-DOMAIN FINITE ELEMENT MODELING OF NONLINEAR CONDUCTIVITY USING NEWTON'S METHOD
Su Yan, Jian-Ming Jin, University of Illinois at Urbana-Champaign, United States

FR-A3.2P.2: TIME-DOMAIN NONLINEAR FINITE ELEMENT ANALYSIS OF AIR BREAKDOWN USING A SIMPLIFIED PLASMA MODEL
Su Yan, Jian-Ming Jin, University of Illinois at Urbana-Champaign, United States

FR-A3.2P.3: NEW 3D HYBRID FDTD-FETD METHOD WITH NON-CONFORMAL MESH
Qingtao Sun, Qing Huo Liu, Duke University, United States

FR-A3.2P.4: A NEW EXPLICIT AND UNCONDITIONALLY STABLE TIME-DOMAIN FINITE-ELEMENT METHOD
Woochan Lee, Dan Jiao, Purdue University, United States

FR-A3.2P.5: ACCURATE MATRIX-FREE TIME-DOMAIN METHOD IN THREE-DIMENSIONAL UNSTRUCTURED MESHES
Jin Yan, Dan Jiao, Purdue University, United States

FR-A3.3P: FDTD APPLICATIONS

FR-A3.3P.1: BULK ACOUSTIC WAVE MEDIATED MULTIFERROIC ANTENNAS NEAR FERROMAGNETIC RESONANCE
Zhi Yao, Yuansun Wang, University of California, Los Angeles, United States

FR-A3.3P.2: EXPERIMENTAL DESIGN OF A FICA ANTENNA
Yong Wang, Scott Langdon, Remcom Inc., United States

FR-A3.3P.3: FDTD MODEL PERFORMANCE ANALYSIS FOR A CAVITY SLOT ANTENNA ARRAY IN A VARIABLE GEOMETRY CONFORMAL TEST RIG
Timothy Pelham, Geoff Hilton, Christopher Railton, University of Bristol, United Kingdom; Rob Lewis, BAE Systems Advanced Technology Center, United Kingdom

FR-A3.3P.4: BROADBAND AND EFFICIENT MODELLING GRAPHENE-BASED STRUCTURES WITH AN IMPROVED LOD-FDTD METHOD
Xiang-Hua Wang, Yang Guo, Jun Hu, Wen-Yan Yin, Zhejiang University, China
FR-A3.3P.5: EXPERIMENTAL NEAR-FIELD METHOD FOR VALIDATING SIMULATION ANTENNA MODELS
Lars Jacob Foged, Lucia Scialacqua, Microwave Vision Group, Italy; John Estrada, Jerome Luc, MVG Inc. Americas, United States; Giorgi Bit-Babik, Antonio Faraone, Motorola Solutions, Inc., United States

FR-A3.4P: ADVANCED FINITE ELEMENT METHODS

FR-A3.4P.1: LINEAR-COMPLEXITY DIRECT FINITE ELEMENT SOLVER FOR IRREGULAR MESHES AND MATRICES WITHOUT MESH
Bangda Zhou, Dan Jiao, Purdue University, United States

FR-A3.4P.2: FINITE ELEMENT MODELING OF DOUBLE-TIP DIFFRACTION
Ozlem Ozgun, Hacettepe University, Turkey; Levent Sevgi, Okan University, Turkey

FR-A3.4P.3: FE-BI FORMULATION FOR CHARACTERISTIC MODES OF GENERAL BODIES
Fu-Gang Hu, Chao-Fu Wang, National University of Singapore, Singapore

FR-A3.4P.4: NON-CONFORMAL DDM-FEM-BI WITH GAUSS-SEIDEL PRECONDITIONER FOR SCATTERING FROM COATING OBJECTS
Mi Tian, Pinghao Jia, Jun Hu, University of Electronic Science and Technology of China, China

FR-A3.4P.5: IMPLEMENTATION OF DG-FEM WITH DYNAMIC JULIA LANGUAGE FOR ACCURATE EM SIMULATION
Yi Wang, Nanjing University of Aeronautics and Astronautics, China; Meilin Liu, Shanghai Institute of Satellite Engineering, China; Huiping Li, Shu Liang, Qunsheng Cao, Nanjing University of Aeronautics and Astronautics, China

MOP-A1.4A: MICROSTRIP ANTENNA ARRAYS II

MOP-A1.4A.1: A DESIGN METHODOLOGY FOR IMPEDANCE-MATCHED ELECTRICALLY SMALL PARASITIC SUPERDIRECTIVE ARRAYS
Abdullah Haskou, Sylvain Collardey, Ala Sharaiha, University of Rennes 1, France

MOP-A1.4A.2: DESIGN OF THE SERIES FED MICROSTRIP PATCH PLANAR ARRAY ANTENNA BY THE PARATO GENETIC ALGORITHM
Hiroki Tsutsumi, Yoshihiko Kuwahara, Shizuoka University, Japan; Hiroyuki Kamo, Nidec Elesys Corporation, Japan

MOP-A1.4A.3: A COMPACT PRINTED VAN ATTA ARRAY WITH ZERO-PHASE CRLH TRANSMISSION LINES
Benjamin Braaten, Sajid Asif, Saeed Khan, Jared Hansen, Daniel Ewert, North Dakota State University, United States

MOP-A1.4A.4: ANALYSIS OF NONUNIFORM EXCITATION AND ELEMENT SPACING IN SIDEBELOW REDUCTION OF WIDEBAND U-SLOT MICROSTRIP PATCH PHASED ARRAY ANTENNAS
Mohamed Elsewe, Deb Chatterjee, University of Missouri at Kansas City, United States

MOP-A1.4A.5: A COMPACT MICROSTRIP FEEDING NETWORK FOR CIRCULAR ARRAYS WITH CONICAL BEAM PATTERN
Mónica Portela Táboas, María Vera Isasa, University of Vigo, Spain

MOP-A1.4A.6: CIRCULAR ARRAY WITH DUAL CONICAL BEAM PATTERN FOR EMERGENCY COMMUNICATIONS
Mónica Portela Táboas, María Vera Isasa, University of Vigo, Spain

MOP-A1.4A.7: CIRCULARLY POLARIZED MICROSTRIP ANTENNA ARRAY FOR THE KA-BAND
Tiago Varum, João Matos, Pedro Pinho, Vanessa Duarte, Instituto de Telecomunicações, Portugal

MOP-A1.4A.8: KU BAND PLANAR ARRAY ANTENNA FOR SATELLITE TV SIGNAL RECEPTION
Lokman Kuzu, Mesut Gokten, Tubitak Space Research Institute, Turkey; Ahmet Yagli, Senol Gulgonul, TURKSAT, Turkey
MOP-A1.4A.9: A THREE-LAYER TRANSMITARRAY ELEMENT WITH 360° PHASE RANGE .. 1868
Le Chang, Zhijun Zhang, Zhenghe Feng, Tsinghua National Laboratory for Information Science and Technology, China

MOP-A1.4A.10: A NOVEL DOUBLE-LAYER RECTANGULAR MICROSTRIP ANTENNA ... 1870
Xiaopeng Lu, Yumei Zhang, East China Research Institute of Electronic Engineering, China

MOP-A1.4A.11: LARGE GAIN LINEAR SERIES-FED MICROSTRIP ANTENNA ARRAYS AT KA AND C 1872
Pratigya Mathur, Girish Kumar, Indian Institute of Technology Bombay, India; Prashant Kumar Mishra, Yogesh K. Verma, Research Centre Imarat, Defense Research & Development Organization, India

MOP-A1.1A: WIDEBAND, MULTIBAND AND CIRCULARLY POLARIZED MICROSTRIP ANTENNAS I

MOP-A1.1A.1: A SELF-DIPLEXING DUAL-BAND PLANAR ARRAY FOR GNSS APPLICATIONS 1874
Elena Abdo-Sánchez, Teresa M. Martín-Guerrero, Universidad de Málaga, Spain; Jaime Esteban, Universidad Politécnica de Madrid, Spain; Carlos Camacho-Peña, Universidad de Málaga, España

MOP-A1.1A.2: LOW PROFILE TRI-BANDS ANTENNA FOR 1.2/2.4/3.5 GHZ WIRELESS APPLICATIONS N/A
Ali Al-Azza, Frances Harackiewicz, Southern Illinois University of Carbondale, United States

MOP-A1.1A.3: MULTI-RESONANT AGNW/PDMS PATCH ANTENNA FOR BIAXIAL STRAIN SENSING 1878
Clifford Muchler, Zheng Cui, Yong Zhu, Jacob Adams, North Carolina State University, United States

MOP-A1.1A.4: JONES MATRIX AND S-PARAMETER ANALYSIS USING AN EQUIVALENT CIRCUIT 1880
MODEL FOR INTRINSICALLY DUAL CIRCULARLY POLARIZED MICROSTRIP ANTENNAS
Zhenchao Yang, Karl F. Warnick, Brigham Young University, United States

MOP-A1.1A.5: UWB L-PROBE PROXIMITY FED V-SLOT PATCH ANTENNA FOR EARLY 1882
DETECTION OF BREAST CANCER
Mahrukh Khan, Dhivya Ketharnath, Varun Dandu, Deb Chatterjee, University of Missouri at Kansas City, United States

MOP-A1.1A.6: DUAL-BAND CIRCULARLY POLARIZED STACK RING ANTENNA WITH OPEN GAP 1884
Dongcheol Seo, Youngje Sung, Kyonggi University, Republic of Korea

MOP-A1.1A.7: DESIGN OF A DUAL-BAND MICROSTRIP ANTENNA USING SLOTTED ANNULAR-RING 1886
AND CONCENTRIC DISK
Bo-hua Gan, Liang Zhou, Yao-Pin Zhang, Huahua Zhou, Jun-fa Mao, Shanghai Jiao Tong University, China

MOP-A1.1A.8: MINIATURIZED DIFFERENTIAL DUAL-BAND ANTENNA WITH BANDWIDTH 1888
IMPROVEMENT FOR WLAN APPLICATION
Yanfang Shen, Xinwei Chen, Runbo Ma, Wenmei Zhang, Liping Han, Shanxi University, China

MOP-A1.1A.9: NOVEL DUAL-BAND AND DUAL CIRCULARLY POLARIZED MICROSTRIP ANTENNA 1890
Chunlan Lu, Juhong Shen, Yisen Cao, Fanqiu Meng, Tinghui Yin, College of Communications Engineering, PLA University of Science and Technology, China

MOP-A1.1A.10: CIRCULAR POLARISED ANNULAR RING MICROSTRIP ANTENNA FOR X-BAND N/A
APPLICATION
Anil Kumar Singh, Ravi Kumar Gangwar, Indian School of Mines, India; Binod Kumar Kanaujia, Ambedkar Institute of Advanced Communication Technologies & Research, India

MOP-A1.2A: MICROSTRIP ANTENNA ARRAYS I

MOP-A1.2A.1: LARGE MICROSTRIP ARRAY ANTENNA WITH HYBRID FEED NETWORK OF 1894
STANDING AND TRAVELING WAVES
Choon Lee, Mohamed Ezzat, Southern Methodist University, United States
MOP-A1.2A.2: A 4X4 CIRCULARLY POLARIZED APERTURE COUPLED ANTENNA ARRAY FOR KA-BAND SATELLITE COMMUNICATION
Hussam Al-saedi, Mohmmad Fereidani, Wael M. Abdel-Wahab, Rafi Ghoulamreza, Safieddin Safavi-Naeini, University of Waterloo, Canada

MOP-A1.2A.3: INDENTED ANTENNA ARRAY FOR FULL-DUPLEX REPEATER
Qiang Xu, Shihan Qin, Yuanxun Wang, University of California, Los Angeles, United States

MOP-A1.2A.4: APERTURE-COUPLED 2X2 MICROSTRIP ANTENNA ARRAY FOR 60 GHZ APPLICATIONS
Issa Mohamed, Abdel-Razik Sebak, Concordia University, Canada

MOP-A1.2A.5: A FEED CIRCUIT-INTEGRATED PLANAR ARRAY ANTENNA USING ANISOTROPIC CONDUCTIVE PASTE
Shimpei Akimoto, Takashi Yanagi, Toru Fukasawa, Hidenori Ishibashi, Yukihiro Tahara, Hiroaki Miyashita, Mitsubishi Electric Corporation, Japan

MOP-A1.2A.6: A BOWTIE-SHAPED GRID ARRAY ANTENNA RADIATING LINEARLY AND CIRCULARLY POLARIZED BEAMS
Toru Kawano, National Defense Academy, Japan; Hisamatsu Nakano, Hosei University, Japan

MOP-A1.2A.7: LOW PROFILE MULTILAYER DUAL CIRCULAR POLARIZED K-BAND ANTENNA ARRAY FOR AEROSPACE APPLICATIONS
Przemyslaw Gorski, Wroclaw University of Technology, Poland; Juan R. Mosig, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

MOP-A1.2A.8: A HYBRID-FED DUAL-POLARIZED STACKED PATCH ARRAY ANTENNA FOR KU-BAND RADAR SYSTEMS
Lizhong Song, Yuming Nie, Harbin Institute of Technology, China

MOP-A1.2A.9: GAP-COUPLED SERIES-FED ANTENNA ARRAY WITH IMPROVED BANDWIDTH
Prashant Kumar Mishra, Dhananjay Ramchandra Jahagirdar, Defence Research & Development Organization, India; Girish Kumar, Indian Institute of Technology Bombay, India

MOP-A1.2A.10: PULSED ARRAY OF SPIRAL ANTENNAS FOR SCANNED ENERGY PATTERN WITH LOW SIDE LOBES
Alberto Reyna, Marco Antonio Panduro, Autonomous University of Tamaulipas, Mexico

MOP-A1.2A.11: PERFORMANCE ANALYSIS OF UNIFORM META-MATERIAL LENS EMBEDDED PATCH ANTENNAS
Jaypal Baviskar, Afshan Mulla, Amutha Jeyakumar, Veermata Jijabai Technological Institute (VJTI), India

MOP-A1.3A: WIDEBAND, MULTIBAND AND CIRCULARLY POLARIZED MICROSTRIP ANTENNAS II

MOP-A1.3A.1: WIDE-BAND PLANAR FOLDED LOOP MIMO ANTENNA WITH PARALLEL STUBS
DukSoo Kwon, In-June Hwang, Seung-Tae Khang, Jong-Won Yu, Korea Advanced Institute of Science and Technology, Republic of Korea; Wang-Sang Lee, Gyeongsang National University, Republic of Korea

MOP-A1.3A.2: THE CP HALF E-SHAPED PATCH: EVOLVING FROM LINEAR POLARIZATION TO COMPACT SINGLE FEED CIRCULARLY POLARIZED ANTENNAS
Joshua Kovitz, Jean Paul Santos, Yahya Rahmat-Samii, University of California, Los Angeles, United States

MOP-A1.3A.3: A WIDEBAND CIRCULARLY POLARIZED MONOPOLE ANTENNA ARRAY
Changfei Zhou, S.W. Cheung, Yunfei Cao, T.I. Yuk, University of Hong Kong, Hong Kong SAR of China

MOP-A1.3A.4: HIGH-GAIN CIRCULAR POLARIZATION MONOPOLE ANTENNA USING MS FOR GNSS
Yunfei Cao, S.W. Cheung, T.I. Yuk, Hailiang Zhu, University of Hong Kong, Hong Kong SAR of China
MOP-A1.3A.5: A NOVEL PLANAR CIRCULARLY-POLARIZED ANTENNA USING STEPPED-WIDTH CROSS-DIPOLE
Yu Luo, Qing-Xin Chu, South China University of Technology, China; Lei Zhu, University of Macau, Macao SAR of China

MOP-A1.3A.6: A BROADBAND ANGLED-DIPOLE ARRAY ANTENNA WITH RADOM
Min Guo, Xiao-Bo Xuan, Min Wang, Ming-Ming Fan, Science and Technology on Electromagnetic Scattering Laboratory, China; Shun-Shi Zhong, Shanghai University, China

MOP-A1.3A.7: WIDEBAND STACKED PATCH ANTENNA FOR MODERN COMMUNICATION SYSTEMS
Hao Jiang, Zheng-Hui Xue, Weiming Li, Wu Ren, Beijing Institute of Technology, China

MOP-A1.3A.8: A WIDEBAND MICROSTRIP ARRAY ANTENNA WITH THE 2ND HARMONIC SUPPRESSION CHARACTERISTICS
Sen Feng, Mou-ping Jin, Zhouhai Wang, Qinghua Lai, East China Research Institute of Electronic Engineering, China

MOP-A1.3A.9: MULTILAYER SLOTTED MICROSTRIP ANTENNA FOR WI-FI APPLICATION
Khushboo Tiwari, Dhaval Pujara, Nirma University, India

MOP-A1.3A.10: DESIGN OF WIDEBAND MICROSTRIP ANTENNA WITH SPIRAL SLOT ON GROUND PLAN
Simin Masihi, Adiban Institute of Higher Education, Iran; Pejman Rezaei, Semnan University, Iran; Masoud Panahi, Islamic Azad University of Mashhad, Iran

MOP-A1.3A.11: A WIDE-BAND MINIATURIZED LOADED INVERTED L ANTENNA
Abdullah Haskou, Ala Sharaiha, Sylvain Collardey, University of Rennes 1, France

MOP-A1.2P: BROADBAND PRINTED ANTENNAS I

MOP-A1.2P.1: A SELF-COMPLEMENTARY PICA FOR UWB APPLICATIONS
Nueri Quasem, University of British Columbia, Canada; Atiqur Rahman, North South University, Bangladesh; David Michelson, University of British Columbia, Canada

MOP-A1.2P.2: MULTI-OBJECTIVE OPTIMIZATION FOR UWB ANTENNAS IN IMPEDANCE MATCHING, GAIN, AND FIDELITY FACTOR
Yi-Hsiang Chiu, Yen-Sheng Chen, National Taipei University of Technology, Taiwan

MOP-A1.2P.3: BANDWIDTH ENHANCEMENT OF A BENT PLANAR MONOPOLE ANTENNA BY GROUND PLATE EXTENSION
Kyoichi Iigusa, Fumihide Kojima, Hiroyuki Yano, National Institute of Information and Communications Technology, Japan

MOP-A1.2P.4: A WIDEBAND PRINTED BENT MONOPOLE ANTENNA WITH A SMALL GROUND PLATE AND BASIC STUDY
Kyoichi Iigusa, Fumihide Kojima, Hiroyuki Yano, National Institute of Information and Communications Technology, Japan

MOP-A1.2P.5: WIDEBAND CIRCULARLY POLARIZED MODIFIED TRAPEZOIDAL-SHAPED MONOPOLE ANTENNA
Roshini John, Nanyang Technological University, Singapore; Nasimuddin Nasimuddin, Institute for Infocomm Research (I²R), Singapore; Arokiaswami Alphones, Nanyang Technological University, Singapore

MOP-A1.2P.6: A DUAL BAND DUAL POLARIZED BIDIRECTIONAL HORSE SHOE SHAPE ANTENNA
Mahima Arrawatia, Maryam Shojaei Baghini, Girish Kumar, Indian Institute of Technology Bombay, India

MOP-A1.2P.7: UWB ANTENNA WITH QUINTUPLE NOTCH BANDS
Yunnam Jin, Jaehoon Choi, Hanyang University, Republic of Korea

MOP-A1.2P.8: COMPACT ACS-FED ANTENNA FOR UWB APPLICATIONS
Yantao Yu, Lijun Yi, Xiaoaya Liu, Zhaokai Gu, Jinghe Li, Chongqing University, China
MOP-A1.2P.9: UWB ANTENNA WITH ROUND STEPS.. 1954
Noor Awad, University of Jordan, Jordan; Mohamed Abdelazeez, German Jordan University, Jordan

MOP-A1.2P.10: COMPACT TRIANGULAR SHAPED PRINTED MONOPOLE ANTENNAS FOR BLUETOOTH AND UWB APPLICATIONS
Praveen Naidu Vummadisetty, Symbiosis International University, India; Raj Kumar, ARDE, India

MOP-A1.3P: BROADBAND PRINTED ANTENNAS II

MOP-A1.3P.1: CONDUCTIVE INKJET PRINTED ULTRA-WIDEBAND (UWB) PLANAR MONOPOLE 1958
Daria Lane, Alejandro Castro, Satish Sharma, San Diego State University, United States

MOP-A1.3P.2: WIDEBAND PRINTED INVERTED-F ANTENNA FOR MIMO SYSTEM .. 1960
Takaumi Fujimoto, Junpei Taguri, Nagasaki University, Japan

MOP-A1.3P.3: DOUBLE FOLDED INVERTED-L ANTENNA FOR ACCESS POINTS... 1962
Jingya Deng, Lixin Guo, Xidian University, China

MOP-A1.3P.4: A NOVEL DUAL-POLARIZED BROADBAND PLANAR ANTENNA FOR BASE STATIONS 1964
Yehui Cui, Fuyun Li, Yan Pan, South China University of Technology, China; Yi Fan, School of South China University of Technology, China; RongLin Li, South China University of Technology, China

MOP-A1.3P.5: UWB RING-SHAPED METAMATERIAL ANTENNA WITH MODIFIED PHI-SHAPED SRR 1966
Sameer Kumar Sharma, Ashish Gupta, Raghvendra Kumar Chaudhary, Indian School of Mines Dhanbad, India

Mohammad Safarpour, Pejman Rezaei, Somayeh Foroughi, Semnan University, Iran

MOP-A1.3P.7: DESIGN OF A NEW FRACTAL ANTENNA WITH CPW-FED FOR UWB APPLICATION.................. 1970
Djelloul Aissaoui, Tlemcen University, Algeria; A. Tayeb Denidni, National Institute of Scientific Research, Canada; Noureddine Boukli Hacen, Tlemcen University, Algeria

MOP-A1.3P.8: A NOVEL CPW-FED COMPACT UWB MICROSTRIP ANTENNA ... 1972
Xieyong He, Dongya Shen, Qiong Zhou, Xiupu Zhang, Jie Zeng, Yue Lv, Yunnan University, China

MOP-A1.3P.9: BLADE ANTENNA WITH WIDEBAND DIRECTIVITY... 1974
Mostafa Salehi, Ayaz Ghorbani, Gholamreza Moradi, Amirkabir University of Technology, Iran

MOP-A1.5P: SPIRAL AND SINUOUS ANTENNAS

MOP-A1.5P.1: TWO STACKED ORTHOGONALLY WOUND SPIRALS WITH CONNECTED ARMS.......................... 1976
Israel Hinostroza, Régis Guinvarc’h, SONDRA, France; Randy Haupt, Colorado School of Mines, United States

MOP-A1.5P.2: A UWB CAVITY-BACKED COMPOUND POWER-ARCHIMEDEAN SLOT SPIRAL FOR BODY CENTRIC WIRELESS COMMUNICATIONS APPLICATIONS 1978
Jayson Maldonado Vargas, Rafael Rodríguez Solís, University of Puerto Rico, Puerto Rico; Mohamed Elmansouri, Dejan Filipovic, University of Colorado Boulder, United States

Nathan Jastram, Mohamed Elmansouri, Dejan Filipovic, University of Colorado Boulder, United States

MOP-A1.5P.4: ENHANCED TECHNIQUE FOR MINIATURIZATION OF WIDEBAND SPIRAL ANTENNA 1982
Jihwan Ahn, Jun-Gi Jeong, Hyeongi Hong, Young Joong Yoon, Yonsei University, Republic of Korea
MOP-A1.5P.5: ARCHIMEDEAN SPIRAL ANTENNA WITH AN INTEGRATED DUAL BANDSTOP RESPONSE
Jae Jeon, John Chang, Lawrence Livermore National Laboratory, United States; Anh-Vu Pham, University of California, Davis, United States

MOP-A1.5P.6: A CONICAL FOUR-ARM SINUOUS ANTENNA
Shufeng Zheng, Zedong Wang, Xueshi Ren, Xidian University, China; Steven Gao, University of Kent, United Kingdom

MOP-A1.5P.7: CONFORMAL, LIGHTWEIGHT TEXTILE SPIRAL ANTENNA ON KEVLAR FABRICS
Jingni Zhong, Asimina Kiourti, John L. Volakis, Ohio State University, United States

MOP-A1.5P.8: INVESTIGATION OF THE EFFECTS OF SHARP-ENDS REMOVAL IN THE SINUOUS ANTENNA ARMS ON THE RADIATION PATTERNS
Yunsu Kang, Kangwook Kim, Gwangju Institute of Science and Technology, Republic of Korea

MOP-A1.5P.9: A LOW PROFILE CP ANTENNA BASED ON NOVEL HEXAGON GRIDS OPTIMIZATION MODEL
Luyang Duan, Junping Geng, Ronghong Jin, Xianling Liang, Liang Liu, Jingfeng Chen, Chong He, Shanghai Jiao Tong University, China

MOP-A1.1P: BROADBAND ANTENNAS AND SYSTEMS I

MOP-A1.1P.1: INVESTIGATION INTO A MINIATURIZED, WIDEBAND YAGI-UDA ANTENNA
Yen B. Le, Sungkyun Lim, Georgia Southern University, United States

MOP-A1.1P.2: WIDEBAND ARRAY FOR C, X, AND KU-BAND APPLICATIONS WITH 5.3:1 BANDWIDTH
Markus Novak, Ohio State University, United States; Félix Miranda, NASA Glenn Research Center, United States; John L. Volakis, Ohio State University, United States

MOP-A1.1P.3: ANTENNA CHARACTERIZATION FOR THE WIDEBAND INSTRUMENT FOR SNOW MEASUREMENTS (WISM)
Kevin Lambert, Vantage Partners, LLC, United States; Félix Miranda, Robert Romanofsky, NASA Glenn Research Center, United States; Timothy Durham, Harris Corporation, United States; Kenneth Vanhille, Nuvotronics, United States

MOP-A1.1P.4: DESIGN OF AN 8-40 GHZ ANTENNA FOR THE WIDEBAND INSTRUMENT FOR SNOW MEASUREMENTS (WISM)
Timothy Durham, Harris GCSD, United States; Kenneth Vanhille, Nuvotronics, United States; Christopher Trent, Harris GCSD, United States; Kevin Lambert, Vantage Partners, LLC, United States; Félix Miranda, NASA Glenn Research Center, United States

MOP-A1.1P.5: A BROADBAND DUAL-POLARIZATION BASE STATION ANTENNA ELEMENT WITH A COUPLING FEED
Yuan He, Yejun He, Shenzhen University, China; Manos Tentzeris, Georgia Institute of Technology, China

MOP-A1.1P.6: RAPID SIMULATION-DRIVEN DESIGN OF UWB ANTENNAS USING SURROGATE-BASED OPTIMIZATION
Adrian Bekasiewicz, Slawomir Koziel, Reykjavik University, Iceland

MOP-A1.1P.7: BROADBAND FRAGMENTED CYLINDRICAL ANTENNAS

MOP-A1.1P.8: BROADBAND SLEEVE ANTENNAS WITH A CHoke
Takashi Oki, Naobumi Michishita, Hisashi Morishita, National Defense Academy, Japan; Masao Sakuma, Sakuma Antenna, Japan
MOP-A1.1P.9: A DUAL-FREQUENCY AND DUAL-POLARIZATION ANTENNA DESIGN FOR LONG TERM EVOLUTION APPLICATIONS
Ting-Jui Huang, Heng-Tung Hsu, Yuan Ze University, Taiwan

MOP-A1.1P.10: TIME-DOMAIN CHARACTERISTICS OF HORIZONTAL ARRAY ANTENNAS USING DIRECTIVE UWB PULSE RADIATORS
Jae Sik Kim, Young Joong Yoon, Yonsei University, Republic of Korea; Jiheon Ryu, Agency for Defense Development, Republic of Korea

MOP-A1.4P: BROADBAND ANTENNAS AND SYSTEMS II

MOP-A1.4P.1: A SMALL MICROSTRIP ANTENNA FOR THE DIGITAL TELEVISION SYSTEM BY BENT TOPOLOGY
Wen-Bin Tsai, Yen-Ting Lin, Yu-Lin Lee, Chien-Jen Wang, National University of Tainan, Taiwan

MOP-A1.4P.2: DESIGN OF CONSTANT GAIN UWB PLANAR ANTENNA USING SINGLE-LAYER FSS
Rabia Yahya, Makoto Itami, Tokyo University of Science, Japan

MOP-A1.4P.3: MINIATURIZED LOW PROFILE ANTENNA ENABLED BY A COMPLEMENTARY SRR LOADED METASURFACE
Taiwei Yue, Zhi Hao Jiang, Douglas H. Werner, Pennsylvania State University, United States

MOP-A1.4P.4: A COMPACT MULTI-RESONANCE ANTENNA FOR WIDEBAND/ULTRA WIDEBAND APPLICATIONS
Reza Rezaiesarlak, Majid Manteghi, Virginia Polytechnic Institute and State University, United States

MOP-A1.4P.5: WIDEBAND DUAL-POLARIZED BASE STATION ANTENNA WITH IMPROVED RADIATION CHARACTERISTICS
Boliang Liu, Wenbin Qiu, Chang Chen, Weidong Chen, University of Science and Technology of China, China

MOP-A1.4P.6: A LOW PROFILE IR-UWB ANTENNA WITH CONICAL RADIATION PATTERN FOR ON-BODY COMMUNICATIONS
Wonhong Jeong, Jaehoon Choi, Hanyang University, Republic of Korea

MOP-A1.4P.7: DESIGN OF A LOW PROFILE UWB ANTENNA FOR WEARABLE APPLICATIONS
Juneseok Lee, Jaehoon Choi, Hanyang University, Republic of Korea

MOP-A1.4P.8: AN ULTRA-WIDEBAND CROSS-DIPOLE ANTENNA WITH WIDE BEAM FOR DUAL-POLARIZATION APPLICATIONS
Yezhen Li, Xianling Liang, Xudong Bai, Liang Liu, Junping Geng, Ronghong Jin, Shanghai Jiao Tong University, China

MOP-A1.4P.9: COMPACT HIGH GAIN ANTENNA WITH UNBALANCED FED INVERTED L ANTENNA AND PARASITIC PLANES
Mitsuo Taguchi, Yusuke Sasaki, Nagasaki University, Japan

MOP-A1.4P.10: A DIELECTRIC EMBEDDED MONOPOLE ANTENNA FOR SUPER WIDEBAND APPLICATIONS
Meng Cao, Zheng-Hui Xue, Wu Ren, Weiming Li, Beijing Institute of Technology, China

TUP-A1.2A: MILLIMETER-WAVE ANTENNAS AND ARRAYS

TUP-A1.2A.1: EXTERNAL MILLIMETER-WAVE ANTENNA USING SPATIAL COUPLING FOR ANTENNA IN IC PACKAGE
Takayoshi Ito, Hideo Kasami, Toshiba Corporation, Japan

TUP-A1.2A.2: MILLIMETER-WAVE ON-CHIP ARTIFICIAL-MAGNETIC-CONDUCTOR SPIRAL-MONOPOLE BANDPASS-FILTERING ANTENNA
C-C Chou, Yi Wu, W-Y. Ruan, H.-R. Chuang, National Cheng Kung University, Taiwan
TUP-A1.2A.3: ULTRA BROADBAND MULTIPLE FEED ANTENNA FOR EFFICIENT ON-CHIP POWER 2037
COMBINING
Benjamin Goettel, Heiko Gulan, Akanksha Bhutani, Mario Pauli, Thomas Zwick, Karlsruhe Institute of Technology, Germany

TUP-A1.2A.4: A 60 GHZ COMPACT HIGH GAIN AND HIGH EFFICIENCY SI-BASED DIELECTRIC 2039
ANTENNA
Mohamed Basha, Zewail City for Science and Technology, Egypt; Enass Usama, Hussein Ghouz, Arab Academy for Science, Technology, and Maritime Transport, Egypt

TUP-A1.2A.5: HIGH GAIN AND STEERABLE BULL’S EYE MILLIMETRE WAVE ANTENNA 2041
Shaker Alkaraki, Queen Mary University of London, United Kingdom; Zhirun Hu, University of Manchester, United Kingdom; Yue Gao, Queen Mary University of London, United Kingdom

TUP-A1.2A.6: REDUCTION OF GRATING LOBES FOR SLOT ANTENNA ARRAY AT 60 GHZ USING 2043
MULTILAYER SPATIAL ANGULAR FILTER
Hussein Attia, Milad Sharifi Sorkherizi, Ahmed A. Kishk, Concordia University, Canada

TUP-A1.2A.7: TRANSMISSION LINE MODEL OF RGW SLOT ANTENNA COVERED WITH 2045
SUPERSTRATE AT 60 GHZ
Hussein Attia, Ahmed A. Kishk, Concordia University, Canada

TUP-A1.2A.8: BROADBAND PRINTED MULTI ARMS QUASI-YAGI ANTENNA FOR MILLIMETER-WAVE N/A
APPLICATIONS
Dalia Elsheakh, Electronics Research Institute, Egypt; Magdy F. Iskander, Hawaii Center for Advanced Communication (HCAC), United States

TUP-A1.2A.9: OPTICAL BEAM SCANNING ANTENNA BY WAFFLED LEAKY WAVEGUIDE 2049
Hiroyuki Arai, Yodai Morimoto, Yokohama National University, Japan

TUP-A1.2A.10: RFIC MEASUREMENT AND OFF-CHIP ANTENNA EXCITATION THROUGH 2051
PROXIMITY COUPLING AT 60GHZ
Shila Shamsadini, Kambiz Moez, Pedram Mousavi, University of Alberta, Canada; Franco De Flaviis, University of California, Irvine, United States

TUP-A1.2A.11: ON THE STUDY OF FABRICATION ERRORS ON MM-WAVE ANTENNA 2053
Mohammad Zomorrodi, Nemai Chandra Karmakar, Monash University, Australia

TUP-A1.1A: LENS ANTENNAS FOR MM AND SUB-MM WAVES

TUP-A1.1A.1: A LENS-INTEGRATED ON-CHIP CIRCULAR SLOT ANTENNA FOR A 240 GHZ POWER 2055
SOURCE IN SIGE TECHNOLOGY
Janusz Grzyb, Konstantin Statnikov, Neelanjan Sarmah, Ulrich Pfeiffer, Bergische Universität Wuppertal, Germany

TUP-A1.1A.2: 60 GHZ MULTI SIN-CORRUGATIONS ANTIPODAL FERMI TAPERED SLOT ANTENNA 2057
LOADED WITH A SPHERICAL LENS
Zouhair Briqech, Abdel-Razik Sebak, Concordia University, Canada; Tayeb A. Denidni, INRS, Canada

TUP-A1.1A.3: CONSTANT REFRACTIVE INDEX LENS PRINTED YAGI ANTENNA FOR AUTOMOTIVE N/A
RADARS
Faris Alsolamy, Ahmed AlAmoudi, Sultan Almorqi, NCSDST-KACST, Saudi Arabia; Osama Haraz, Saleh Alshebeili, KACST-TIC, Canada; Abdel-Razik Sebak, Concordia University, Canada

TUP-A1.1A.4: WIDEBAND COMPACT VIVALDI ANTENNA LOADED WITH DIELECTRIC LENS FOR 2061
MILLIMETER-WAVE APPLICATIONS
Muhammad Ashraf, Osama Haraz, KACST Technology Innovation Center in Radio Frequency and Photonics for the e-Society, Saudi Arabia; Abdel-Razik Sebak, Concordia University, Canada; Saleh Alshebeili, KACST Technology Innovation Center in Radio Frequency and Photonics for the e-Society, Saudi Arabia
TUP-A1.1A.5: WIDE BAND MM-WAVE, DOUBLE-SIDED PRINTED BOW-TIE ANTENNA FOR PHASED ARRAY APPLICATIONS
Meijiao Li, Calvin Domier, Xiaoguang Liu, Neville Luhmann, University of California, Davis, United States

TUP-A1.1A.6: 60 GHZ PLANAR FRENSEL ZONE LENS
Xiaozhou Wang, Michael Jenning, Dirk Plettemeier, TU Dresden, Germany

TUP-A1.1A.7: DESIGN OF THE MODIFIED CYLINDRICAL LUNEBERG LENS ANTENNA FOR MILLIMETER WAVE IMAGING
Esha Johari, Zubair Akhter, Jaleel Akhtar, IIT-Kanpur, India

TUP-A1.1A.8: MATCHING LAYER DESIGN TO IMPROVE THE PERFORMANCE OF AN INHOMOGENEOUS DIELECTRIC FLAT LENS AT MILLIMETER-WAVE FREQUENCIES
Marc Imbert, Jordi Romeu, Lluis Jofre, Universitat Politècnica de Catalunya, Spain

Enass Usama, Hussein Ghouz, Arab Academy for Science, Technology, and Maritime Transport, Egypt; Mohamed Basha, Zewail City for Science and Technology, Egypt

TUP-A1.1A.10: ULTRA-WIDEBAND, DUAL-MODE MILLIMETER-WAVE MICRO HEMISPHERICAL SHELL ANTENNA
Amir Mirbeik, Stevens Institute of Technology, United States; Vahid Tavassoli, Farrokh Ayazi, Georgia Institute of Technology, United States; Negar Tavassolian, Stevens Institute of Technology, United States

TUP-A1.3A: MILLIMETER-WAVE ANTENNAS AND TECHNIQUES

TUP-A1.3A.1: A DIELECTRIC LOADED MILLIMETER WAVE ANTENNA ARRAY FOR 60 GHZ COMMUNICATION SYSTEMS
Hamsakutty Vettikalladi, Nadeem Ashraf, Majeed A. S. Alkanhal, King Saud University, Saudi Arabia

TUP-A1.3A.2: WIDEBAND MONOFILAR SQUARE SPIRAL ANTENNA AT KA-BAND FREQUENCIES
Qi Luo, Long Zhang, Steven Gao, university of Kent, United Kingdom

TUP-A1.3A.3: DRA ANTENNA WITH A SUPERSTRATE AT MILLIMETER-WAVE
Taieb Elkarkraoui, Gilles Y. Delisle, Laval University, Canada; Nadir Hakem, Yacouba Coulibaly, Université du Québec en Abitibi-Témiscamingue, Canada

TUP-A1.3A.4: DESIGN OF A HORN LENS ANTENNA FOR OAM GENERATION
Xudong Bai, Xianling Liang, Chong He, Liang Liu, Yezhen Li, Mingning Liu, Junping Geng, Ronghong Jin, Shanghai Jiao Tong University, China

TUP-A1.3A.5: LOW-PROFILE CIRCULARLY-SIMMETRIC ANTENNA WITH RADIAL CORRUGATIONS
Hon Ching Moy-Li, Miguel Ferrando-Bataller, Daniel Sánchez-Escuderos, Mariano Baquero-Escudero, Universitat Politècnica de València, Spain

TUP-A1.3A.6: SELF-ASSEMBLED MILLIMETER-WAVE HELICAL ANTENNA
Sae-Won Lee, Ying Chen, Ash Parameswaran, Rodney Vaughan, Simon Fraser University, Canada

TUP-A1.3A.7: RADIATION EFFICIENCY OF SLOT ANTENNA AT 60 GHZ
Ying Chen, Rodney Vaughan, Simon Fraser University, Canada

TUP-A1.3A.8: A CIRCULARLY POLARIZED HEMISPHERICAL ANTENNA FOR MILLIMETER WAVE APPLICATIONS
Mohammad Haghitalab, Saeeddin Safavi-Naeini, University of Waterloo, Canada

TUP-A1.3A.9: SMALL AND HIGH GAIN MILLIMETRE WAVE CORRUGATED GROOVES ANTENNA
Shaker Alkaraki, Yue Gao, Clive Parini, Queen Mary University of London, United Kingdom
TUP-A1.3A.10: SYNTHETIC ULTRA-WIDEBAND ANTENNA FOR HIGH-RESOLUTION 2093
MILLIMETER-WAVE IMAGING
Amir Mirbeik, Negar Tavassolian, Stevens Institute of Technology, United States

TUP-A1.3A.11: A SIMULATION SOFTWARE FOR 3D QUASI-OPTICAL SYSTEM AND SHAPED-MIRROR REFLECTORS
Kai Liu, Junsheng Yu, Xiaodong Chen, Xiaoming Liu, Yuan Yao, Zejian Lu, Beijing University of Posts and Telecommunications, China; Hui Feng, Hao Tu, D. Xiao, S. Wu, East China Research Institute of Electronic Engineering, China

TUP-A1.5A: TERAHERTZ ANTENNAS

TUP-A1.5A.1: PLANAR, HIGH-GAIN, SUBSTRATE-INTEGRATED CAVITY ANTENNA IN THE TERAHERTZ FREQUENCY RANGE
Truong Khang Nguyen, Ton Duc Thang University, Viet Nam; Le Khoa Dang, Ho Chi Minh City University of Technology, Viet Nam; Ikmo Park, Ajou University, Republic of Korea

TUP-A1.5A.2: TERAHERTZ HIGH GAIN ANTENNA DESIGN AND TEST
Hongjian Wang, Min Yi, National Space Science Center, Chinese Academy of Sciences, China

TUP-A1.5A.3: HIGH GAIN LEAKY WAVE ANTENNA OPERATING AT 0.566 THZ
Unai Beaskoetxea, Miguel Beruete, Francisco Falcone, David Etayo, Mario Sorolla, Universidad Pública de Navarra, Spain; Miguel Navarro-Cia, Imperial College London, United Kingdom; Mokhtar Zehar, Karine Blary, Abdallah Chahadih, Xiang-Lei Han, Tahsin Akalin, Lille University, France

TUP-A1.5A.4: A TERAHERTZ WIRE-ARRAY ANTENNA INTEGRATED ON A 75-cm INP SUBSTRATE
Seung-Ho Choi, Korea University, Republic of Korea; Kook Joo Lee, LIG Nex1 Co., Ltd., Republic of Korea; Ji-Sang You, Agency for Defense Development, Republic of Korea; Moonil Kim, Korea University, Republic of Korea

TUP-A1.5A.5: 300 GHZ INP RECTANGULAR CAVITY ANTENNA
Kyoung Min Lee, Il-Jin Lee, Korea University, Republic of Korea; Ji-Sang You, Agency for Defense Development, Republic of Korea; Sang Geun Jeon, Moonil Kim, Korea University, Republic of Korea

TUP-A1.5A.6: MODELING OF PLASMONIC TERAHERTZ ANTENNAS USING COMSOL
Nathan Burford, Magda El-Shenawee, University of Arkansas, United States

TUP-A1.5A.7: AN AUTOMATED MILLIMETER-WAVE ANTENNA MEASUREMENT SETUP USING A ROBOTIC ARM
Linus Boehm, Frank Boegelsack, Martin Hitzler, Christian Waldschmidt, University of Ulm, Germany

TUP-A1.5A.8: SILICON-ON-GLASS DUAL-TAPERED ANTENNA
Nazy Ranjesh, Suren Gigoyan, Saeeddin Safavi-Naeini, University of Waterloo, Canada; Mohamed Basha, Mansoura University, Egypt

TUP-A1.5A.9: 3.8 MW TERAHERTZ RADIATION GENERATION THROUGH PLASMONIC NANO-ANTENNA ARRAYS
Nezih Yardimci, Mona Jarrahi, University of California, Los Angeles, United States

TUP-A1.5A.10: GRAPHENE-BASED HIGH-IMPEDANCE THZ LOG-SPIRAL ANTENNA
Farzad Zangeneh-Nejad, Reza Safian, Isfahan University of Technology, Iran

TUP-A1.4A: MILLIMETER-WAVE SYSTEMS

TUP-A1.4A.1: A MILLIMETER WAVE SWITCHED BEAM PLANAR ANTENNA ARRAY
Ali Alreshaid, Oualid Hammi, Mohammad S. Sharawi, King Fahd University of Petroleum and Minerals, Saudi Arabia; Kamal Sarabandi, University of Michigan, United States
TUP-A1.4A.2: QUANTIZATION EFFECTS OF PHASE SHIFTERS ON 5G MMWAVE ANTENNA ARRAYS 2119
SangHyon Chang, Wonbin Hong, Jongho Oh, Samsung Electronics, Republic of Korea

TUP-A1.4A.3: 60 GHZ CIRCULARLY POLARIZED ARRAY ANTENNA-IN-PACKAGE IN LTCC N/A
Mohammad Fakharzadeh, Sharif University of Technology, Iran; Ahmed Shehata, PerasoTechnologies, Canada

TUP-A1.4A.4: PLANAR QUASI-OPTIC THZ SOURCE: THE MULTENNA .. 2123
Melusine Pigeon, Robert Donnan, Rostyslav Dubrovka, Theo Krouzis, Queen Mary University of London, United Kingdom; Hui Wang, Byron Alderman, Peter Huggard, Rutherford Appleton Laboratory, United Kingdom

TUP-A1.4A.5: DESIGN OF A BUTLER MATRIX AT 60GHZ IN INVERTED MICROSTRIP GAP 2125
Astrid Algaba-Brazalez, Chalmers University of Technology, Sweden; Eva Rajo-Iglesias, University Carlos III of Madrid, Spain

TUP-A1.1P: NOVEL REFLECTARRAY AND TRANSMITARRAY DESIGNS

TUP-A1.1P.1: THE ANALOGY BETWEEN OFFSET CONFIGURATIONS OF PARABOLIC REFLECTORS AND REFLECTARRAYS 2127
Payam Nayeri, Atef Elsherbeni, Colorado School of Mines, United States; Fan Yang, Tsinghua University, China

TUP-A1.1P.2: HIGH EFFICIENCY KA-BAND SINGLE LAYER AIR VIAS REFLECTARRAY: DESIGN AND ANALYSIS 2129
Muhammad M. Tahseen, Ahmed A. Kishk, Concordia University, Canada

TUP-A1.1P.3: LINEARLY POLARIZED MULTI-LAYER WIDE-BAND PERFORATED LENS ANTENNA IN THE V-BAND 2131
Muhammad M. Tahseen, Ahmed A. Kishk, Concordia University, Canada

TUP-A1.1P.4: SOME PRELIMINARY RESULTS ON CONFORMAL REFLECTARRAYS 2133
Bui Van Ha, Université Catholique de Louvain, Belgium; Paola Pirinoli, Michele Beccaria, Mario Orefice, Politecnico di Torino, Italy; Fan Yang, Tsinghua University, China

TUP-A1.1P.5: AN IMPEDANCE SURFACE-BASED METHOD FOR DESIGNING WIDE-BAND REFLECTARRAYS 2135
Liang Liang, Sean Hum, University of Toronto, Canada

TUP-A1.1P.6: DESIGN OF A NOVEL CIRCULARLY POLARIZED REFLECTARRAY WITH A LINEARLY POLARIZED FEEDER 2137
Yinyan Chen, Yuehe Ge, Yujie Liu, Huaqiao University, China

TUP-A1.1P.7: EXPERIMENTAL CHARACTERIZATION OF AN X-BAND TRANSMITARRAY WITH A REDUCED FOCAL DISTANCE 2139
Luca Di Palma, Antonio Clemente, Laurent Dussopt, Grenoble Alpes University, CEA-Leti, France; Ronan Sauleau, University of Rennes 1, France; Patrick Potier, Philippe Pouliquen, DGA, France

TUP-A1.2P: REFLECTARRAYS AND APPLICATIONS

TUP-A1.2P.1: ISARA – INTEGRATED SOLAR ARRAY AND REFLECTARRAY CUBESAT DEPLOYABLE KA-BAND ANTENNA 2141
Richard Hodges, Matthew Radway, Armen Toorian, Daniel Hoppe, Biren Shah, CALTECH Jet Propulsion Laboratory, United States; Andrew Kalman, Pumpkin, Inc., United States

TUP-A1.2P.2: PARABOLIC REFLECTARRAY FOR BROADBAND TELECOM SATELLITE APPLICATIONS WITH LOW CROSS-POLARIZATION 2143
Min Zhou, Stig Busk Sørensen, Erik Jørgensen, TICRA, Denmark
TUP-A1.2P.3: COMMENTS ON THE SIZE-DEPENDENCE OF FOCAL POINT SHIFT IN OFFSET-FED REFLECTARRAYS
E'qab Almajali, Derek McNamara, University of Ottawa, Canada

TUP-A1.2P.4: IMPROVING SUB-REFLECTARRAY ANTENNAS PERFORMANCE USING SUB-WAVELENGTH INTER-ELEMENT SPACING
E'qab Almajali, Derek McNamara, Jonathan Ethier, University of Ottawa, Canada

TUP-A1.2P.5: OPTIMUM REFLECTARRAY FEED PATTERN SYNTHESIS
Mohamed Moharram, Ahmed A. Kishk, Concordia University, Canada

TUP-A1.2P.6: REFLECTARRAYS USING ACTIVE-LOADED ELEMENTS: ENHANCING PERFORMANCE BY POWER COMBINING
Alister Hosseini, Yahya Rahmat-Samii, University of California, Los Angeles, United States

TUP-A1.2P.7: EXPERIMENTAL STUDY OF A 1-BIT 10×10 RECONFIGURABLE REFLECTARRAY ANTENNA
Huanhuan Yang, Air Force Engineering University, China; Fan Yang, Shenheng Xu, Maokun Li, Tsinghua University, China; Xiangyu Cao, Air Force Engineering University, China

TUP-A1.2P.8: DESIGN OF A CIRCULARLY POLARIZED RECONFIGURABLE REFLECTARRAY USING MICROMOTORS
Xue Yang, Shenheng Xu, Fan Yang, Maokun Li, Tsinghua University, China; Houfei Fang, Yangqing Hou, Shanghai YS Information Technology Company Limited, China

TUP-A1.2P.9: DESIGN AN ADAPTIVE ELECTRONICALLY BEAMSTEERING REFLECTARRAY ANTENNA FOR RFID SYSTEMS
Khaled Hasan, Maher Khaliel, Mohamed El-Hadidy, Thomas Kaiser, Duisburg-Essen University, Germany

TUP-A1.3P: REFLECTARRAYS AND REFLECTARRAY ELEMENTS

TUP-A1.3P.1: A SIMPLE METHOD TO REALIZE POLARIZATION DIVERSITY IN BROADBAND REFLECTARRAYS USING SINGLE-LAYERED RECTANGULAR PATCH ELEMENTS
Lu Guo, Peng-Khiang Tan, Tan-Huat Chio, Temasek Laboratories, National University of Singapore, Singapore

TUP-A1.3P.2: INSENSITIVE POLARIZATION CHARACTERISTIC USING NOVEL REFLECTARRAY ELEMENT COMBINED HEXA-POLE AND DOUBLE RINGS
Sung Hoe Kim, Youngsub Kim, Young Joong Yoon, Yonsei University, Republic of Korea; Hyungrak Kim, Daelim University College, Republic of Korea

TUP-A1.3P.3: DESIGN OF A LINEARLY POLARIZED METAL-ONLY REFLECTARRAY USING SLOT-TYPE PHOENIX ELEMENTS
Ruyuan Deng, Fan Yang, Shenheng Xu, Maokun Li, Tsinghua University, China

TUP-A1.3P.4: DESIGN OF A 2-BIT RECONFIGURABLE REFLECTARRAY ELEMENT USING TWO MEMS SWITCHES
Xue Yang, Shenheng Xu, Fan Yang, Maokun Li, Tsinghua University, China

TUP-A1.3P.5: DESIGN OF A DUAL-FREQUENCY BROADBAND REFLECTARRAY USING TRIPLE-RESONANCE ELEMENTS
Ruyuan Deng, Fan Yang, Shenheng Xu, Maokun Li, Tsinghua University, China

TUP-A1.3P.6: LOW CROSS-POLARIZATION REFLECTARRAY ELEMENTS WITH FOUR AXIAL SYMMETRY FOR DUAL-POLARIZATION AND WIDEBAND USE
Daichi Higashi, Shusuke Sasaki, Hiroyuki Deguchi, Mikio Tsuji, Doshisha University, Japan
TUP-A1.3P.7: DESIGN OF OPTICALLY TRANSPARENT REFLECTARRAY ANTENNA UNIT CELL INTEGRATED WITH SOLAR CELLS
Mohamed Moharram, Ahmed A. Kishk, Concordia University, Canada

TUP-A1.3P.8: AN ELECTRONICALLY STEERABLE REFLECTARRAY WITH INTEGRATED LEAKY-WAVE FEED
Jeff Nicholls, Sean Hum, University of Toronto, Canada

TUP-A1.3P.9: A TUNABLE BST INTEGRATED V-BAND PATCH ELEMENT WITH INTERDIGITAL GAP CONFIGURATION
Michael Trampler, Kalyan Karnati, Xun Gong, University of Central Florida, United States

TUP-A1.3P.10: DUAL-POLARIZED REFLECTARRAY ELEMENT USING OPEN-LOOP PATCHES
Houman Ghorbani, Parisa Dehkhoda, Ahad Tavakoli, Mahdi Rabbani, Amirkabir University of Technology, Iran

TUP-A1.4P: REFLECTOR ANTENNAS

TUP-A1.4P.1: FAST FULL-WAVE ANALYSIS OF CHALLENGING REFLECTOR ANTENNA PROBLEMS
Erik Jørgensen, Oscar Borries, Peter Meincke, Niels Vesterdal, TICRA, Denmark

TUP-A1.4P.2: SOLUTION OF ELECTRICALLY LARGE SCATTERING PROBLEMS ON A LAPTOP
Oscar Borries, Erik Jørgensen, Peter Meincke, TICRA, Denmark

TUP-A1.4P.3: CUBESAT DEPLOYABLE KA-BAND REFLECTOR ANTENNA FOR DEEP SPACE MISSIONS
Nacer Chahat, Jonathan Sauder, Mark Thomson, Richard Hodges, NASA Jet Propulsion Laboratory / CalTech, United States; Yahya Rahmat-Samii, University of California, Los Angeles, United States

TUP-A1.4P.4: LINK ANALYSIS OF HIGH THROUGHPUT SPACECRAFT COMMUNICATION SYSTEMS FOR FUTURE SCIENCE MISSIONS
Rainée Simons, NASA Glenn Research Center, United States

TUP-A1.4P.5: BEAM SQUINT CORRECTION IN OFFSET REFLECTOR ANTENNAS WITH CIRCULARLY-POLARIZED TAPERED PRIMARY FEEDS
Zahra Allahgholi Pour, Lotfollah Shafai, University of Manitoba, Canada

TUP-A1.4P.6: MAGNETOMETER BOOM BLOCKAGE EFFECTS ON PERFORMANCE OF REFLECTOR ANTENNA OF EUROPA HABITABILITY MISSION
Vahraz Jamnejad, Jet Propulsion Laboratory, United States

TUP-A1.4P.7: HIGH GAIN ANTENNA ARRAY FEED CANDIDATE FOR NASA’S EUROPA CLIPPER
Matthew Bray, Ron Schulze, Johns Hopkins University Applied Physics Laboratory, United States

TUP-A1.4P.8: DESIGNING A DUAL-CIRCULARLY POLARIZED RECEIVING ANTENNA FOR 12-GHZ BAND SATELLITE BROADCASTING
Masaftumi Nagasaka, Susumu Nakazawa, Shoji Tanaka, Japan Broadcasting Corporation, Japan

TUP-A1.4P.9: OPTIMIZATION OF A REFLECTOR ANTENNA FED BY A DOUBLE RIDGED HORN
Deniz Bolukbas, Okan University, Turkey; Ali Ziya Ozer, Figes A.S., Turkey

TUP-A1.4P.10: COMPARISON OF A SMALL PARABOLIC REFLECTOR FOR USE WITH AN ACOUSTIC AND A RADAR MICROPHONE
Herbert Aumann, Travis Russell, Nuri W. Emanetoglu, University of Maine, United States
TUP-UA.1P: MATERIAL, MODELING AND ANTENNA MEASUREMENTS

TUP-UA.1P.8: ACCURATE MEASUREMENT OF TRANSMIT AND RECEIVE PERFORMANCE OF AAS 2201
ANTENNAS IN A MULTI-PROBE SPHERICAL NF SYSTEM
Lars Jacob Foged, Alessandro Scannavini, Microwave Vision Group, Italy; Francisco Cano-Facila, Nicolas Gross, SATIMO Industries, France

WEP-A1.4A: RECONFIGURABLE ARRAYS AND APERTURES

WEP-A1.4A.1: A DESIGN FOR AN ELECTRONICALLY-STEERABLE HOLOGRAPHIC ANTENNA WITH 2203
POLARIZATION CONTROL
Daniel Gregoire, Holographic Sciences, United States; Amit Patel, Ryan Quarfoth, HRL Laboratories, LLC, United States

WEP-A1.4A.2: OMNIDIRECTIONAL/DIRECTIONAL TEM HORN CIRCULAR ARRAY FOR JOINT TIME 2205
AND FREQUENCY OPERATION
Mohamed Elmansouri, Jaegyun Ha, Dejan Filipovic, University of Colorado, United States

WEP-A1.4A.3: RECONFIGURABLE PHASED ARRAY ANTENNA ENABLING A HIGH GAIN WIDE ANGLE ... 2207
BEAM SCANNING
Arpan Pal, Amit Mehta, Swansea University, United Kingdom; Rob Lewis, BAE Systems, United Kingdom; Nathan Clow, DSTL, United Kingdom

WEP-A1.4A.4: SELF-STRUCTURING ANTENNAS FOR PHASED ARRAYS... 2209
Christopher Oakley, Matthew Hodek, Lee Harle, Michigan State University, United States

WEP-A1.4A.5: FLUIDIC SWITCHING AND TUNING OF FABRY-PEROT ANTENNA .. 2211
Chanjoon Lee, Robert Sainati, Rhonda Franklin, Ramesh Harjani, University of Minnesota, United States

WEP-A1.4A.6: X-BAND HORN ANTENNA WITH INTEGRATED TUNABLE NOTCH FILTER................................. 2213
Joshua Shehan, Ryan Adams, University of North Carolina at Charlotte, United States

WEP-A1.4A.7: DEPLOYABLE ORIGAMI YAGI LOOP ANTENNA... 2215
Shun Yao, Xueli Liu, John Gibson, Stavros V. Georgakopoulos, Florida International University, United States

WEP-A1.4A.8: FREQUENCY RECONFIGURABLE ORIGAMI QUADRIFILAR HELICAL ANTENNA WITH 2217
RECONFIGURABLE REFLECTOR
Xueli Liu, Shun Yao, Stavros V. Georgakopoulos, Florida International University, United States

WEP-A1.4A.9: LHCP/RHCP RECONFIGURABLE TRANSMITARRAY IN KA-BAND....................................... 2219
Luca Di Palma, Antonio Clemente, Laurent Dussopt, Grenoble Alpes University, CEA-Leti, France; Ronan Sauleau, University of Rennes 1, France; Patrick Potier, Philippe Pouliguen, DGA, France

WEP-A1.4A.10: A HIGH-GAIN BEAM STEERING FABRIC-BASED ARRAY FOR BODY-WORN 2221
WIRELESS APPLICATIONS
Nowrin Chamok, Mohammad Ali, University of South Carolina, United States

WEP-A1.5A: SYSTEMS AND APPLICATIONS OF RECONFIGURABLE ANTENNA

WEP-A1.5A.1: PUMP-FREE FEEDBACK CONTROL OF A FREQUENCY RECONFIGURABLE LIQUID 2223
METAL MONOPOLE
Meng Wang, Mohammad Khan, Chris Trlica, Michael D. Dickey, Jacob Adams, North Carolina State University, United States

WEP-A1.5A.2: DUAL-BAND TIME-MODULATED/PULSE-CONJUGATING/TIME-MODULATED N/A
PHASE-CONJUGATING RECONFIGURABLE ARRAY
A-Min Yao, Wen Wu, Da-Gang Fang, Nanjing University of Science and Technology, China
WEP-A1.5A.3: WIDEBAND SIMULTANEOUS TRANSMIT AND RECEIVE (STAR) BI-LAYER CIRCULAR ARRAY
Ehab Etellisi, Mohamed Elmansouri, Dejan Filipovic, University of Colorado Boulder, United States

WEP-A1.5A.4: PLANAR PATTERN RECONFIGURABLE ANTENNA INTEGRATED WITH A WIFI SYSTEM FOR MULTIPATH MITIGATION AND SUSTAINED HIGH DEFINITION VIDEO NETWORKING IN A COMPLEX EM ENVIRONMENT
Amit Mehta, Shivam Gautam, Hasanga Goonesinghe, Arpan Pal, Swansea University, United Kingdom; Rob Lewis, BAE Systems, United Kingdom; Nathan Clow, DSTL, United Kingdom

WEP-A1.5A.5: ON THE DESIGN OF A CIRCUIT FOR PHASE COMPENSATION OF SELF-ADAPTING CONFORMAL ARRAYS
Sayan Roy, Benjamin Braaten, North Dakota State University, United States

WEP-A1.5A.6: A RECONFIGURABLE MONOPOLE MIMO ANTENNA WITH WIDEBAND SENSING CAPABILITY FOR COGNITIVE RADIO USING VARACTOR DIODES
Shuo-Peng Cheng, Ken-Huang Lin, National Sun Yat-sen University, Taiwan

WEP-A1.5A.7: A DUAL-BAND DUAL-POLARIZED STEERABLE PATTERN RECONFIGURABLE ANTENNA
Ayah Massoud, Jennifer Bernhard, University of Illinois at Urbana-Champaign, United States

WEP-A1.5A.8: A MODE RECONFIGURABLE NOJIMA ORIGAMI ANTENNA
Shun Yao, Xueli Liu, Stavros V. Georgakopoulos, Florida International University, United States

WEP-A1.5A.9: DOUBLE BALANCED MULTIPLIER INTEGRATED CIRCULAR POLARIZATION SWITCHABLE MICROSTRIP ANTENNA
Eisuke Nishiyama, Akihiko Matsuo, Ichihiko Toyoda, Saga University, Japan

WEP-A1.5A.10: A YAGI MONOPOLE ANTENNA MADE OF PURE WATER
Zhenxin Hu, Wen Wu, Nanjing University of Science and Technology, China; Zhongxiang Shen, Changzhou Hua, Nanyang Technological University, Singapore

WEP-A1.5A.11: CAN TV AND COMMUNICATION SYSTEM COEXIST IN SAME FREQUENCY BAND? APPLYING BACK-SCATTERING TECHNIQUE TO TV RECEIVER ANTENNA
Naoki Honma, Takuma Ito, Iwate University, Japan; Kentaro Nishimori, Yoshitaka Tsunekawa, Niigata University, Japan

WEP-A1.2A: DESIGN AND DEVELOPMENT OF RECONFIGURABLE ANTENNAS

WEP-A1.2A.1: PATTERN RECONFIGURABLE WIDE ANTENNA WITH A SAR REDUCTION FOR PORTABLE DEVICE APPLICATIONS
Wenxing Li, Lei Bao, Yingsong Li, Si Li, Harbin Engineering University, China

WEP-A1.2A.2: DUAL BEAM YAGI PATCH ANTENNA
S. Samree, S. Getjudom, Chainarong Kittiyapunya, Monai Krairiksh, King Mongkut’s Institute of Technology Ladkrabang, Thailand

WEP-A1.2A.3: RECONFIGURABLE CYCLICAL PATCH ANTENNA
Firas Ayoub, COSMIAC, United States; Youssef Tawk, COSMIAC; Notre Dame University, United States; Chris Woehrle, COSMIAC, United States; Joseph Costantine, American University of Beirut, Lebanon; COSMIAC, United States; Christos Christodoulou, COSMIAC, United States

WEP-A1.2A.4: RECONFIGURABLE MICROWAVE CIRCUIT BASED ON THREE TRIANGULAR MICROSTRIP PATCHES
James Kelly, University of Surrey, United Kingdom; Alejandro Borja, Universidad de Castilla La Mancha, Spain

WEP-A1.2A.5: RECONFIGURABLE MICROWAVE CIRCUIT BASED ON A SINGLE TRIANGULAR MICROSTRIP PATCH
Alejandro Borja, Universidad de Castilla La Mancha, Spain; James Kelly, University of Surrey, United Kingdom
WEP-A1.2A.6: PIFA WITH RECONFIGURABLE FREQUENCY BANDWIDTH ... 2255
James Kelly, University of Surrey, United Kingdom

WEP-A1.2A.7: WIRELESSLY RECONFIGURABLE ANTENNA ... 2257
Pavel Nikitin, Honeywell Scanning and Mobility, United States

WEP-A1.2A.8: A SIMPLE RECONFIGURABLE PATCH ANTENNA FOR MOBILE APPLICATIONS 2259
Budhaditya Majumdar, Karu P. Esselle, Macquarie University, Australia

WEP-A1.2A.9: A RECONFIGURABLE LAYOUT FOR A SELF-STRUCTURING LIFE-JACKET-INTEGRATED ANTENNA OF A SAR SYSTEM
Andrea Baroni, Paolo Nepa, University of Pisa, Italy; Hendrik Rogier, Ghent University, Belgium

WEP-A1.2A.10: RECONFIGURABLE ORIGAMI EQUANGULAR CONICAL SPIRAL ANTENNA 2263
Xueli Liu, Shun Yao, Stavros V. Georgakopoulos, Florida International University, United States

WEP-A1.3A: RECONFIGURABLE ANTENNAS FOR ADAPTIVE AND MOBILE SYSTEMS

WEP-A1.3A.1: DESIGN AND BREADBOARDING OF A FREQUENCY-RECONFIGURABLE, BOARD-MOUNTED COMPACT ANTENNA
Sergio Arianos, Istituto Superiore Mario Boella, Italy; Javier Leonardo Araque-Quijano, Universidad Nacional de Colombia, Colombia; Gianluca Dassano, Francesca Vipiana, Mario Orefice, Giuseppe Vecchi, Politecnico di Torino, Italy

WEP-A1.3A.2: REALIZATION OF A PATTERN RECONFIGURABLE ANTENNA EMPLOYING PIN DIODES 2267
Jerzy Kowalewski, Tobias Mahler, Tom Schipper, Thomas Zwick, Karlsruhe Institute of Technology, Germany

WEP-A1.3A.3: A MULTI-BAND-RECONFIGURABLE ANTENNA USING SPLIT-RING RESONATORS 2269
Ferhad Kasem, Hamid Moghadas, Pedram Mousavi, University of Alberta, Canada; Mohammed Al-Husseini, Karim Y. Kabalan, Ali El-Hajj, Youssef Nasser, American University of Beirut, Lebanon

WEP-A1.3A.4: A NEW DESIGN OF RECONFIGURABLE SLOT-RING ANTENNA USING PIN DIODES 2271
Mahmoud Shirazi, Tianjiao Li, Xun Gong, University of Central Florida, United States

WEP-A1.3A.5: FREQUENCY-AGILE E-SHAPED PRINTED ANTENNA FOR MILLIMETER WAVE APPLICATIONS
Igor Feliciano da Costa, Danilo H. Spadoti, Federal University of Itajubá, Brazil; Arismar Cerqueira Sodre Junior, INATEL, Brazil

WEP-A1.3A.6: RECONFIGURABLE QUARTER-MODE SIW ANTENNA EMPLOYING A FLUIDICALLY SWITCHABLE VIA
Alireza Pourghorban Saghati, Sina Baghbani Kordmahale, Ali Pourghorban Saghati, Jun Kameoka, Kamran Entesari, Texas A&M University, United States

WEP-A1.3A.7: UWB ARRAYS WITH TUNABLE BAND REJECTION ... 2277
Dimitrios Papantonis, Nima Ghalichechian, John L. Volakis, Ohio State University, United States

WEP-A1.3A.8: DESIGN OF POLARIZATION RECONFIGURABLE ANTENNA USING ACTIVE POLARIZER
Wenting Li, Steven Gao, Chunxu Mao, Yuanming Cai, University of Kent, United Kingdom

WEP-A1.3A.9: DESIGN OF A BEAM-SCANNING REFLECTARRAY ANTENNA WITH AN OFFSET MECHANICALLY ROTATIONAL HORN
Lin Gao, Fan Yang, Shenheng Xu, Maokun Li, Tsinghua University, China; Xiaolong Liu, Northwest Institute of Nuclear Technology, China

WEP-A1.3A.10: ELECTRONICALLY STEERABLE DIRECTED ENERGY USING SPACE-TIME NETWORK RESONANT DIGITAL SYSTEMS
Arjuna Madanayake, Nilan Udayanga, University of Akron, United States; Chamith Wijenayake, University of New South Wales, Australia; Len Bruton, University of Calgary, Canada
WEP-A1.1A: ADVANCES IN TUNABLE MATERIALS FOR RECONFIGURABLE ANTENNAS

WEP-A1.1A.1: RECONFIGURABLE ANTENNA PROTOTYPE UTILIZING THE PHASE CHANGE 2285
CHARACTERISTICS OF VANADIUM DIOXIDE
Tarron Teeslink, South Dakota School of Mines and Technology, United States; David Torres, Michigan State University, United States; Michael Chryssomallis, Democritus University of Thrace, Greece; Nelson Sepulveda, Michigan State University, United States; Dimitris E. Anagnostou, South Dakota School of Mines and Technology, United States

WEP-A1.1A.2: UHF TUNABLE COMPACT ANTENNAS ON CO2Z HEXAFERRITE SUBSTRATE WITH 2.5/1 TUNABLE FREQUENCY RANGE
Zhijiao Chen, Junsheng Yu, Beijing University of Posts and Telecommunications, China; Xiaodong Chen, Clive Parini, Queen Mary University of London, United Kingdom; Xinjun Wang, Hwaider Lin, Ziyao Zhou, Tianxaing Nan, Nian. X Sun, Northeastern University, United States

WEP-A1.1A.3: BANDWIDTH RECONFIGURABLE THZ FILTER EMPLOYING PHASE-CHANGE MATERIAL
Varittha Sanphuang, Nima Ghalichechian, Niru K. Nahar, John L. Volakis, Ohio State University, United States

WEP-A1.1A.4: A SELF-BIASED 3D TUNABLE HELICAL ANTENNA IN FERRITE LTCC SUBSTRATE 2291
Farhan Abdul Ghaffar, Atif Shamim, King Abdullah University of Science and Technology, Saudi Arabia

WEP-A1.1A.5: GRAPHENE RECONFIGURABLE COPLANAR WAVEGUIDE (CPW)-FED CIRCULAR SLOT ANTENNA
Xiao Zhang, Gregory Auton, Ernie Hill, Xianjun Huang, Ting Leng, University of Manchester, United Kingdom; Habiba Ouissilmani, Université Paris Ouest Nanterre La Défense, France; Mahmoud Abdalla, MTC College, Egypt; Zhirun Hu, University of Manchester, United Kingdom

WEP-A1.1A.6: RECONFIGURABLE DIPOLE ANTENNA DESIGN USING GRAPHENE BASED SWITCH 2295
Ting Leng, XianJun Huang, Xiao Zhang, Zhirun Hu, University of Manchester, United Kingdom

WEP-A1.1A.7: NOVEL RECONFIGURABLE ANTENNAS USING LIQUID CRYSTALS ELASTOMERS 2297
John Gibson, Xueli Liu, Stavros V. Georgakopoulos, Florida International University, United States; Taylor Ware, Jeong Jae Wie, Timothy White, Air Force Research Laboratory, United States

WEP-A1.1A.8: MICROFLUIDICALLY CONTROLLED METALIZED PLATE BASED FREQUENCY RECONFIGURABLE MONOPOLE FOR HIGH POWER RF APPLICATIONS
Abhishek Dey, Gokhan Mumcu, University of South Florida, United States

WEP-A1.1A.9: A SMART ANTENNA BASED ON METAMATERIAL ... 2301
Weiping Cao, Beibei Li, L. Shafai, Simin Li, Xi Gao, Xinhua Yu, Guilin University of Electronic Technology, China

WEP-A1.1A.10: TUNABLE FREQUENCY ANTENNA INTEGRATED WITH MICROFLUIDIC CHANNEL 2303
Navid Hosseini, Nasim Seyedpour Esmaeilzad, Ozlem Aydin Civi, Middle East Technical University, Turkey

WEP-A1.2P: BROADBAND MIMO SYSTEMS

WEP-A1.2P.1: A 4 ELEMENT COMPACT ULTRA-WIDEBAND MIMO ANTENNA ARRAY 2305
Muhammad Khan, Antonio Capobianco, University of Padova, Italy; Sajid Asif, Adnan Iftikhar, Benjamin Braaten, North Dakota State University, United States

WEP-A1.2P.2: COMPACT DUAL BAND NOTCHED PRINTED UWB MIMO ANTENNA WITH PATTERN DIVERSITY
Kaustubh Chhabilwad, Shrikanth Reddy, Anil Kamma, Basudev Majumder, Jayanta Mukherjee, Indian Institute of Technology, Bombay, India

WEP-A1.2P.3: AN ISOLATION ENHANCED ULTRA-WIDEBAND SEMI-RING MONOPOLE MIMO ANTENNA
Sagar Dhar, Mohammad S. Sharawi, King Fahd University of Petroleum and Minerals, Saudi Arabia
WEP-A1.2P.4: A COMPACT ULTRA-WIDEBAND MIMO ANTENNA WITH IMPROVED ISOLATION
Avez Syed, Rabah W. Aldhaeri, King Abdulaziz University, Saudi Arabia

WEP-A1.2P.5: A PROPOSAL OF MIMO UWB ANTENNA WITH FOUR ELEMENTS
Nguyen Quoc Dinh, Le Trong Trung, Le Quy Don Technical University, Viet Nam

WEP-A1.1P: AXIAL BROADBAND ANTENNAS

WEP-A1.1P.1: A NOVEL ULTRA-WIDEBAND FRACTAL MONOPOLE ANTENNA
Kathryn Smith, Ryan Adams, University of North Carolina at Charlotte, United States

WEP-A1.1P.2: WIDEBAND, LOADED, LOW PROFILE, SMALL DIAMETER MONOCONE ANTENNA
Jaeyeun Ha, Mohamed Elmansouri, Dejan Filipovic, University of Colorado Boulder, United States

WEP-A1.1P.3: BROADBAND AND LOW-PROFILE H-PLANE RIDGED HORN ANTENNA
Zhuozhu Chen, Zhongxiang Shen, Nanyang Technological University, Singapore

WEP-A1.1P.4: OPTICALLY TRANSPARENT BALLOON ANTENNA
Xiang Gao, Zhongxiang Shen, Nanyang Technological University, Singapore

WEP-A1.1P.5: WIDEBAND CIRCULAR POLARIZED CROSS BOW TIE ANTENNA WITH BALUN
Amna Mir, Junsheng Yu, Beijing University of Posts and Telecommunications, China

WEP-A1.4P: WIDEBAND SLOT ANTENNAS

WEP-A1.4P.1: A CIRCULAR WIDE SLOT UWB ANTENNA WITH TRIPLE BAND-NOTCH CHARACTERISTICS
Yingsong Li, Wen Zhang, Harbin Engineering University, China; Raj Mittra, Pennsylvania State University, United States

WEP-A1.4P.2: SIMPLIFIED DESIGN OF AN X/KU-BAND VIVALDI ARRAY FOR ROCKET EXHAUST PLUME DIAGNOSTICS
Jorge Torres, William Barott, Embry-Riddle Aeronautical University, United States

WEP-A1.4P.3: CIRCULARLY POLARIZED ANTENNA USING METASURFACE WITH INTERDIGITAL CAPACITOR AND TILTED SLOT LOADINGS
Taiwei Yue, Zhi Hao Jiang, Douglas H. Werner, Pennsylvania State University, United States

WEP-A1.4P.4: EFFECT OF CURVATURE OF ANTIPODAL STRUCTURE ON VIVALDI ANTENNAS
Hien Chu Ba, Hiroshi Shirai, Chuo University, Japan; Chien Dao Ngoc, Hanoi University of Science and Technology, Viet Nam

WEP-A1.4P.5: DIRECTIVITY ENHANCEMENT OF DOUBLE SLOT VIVALDI ANTENNA USING ANISOTROPIC ZERO-INDEX METAMATERIALS
Pankaj Kumar, Zubair Akhter, Abhishek Jha, Jaleel Akhtar, Indian Institute of Technology Kanpur, India

WEP-A1.4P.6: A HIGH GAIN HORIZONTALLY POLARIZED UWB ANTENNA
Raj Kumar, ARDE, India; R.V.S. Ram Krishna, Nagendra Kushwaha, DIAT, India

WEP-A1.4P.7: DIELECTRIC RESONATOR LOADED SUBSTRATE INTEGRATED WAVEGUIDE CAVITY BACKED SLOT ANTENNA FOR BANDWIDTH ENHANCEMENT
Abhishek Sharma, Soumava Mukherjee, Animesh Biswas, Indian Institute of Technology Kanpur, India

WEP-A1.4P.8: A WIDEBAND BEAM-FORMING ANTIPODAL TAPERED SLOT ANTENNA, EMBEDDED IN A DIELECTRIC
Lin Yuan, Ming Su, Yuanan Liu, Jianguo Yu, Beijing University of Posts and Telecommunications, China

WEP-A1.4P.9: A WIDEBAND CIRCULARLY POLARIZED CAVITY BACKED SLOT ANTENNA
Wenhui Shen, Jiahong Lin, Kang Yang, Guangli Yang, Shanghai University, China
WEP-A1.3P: WEARABLE AND ON-BODY ANTENNAS AND MODELING

WEP-A1.3P.1: DUAL SHORTED MICROSTRIP PATCH ANTENNA FOR ON-BODY SYSTEMS .. 2345
Sehwan Choi, Hojun Lee, Korea Electronics Technology Institute, Republic of Korea

WEP-A1.3P.2: DUAL-RESONANT PIFA FOR BODY AREA NETWORKS ... 2347
Sampo Salo, Gaurav Khairkar, Jari Holopainen, Ville Viikari, Aalto University, Finland

WEP-A1.3P.3: WIDE BANDWIDTH AND COMPACT WEARABLE ANTENNA DESIGN FOR SENSING N/A
APPLICATIONS
Ankit Dabas, Shyqyri Haxha, Masood Ur-Rehman, University of Bedfordshire, United Kingdom

WEP-A1.3P.4: DESIGN OF A SMALL RECTANGULAR PATCH FOR BODY AREA NETWORK 2351
APPLICATIONS
Emmanuel Valentín, Rafael Rodríguez Solís, University of Puerto Rico, Puerto Rico

WEP-A1.3P.5: E-PLANE SLICED PATCH ANTENNA .. 2353
Yiyeng Wang, Yinghua Lu, Beijing University of Posts and Telecommunications, China; Ahmed A. Kishk, Concordia University, Canada

WEP-A1.3P.6: WEARABLE CONFORMAL SCMR SYSTEMS ... 2355
Karina Quintana, John Gibson, Stavros V. Georgakopoulos, Florida International University, United States

WEP-A1.3P.7: PARALLEL FEED WEARABLE ZIGBEE ANTENNA WITH SYMMETRY MEANDER 2357
APPLICATIONS
Bin Hu, Lele He, Guoping Gao, Lanzhou University, China

WEP-A1.3P.8: OFF-BODY PERFORMANCE OF PATCH ANTENNA IN UNDERGROUND MINE 2359
Moulay ElHassan El Azhari, Mourad Nedil, UQAT, Canada; Ismail Bennabrouk, Larbi Talbi, UQO, Canada; Khalida Ghanem, Centre de développement des technologies avancées, Algeria

WEP-A1.3P.9: CHARACTERIZATION OF AN ON-BODY QUASI-STATIC CHANNEL IN UNDERGROUND MINE ENVIRONMENT ... 2361
Moulay ElHassan El Azhari, Mourad Nedil, UQAT, Canada; Ismail Bennabrouk, Larbi Talbi, UQO, Canada; Khalida Ghanem, Centre de développement des technologies avancées, Algeria

WEP-A1.3P.10: MULTIBAND-OFDM BASED ULTRA WIDEBAND SYSTEM MODELLING OF ON/OFF-BODY ANTENNA DIVERSITY ... 2363
Qammer Hussain Abbasi, Texas A&M University at Qatar, Qatar; Erchin Serpedin, Texas A&M University, United States; Khalid Qaraqe, Texas A&M University at Qatar, Qatar; Akram Alomainy, Yang Hao, Queen Mary University of London, United Kingdom

WEP-A1.3P.11: INFLUENCE OF BODY PLACEMENT ON LOW PROFILE UWB ANTENNA 2365
APPLICATIONS
Andela Zaric, University of Lisbon, Instituto de Telecomunicacoes, Portugal; Carlos Fernandes, Universidade de Lisboa, Instituto de Telecomunicacoes, Portugal; Jorge Costa, ISCTE-IUL, Instituto de Telecomunicacoes, Portugal

THP-A1.3A: RECONFIGURABLE MICROSTRIP AND SIW ANTENNAS

THP-A1.3A.1: DESIGN OF A NOVEL RECONFIGURABLE RECTANGULAR PATCH ANTENNA FOR BLUETOOTH AND GPS OPERATION ... N/A
Waqas Farooq, Masood Ur-Rehman, University of Bedfordshire, United Kingdom; Qammer Hussain Abbasi, Texas A&M University at Qatar, Qatar
THP-A1.3A.2: TRANSMISSION LINE BASED APPROACH FOR THE SYNTHESIS OF PATTERN RECONFIGURABLE ANTENNAS
Leonardo Lizzi, Le Huy Trinh, Fabien Ferrero, Jean-Marc Ribero, Robert Staraj, University Nice-Sophia Antipolis, LEAT-CNRS, France

THP-A1.3A.3: POLARIZATION RECONFIGURABLE OMNIDIRECTIONAL ANTENNA USING CROSSED DIPOLES
Yi Fan, Yuehui Cui, RongLin Li, South China University of Technology, China

THP-A1.3A.4: A TUNABLE QUARTER-MODE SUBSTRATE INTEGRATED WAVEGUIDE ANTENNA
Alireza Pourghorban Saghati, Ali Pourghorban Saghati, Kamran Entesari, Texas A&M University, United States

THP-A1.3A.5: A NOVEL POLARIZATION RECONFIGURABLE ANTENNA BASED ON TRANSMISSION LINE THEORY
Xiao Ding, Ren Wang, Ya-Qing Wen, Bing-Zhong Wang, University of Electronic Science and Technology of China, China; Dimitris E. Anagnostou, South Dakota School of Mines and Technology, United States

THP-A1.3A.6: SIW-HORN ANTENNA CONTROLLABLE GAIN ENHACEMENT
Mejdi Laribi, Mourad Nedil, Nahi Kandil, UQAT-LRTCS, Canada; Azzeddine Djaiz, Electronics and Instrumentation Engineering Technology, Saudi Arabia

THP-A1.3A.7: KU-BAND SIW ANTENNA WITH IMPROVED FTBR
Zhenhua Chen, Jiangsu Key Laboratory of Meteorological Observation and Information Processing, China; Dongquan Sun, State Key Laboratory of Millimeter Waves, Southeast University, China

THP-A1.3A.8: A NOVEL APERTURE SHARING MULTI-FUNCTIONAL MIMO ANTENNA
Yezhen Li, Xianling Liang, Liang Liu, Xuadong Bai, Fuwen Liu, Junping Geng, Ronghong Jin, Shanghai Jiao Tong University, China

THP-A1.3A.9: PRACTICAL APPROACH - TUNABLE ANTENNAS AND TUNABLE MATCHING NETWORKS
George Mankaruse, Raafat Mansour, University of Waterloo, Canada

THP-A1.3A.10: DUAL POLARIZED PROXIMITY COUPLED MAGNETIC MICROSTRIP ANTENNAS FOR MIMO APPLICATION
Omer Arabi, Glyndwr University, United Kingdom; Nazar Ali, Khalifa University, United Arab Emirates; Peter Excell, Glyndwr University, United Kingdom; Abdul Muhsin AlTimimi, University of Technology, Iraq; Raed Abd-Alhameed, University of Bradford, United Kingdom

THP-A1.4A: RECONFIGURATION OF COMPACT AND ELECTRICALLY SMALL STRUCTURES

THP-A1.4A.1: SUPERSTRATE CONFIGURATIONS FOR A MEMS RECONFIGURABLE PIXELATED PATCH ANTENNA FOR CLAS
Michael Wright, University of South Carolina, United States; William Baron, Jason Miller, James Tuss, David Zeppettella, Air Force Research Laboratory, United States; Mohammad Ali, University of South Carolina, United States

THP-A1.4A.2: METAMATERIAL BASED RECONFIGURABLE MULTIBAND ANTENNA
Aswin Babu Jagadeesan, Arokiaswami Alphones, Nanyang Technological University, Singapore; Muhammad Faeyz Karim, Michael Ling Chuen Ong, Institute for Infocomm Research (I²R), Singapore

THP-A1.4A.3: AN ELECTRICALLY SMALL CPW FED FREQUENCY RECONFIGURABLE ANTENNA
Muhammad Khan, Antonio Capobianco, University of Padova, Italy; Adnan Iftikhar, Saif Asif, North Dakota State University, United States; Bilal Ijaz, COMSATS Institute of Information Technology, Pakistan; Benjamin Braaten, North Dakota State University, United States

THP-A1.4A.4: COMPACT PLANNER UWB ANTENNA WITH DUAL BAND-NOTCHED CHARACTERISTICS
Ali Abbas, University of Jordan, Jordan; Mohamed Abdelazeez, German Jordan University, Jordan
THP-A1.4A.5: EFFECTS OF THE GROUND PLANE SIZE ON RADIATION PATTERN OF RECONFIGURABLE SLOT-RING ANTENNAS
Tianjiao Li, Xun Gong, University of Central Florida, United States

THP-A1.4A.6: COMPACT MULTI-BAND RECONFIGURABLE ANTENNA FOR COGNITIVE RADIO
Mohammad Safarpour, Pejman Rezaei, Alireza Zarkhoshk, Semnan University, Iran

THP-A1.4A.7: DESIGN OF A COMPACT UWB ANTENNA WITH CONTROLLABLE BAND-NOTCHED
Sedighe Saghayi, Pejman Rezaei, Esmail Nasrabadi, Semnan University, Iran

THP-A1.4A.8: POLARIZATION DIVERSITY CONVERTER BASED ON MULTILAYER FREQUENCY SELECTIVE SURFACES
Yongjiu Li, Long Li, Xidian University, China

THP-A1.4A.9: TRANSPARENT AND MECHANICALLY RECONFIGURABLE SMALL ANTENNA BASED ON STRETCHABLE MICROMESH
Taehee Jang, Cheng Zhang, Hongseok Youn, Jing Zhou, L. Jay Guo, University of Michigan, United States

THP-A1.4A.10: K-BAND CIRCULARLY-POLARIZED RECONFIGURABLE TRANSMIT-ARRAY
Parinaz Naseri, Pedram Mousavi, Hamid Moghadas, University of Alberta, Canada

THP-A1.5A: TUNABLE MICROSTRIP ANTENNAS
THP-A1.5A.1: TUNABLE ANTENNA USING NOVEL FECO NANOPARTICLES FOR WIFI BANDS
Yaaqoub Malallah, Antarpreet Singh, Sampada Deshmukh, Drexel University, United States; Chins Chinnasamy, Melania Marinescu, Electron Energy Corporation, United States; Afshin Daryoush, Drexel University, United States

THP-A1.5A.2: A FREQUENCY TUNABLE RING MICROSTRIP ANTENNA FED BY AN L-PROBE WITH VARACTOR DIODES
Shuhei Sato, Sakuyosi Saito, Yuichi Kimura, Saitama University, Japan

THP-A1.5A.3: TUNABLE CIRCULAR-POLARIZATION ANTENNA FOR RFID APPLICATIONS
Jamal Zaid, Tayeb A. Denidni, INRS, Centre Énergie Matériaux Télécommunications, Canada

THP-A1.5A.4: A NOVEL DESIGN OF TUNABLE TERAHertz DEVICES USING GRAPHENE PARALLEL-PLATE WAVEGUIDE
Han Ren, Jun Ding, Bayaner Arigong, Mi Zhou, Jin Shao, Yuankun Lin, Hualiang Zhang, University of North Texas, United States

THP-A1.5A.5: A MICROSTRIP PATCH ANTENNA MANUFACTURED WITH FLEXIBLE GRAPHENE-BASED CONDUCTING MATERIAL
Sayeed Sajal, Benjamin Braaten, Val Marinov, North Dakota State University, United States

THP-A1.2A: MICROSTRIP PATCH ANTENNAS
THP-A1.2A.1: HIGH GAIN PLANAR ANTENNA USING TM13 MODE OF CIRCULAR DISC
Prateek Juyal, Lotfollah Shafai, University of Manitoba, Canada

THP-A1.2A.2: PRINTABLE PLANAR DIELECTRIC PASSIVE MICROWAVE COMPONENTS
Atabak Rashidian, Lotfollah Shafai, University of Manitoba, Canada; M. Sobocinski, J. Peräntie, J. Jiutti, H. Jantunen, University of Oulu, Finland

THP-A1.2A.3: STACKED CPW-FED ANTENNA FOR SATELLITE APPLICATIONS WITH GAIN ENHANCEMENT
Azzeddin Naghar, Ana Alejos, Manuel García Sanchez, University of Vigo, Spain; Otman Aghzout, Abdelmalek Essaadi University, Morocco; Francisco Falcone, Universidad Pública de Navarra, Spain
THP-A1.2A.4: ANALYSIS OF MINIATURIZED MPA DESIGN USING THEORY OF CHARACTERISTIC MODES
Muhammad Umar Khan, Mohammad S. Sharawi, King Fahd University of Petroleum and Minerals, Saudi Arabia

THP-A1.2A.5: A SINGLE-LAYER WIDEBAND CAVITY-BACKED MICROSTRIP PATCH ANTENNA
Xiao Di Song, Xiao Peng Lu, Wei Wang, East China Research Institute of Electronic Engineering, China

THP-A1.2A.6: 4 BY 4 ULTRA-WIDEBAND MILLIMETER-WAVE PRINTED LOG-PERIODIC DIPOLE ARRAY ANTENNA
Wan Muhammad Imran Wan Mohd Zamri, Nemai Chandra Karmakar, Monash University, Australia

THP-A1.1A: MICROSTRIP ANTENNAS FOR DIVERSIFIED APPLICATIONS AND SITUATIONS

THP-A1.1A.1: ANALYSIS OF THE EFFECT OF SOLAR CELLS ON THE ANTENNA INTEGRATED ON TOP OF THEIR COVER GLASS
Taha Yekan Shahvirdi, Reyhan Baktur, Utah State University, United States

THP-A1.1A.2: EFFECT OF AG ELECTRODE LATTICE IN A COMMERCIAL SPACE SOLAR CELL ON A PATCH ANTENNA INTEGRATED ON TOP OF IT
Taha Yekan Shahvirdi, Reyhan Baktur, Utah State University, United States

THP-A1.1A.3: SUPPRESSING HIGHER ORDER MODES OF CAVITY SURROUNDED STACKED MICROSTRIP ANTENNAS FOR PRIME FOCUS REFLECTORS
Mohammad Qudrat-E-Maula, Skyware Global, United States; Zahra Allahgholi Pour, Lotfollah Shafai, University of Manitoba, Canada; Saeed I. Latif, University of South Alabama, United States

THP-A1.1A.4: ON USING THE ELECTRICAL CHARACTERISTICS OF GRAPHENE-BASED Conductors FOR DESIGNING A CONFORMAL MONOPOLE ON A TRANSPARENT SUBSTRATE
Benjamin Braaten, Travis Tolstedt, Sajid Asif, Mark Schroeder, Muhammad Khan, North Dakota State University, United States

THP-A1.1A.5: A COMPACT MONOPOLE FRACTAL ANTENNA FOR TV WHITE SPACE ENERGY HARVESTING APPLICATIONS
Aditya Goyal, Arokiaswami Alphones, Nanyang Technological University, Singapore; Muhammad Faeyz Karim, Michael Ling Chuen Ong, Nasimuddin Nasimuddin, Institute for Infocomm Research (I²R), Singapore

THP-A1.1A.6: OMNIDIRECTIONAL COMPOSITE RIGHT/LEFT-HANDED LEAKY-WAVE ANTENNA WITH DOWNTILTED BEAM
Ichiro Oshima, Takuya Seki, Denki Kogyo Co., Ltd., Japan; Naohumi Michishita, National Defense Academy, Japan; Keizo Cho, Chiba Institute of Technology, Japan

THP-A1.1A.8: A NEW COMPACT FOLDED PATCH GPS ANTENNA USING MEANDER LINE
Chien Hung Chen, ROC Air Force Academy, Taiwan; Chow-Yen-Desmond Sim, Feng Chia University, Taiwan; Hua-Ming Chen, Yi-Fang Lin, National Kaohsiung University of Applied Sciences, Taiwan; Yang-Kai Wang, Advance Connection Technology Inc., Taiwan

THP-A1.1A.9: MICROSTRIP ANTENNA FOR 5G BROADBAND COMMUNICATIONS: OVERVIEW OF DESIGN ISSUES
David Alvarez Outerelo, Ana Alejos, Manuel García Sanchez, María Vera Isasa, University of Vigo, Spain

THP-A1.1A.10: PARASITIC STACKED SLOT PATCH ANTENNA FOR DTT ENERGY HARVESTING
Tiago Moura, Luís Brás, Instituto de Telecomunicações, Universidade de Aveiro, Portugal; Pedro Pinho, Instituto de Telecomunicações, Universidade de Aveiro / Instituto Superior de Engenharia de Lisboa, Portugal; Nuno Carvalho, Ricardo Gonçalves, Instituto de Telecomunicações, Universidade de Aveiro, Portugal
THP-A1.1A.11: A PLANAR SURFACE WAVE ANTENNA WITH A BIDIRECTIONAL PATTERN FOR N/A TELEMETRY APPLICATIONS
Isa Mazraeh-Fard, Zaker Hossein Firouzeh, Mohsen Maddah-Ali, Hamed Khayam Nekoei, Reza Safian, Isfahan University of Technology, Iran

THP-A1.4P: PHASED ARRAY SYNTHESIS AND SIDELOBE SUPPRESSION

THP-A1.4P.1: SIDE LOBE REDUCTION IN UNIFORMLY EXCITED LINEAR ARRAYS .. 2449
Ahmad Safaai-Jazi, Warren Stutzman, Virginia Polytechnic Institute and State University, United States

THP-A1.4P.2: A SIMPLE TECHNIQUE FOR SYNTHESIS OF LINEAR ARRAYS.. 2451
Ahmad Safaai-Jazi, Warren Stutzman, Virginia Polytechnic Institute and State University, United States

THP-A1.4P.3: WIDEBAND QUANTIZATION LOBE SUPPRESSION IN ARRAYS OF COLUMNS FOR 2453
LIMITED FIELD OF VIEW (LFOV) SCANNING
Robert Mailloux, ARCON Corporation, United States

THP-A1.4P.4: SIZE CONSTRAINT IN DESIGN OF CONCENTRIC RING ARRAY .. 2455
Pedro Mendes, Israel Hinostroza, Régis Guinvarc’h, SONDRA, France; Randy Haupt, Colorado School of Mines, United States

THP-A1.4P.5: EXPEDITED MICROSTRIP LINEAR ANTENNA ARRAY DESIGN USING RADIATION 2457
RESPONSE SURROGATES
Slawomir Koziel, Stanislav Ogurtsov, Reykjavik University, Iceland

THP-A1.4P.6: SIDELOBE SUPPRESSION OF PLANAR MICROSTRIP ARRAYS BY ... 2459
SIMULATION-BASED PHASE- AND POSITION-ONLY ADJUSTMENT
Slawomir Koziel, Stanislav Ogurtsov, Reykjavik University, Iceland

THP-A1.4P.7: SPARSE PHASED ARRAY ANTENNA FOR SPACE-BORNE SAR ... 2461
Junqi Lu, Yongxin Guo, National University of Singapore, Singapore; Hu Yang, National University of Defense Technology, China

THP-A1.4P.8: PLANAR THINNED ANTENNA ARRAY SYNTHESIS USING MULTI-OBJECTIVE BINARY 2463
CAT SWARM OPTIMIZATION
Lakshman Pappula, Debalina Ghosh, IIT Bhubaneswar, India

THP-A1.4P.9: SPARSE ARRAY SYNTHESIS USING OFF-GRID TECHNIQUE .. 2465
Fei Yan, Peng Yang, Feng Yang, Chuan Wu, University of Electronic Science and Technology of China, China; Tao Dong, Space Star Technology Co., Ltd [China], China

THP-A1.1P: BEAM STEERING IN PHASED ARRAYS

THP-A1.1P.1: BROADSIDE UNIFORM LEAKY-WAVE SLOT ARRAY FED BY RIDGE GAP SPLITTED 2467
LINE
Shoukry I. Shams, Mohamed A. Abdelaal, Ahmed A. Kishk, Concordia University, Canada

THP-A1.1P.2: PHASED ARRAY ANTENNA EMPLOYING RECONFIGURABLE DEFECTED 2469
MICROSTRIP STRUCTURE (RDMS)
Can Ding, Macquarie University, Australia; Y. Jay Guo, Pei-Yuan Qin, University of Technology Sydney, Australia; Eryk Duńkiewicz, Macquarie University, Australia; Yintang Yang, Xidian University, China

THP-A1.1P.3: A 2-DIMENSIONAL CRLH CIRCULARLY-POLARIZED LEAKY WAVE ANTENNA ARRAY N/A
Jiahui Fu, Wan Chen, Kuiang Zhang, Guohui Yang, Fanyi Meng, Qun Wu, Harbin Institute of Technology, China

THP-A1.1P.4: DUAL POLARIZED ELECTRICALLY ADJUSTABLE ANTENNA FOR MOBILE 2473
COMMUNICATION BASE STATION
Hai-Jian Xu, Xiao-Wei Zhu, Zhen-Qi Kuai, State Key Lab. of Millimeter Waves, Dept. of Radio Engineering, Southeast University, China
THP-A1.1P.5: DESIGN AND FABRICATION OF AN ARRAY ELEMENT FOR A LOW-COST FREQUENCY-SCANNING LINEAR ARRAY
Mahta Mahdiroodi, Mahmoud Shahabadi, University of Tehran, Iran

THP-A1.2P: MILLIMETER-WAVE PHASED ARRAYS

THP-A1.2P.1: KU-BAND TRAVELING WAVE SLOT ARRAY USING SIMPLE SCANNING CONTROL
Nicholas Host, Chi-Chih Chen, John L. Volakis, Ohio State University, United States; Félix Miranda, NASA, United States

THP-A1.2P.2: KA-BAND PHASED ARRAY ANTENNA WITH CIRCULAR RIM
Omer Bayraktar, Yusuf Sevinc, Ozlem Aydin Civi, Simsek Demir, Sencer Koc, Middle East Technical University, Turkey

THP-A1.2P.3: A BEAM-SWITCHING TAPERED SLOT ANTENNA ARRAY WITH AN 8 X 8 BUTLER MATRIX
Yu-Sheng Chen, Te-Hsin Chou, Yu-De Lin, National Chiao Tung University, Taiwan

THP-A1.2P.4: POLARIZATION INSENSITIVE KA-BAND REFLECTARRAY ANTENNA
Rania Elsharkawy, Electronics Research Institute, Egypt; Abdel-Razik Sebak, Montreal, Quebec, Canada; Moataza Hindy, Electronics Research Institute, Egypt; Osama Haraz, Assiut University, Egypt; Adel Saleeb, El-Sayed El-Rabaie, Menoufia University, Egypt

THP-A1.2P.5: A CIRCULARLY POLARIZED WAVEGUIDE PHASED ARRAY ANTENNA FOR K BAND
Hong-tao Zhang, Wei Wang, Mou-ping Jin, Yong-qing Zou, East China Research Institute of Electronic Engineering, China

THP-A1.5P: PHASED ARRAYS WITH WIDE-ANGLE SCANNING

THP-A1.5P.1: LOW COST, WIDE SCANNING DUAL-POLARIZED PLANAR RADIATING ELEMENT FOR WEATHER MEASUREMENTS
Matilda Livadaru, John L. Volakis, Ohio State University, United States

THP-A1.5P.2: A LOW PROFILE DUAL POLARIZED ULTRA WIDE SCAN PRINTED ARRAY ELEMENT
Kwok Kee Chan, Chan Technologies Inc., Canada

THP-A1.5P.3: QCTO LENS DESIGN FOR CONFORMAL PHASED ARRAY ANTENNA
Juan Lei, Queen Mary University of London, United Kingdom; Xidian University, China; Junming Zhao, Queen Mary University of London, United Kingdom; Guang Fu, Xidian University, China; Yang Hao, Queen Mary University of London, United Kingdom

THP-A1.5P.4: WIDE-ANGLE SCANNING PHASED ARRAY BASED ON MICROSTRIP MAGNETIC DIPOLE YAGI SUB-ARRAYS
Ya-Qing Wen, Bing-Zhong Wang, Xiao Ding, Ren Wang, University of Electronic Science and Technology of China, China

THP-A1.5P.5: A WIDE-ANGLE SCANNING ARRAY BASED ON THE IMAGE THEORY AND TIME REVERSAL SYNTHESIS METHOD
Ren Wang, Bing-Zhong Wang, Xiao Ding, Zhi-Shuang Gong, Yu Yang, Ya-Qing Wen, University of Electronic Science and Technology of China, China

THP-A1.3P: PHASED ARRAY MUTUAL COUPLING AND TOLERANCE EFFECTS

THP-A1.3P.1: DISTRIBUTED LINEAR ANTENNA ARRAY PATTERN PERFORMANCE ENHANCEMENT
Andrew Adrian, Leo Kempel, Michigan State University, United States

THP-A1.3P.2: RANDOM ANTENNA ARRAY PHASE AND RANGE LIMITATIONS
Kristopher Buchanan, John D. Rockway, Space and Naval Warfare Systems Center, Pacific, United States; Gregory Huff, Texas A&M University, United States
THP-A1.3P.3: TOLERANCE ANALYSIS OF PLANAR ARRAYS THROUGH MINKOWSKI-BASED INTERVAL ANALYSIS
Nicola Anselmi, Lorenzo Poli, Lorenza Tenuti, Paolo Rocca, Federico Viani, Andrea Massa, ELEDIA Research Center, University of Trento, Italy

THP-A1.3P.4: HYBRID ARRAY PATTERN CALCULATION TECHNIQUE
W. Mark Dorsey, Naval Research Laboratory, United States; Amir Zaghloul, Army Research Laboratory, United States

THP-A1.3P.5: RECEIVED VOLTAGE AND POWER FOR AN ARBITRARY ELEMENT OF INFINITE PLANAR ARRAYS
Do-Hoon Kwon, University of Massachusetts Amherst, United States

THP-A1.3P.6: PREDICTION OF THE DIRECTION OF INTERMODULATION BEAMS IN ACTIVE TRANSMIT ARRAYS
Manoja Weiss, Ball Aerospace, United States; Randy Haupt, Colorado School of Mines, United States

THP-A1.3P.7: PLANAR PHASED ARRAY CALIBRATION METHOD BASED ON PLANAR NEAR-FIELD MEASUREMENT SYSTEM
Rui Long, Jun Ouyang, Feng Yang, University of Electronic Science and Technology of China, China

THP-A1.3P.8: INTERFERENCE REDUCTION BETWEEN SDD LINEAR ARRAY ANTENNAS USING END-FIRE ARRANGEMENT
Masakuni Tsumezawa, Naoki Honma, Kazuya Takahashi, Yoshitaka Tsumekawa, Iwate University, Japan; Kentaro Murata, National Defense Academy, Japan; Kentaro Nishimori, Niigata University, Japan

THP-A1.6P: WIDEBAND PHASED ARRAYS

THP-A1.6P.1: LOW-COST END-POINT MODULAR PUMA ARRAY
Rick W. Kindt, Naval Research Laboratory, United States; Marinos N. Vouvakis, University of Massachusetts Amherst, United States

THP-A1.6P.2: SIMPLIFIED DESIGN OF 6:1 PUMA ARRAYS
Michael Lee, John Logan, University of Massachusetts Amherst, United States; Rick W. Kindt, Naval Research Laboratory, United States; Marinos N. Vouvakis, University of Massachusetts Amherst, United States

THP-A1.6P.3: FINITE ARRAY TRUNCATION EFFECTS ON POLARIZATION
Michael Lee, Marinos N. Vouvakis, University of Massachusetts Amherst, United States

THP-A1.6P.4: LOW COMPLEXITY FEED SYSTEM FOR A LONG SLOT ANTENNA ARRAY
Abhishek Kumar Awasthi, A. R. Harish, Indian Institute of Technology Kanpur, India

THP-A1.6P.5: WIDEBAND & WIDE ANGLE SCANNING ARRAY WITH PARASITIC SUPERSTRATE
Ersin Yetisir, Nima Ghalichechian, John L. Volakis, Ohio State University, United States

THP-A1.6P.6: A PLANAR WIDEBAND WIDE-SCAN PHASED ARRAY: CONNECTED ARRAY LOADED WITH ARTIFICIAL DIELECTRIC LAYERS
Daniele Cavallo, Waqas H. Syed, Harshitha Thippur Shivamurthy, Andrea Neto, Delft University of Technology, Netherlands

THP-A1.6P.7: DISPERSION ENGINEERED RIGHT/LEFT-HANDED TRANSMISSION LINES
Joshua Kovitz, Yahya Rahmat-Samii, University of California, Los Angeles, United States; Jun Choi, Syracuse University, United States

THP-A1.6P.8: EMPIRICAL AND THEORETICAL CHARACTERIZATION OF MULTIOCTAVE PLANAR PHASED ARRAYS
Johnson Wang, Wang Electro-Opto Corporation, United States

THP-A1.6P.9: A LOW CROSS-POLARIZATION DECADE-BANDWIDTH VIVALDI ARRAY
John Logan, Marinos N. Vouvakis, University of Massachusetts Amherst, United States
FRP-UB.1A: FILTER DESIGN, TRANSITIONS AND FEEDING NETWORKS

FRP-UB.1A.3: OPTICALLY TRANSPARENT COMPACT 4×4 BUTLER MATRIX .. N/A
Ousama Abu Safia, Larbi Talbi, University of Quebec in Outaouais, Canada; Khelfa Hettak, Communications Research Centre Canada, Canada; Mustapha Yagoub, University of Ottawa, Canada

FRP-UB.1A.4: FAST AND ACCURATE SIMULATION OF COAXIAL-FED ANTENNAS USING FULL-WAVE ... 2533
AND ASYMPTOTIC COMPUTATIONAL METHODS
Hipolito Gomez-Sousa, Marcos Arias-Acuña, University of Vigo, Spain; Jose Angel Martinez Lorenzo, Northeastern University, United States; Oscar Rubiños-Lopez, University of Vigo, Spain; Thomas Jost, German Aerospace Center (DLR), Germany; Georg Strauss, Munich University of Applied Sciences, Germany

FRP-A1.1A: PRINTED CIRCUITS AND FRONT-ENDS

FRP-A1.1A.1: WIDEBAND DIGITAL 5-BIT PHASE SHIFTERS FOR WIDEBAND PHASED ARRAYS 2535
Hongzhao, Ray Fang, Ramanan Balakrishnan, Koen Mouthaan, National University of Singapore, Singapore; Régis Guinvauc’h, SONDRA, Supélec, France

FRP-A1.1A.2: SIGNAL-INTERFERENCE RF WIDE-BAND BANDPASS FILTERS USING HALF-MODE 2537
SUBSTRATE-INTEGRATED-WAVEGUIDE (HM SIW) DIRECTIONAL COUPLERS
Roberto Gomez-Garcia, Jose-Maria Munoz-Ferreras, University of Alcala, Spain; Dimitra Psychogiou, Dimitrios Peroulis, Purdue University, United States

FRP-A1.1A.3: A MULTILAYER SIW-CPW TRANSITION JUNCTION FOR EFFICIENT MM-WAVE 2539
PHASED ARRAY APPLICATIONS
Wael M. Abdel-Wahab, C-COM Satellite Systems Inc., Canada; Hussam Al-Saedi, Mohmmadbagher Fereidani, Safieddin Safavi-Naeini, University of Waterloo, Canada

FRP-A1.1A.4: BROADBAND PHASE SHIFTER FOR K- AND KA- BANDS BEAM-STEERING NETWORKS...... 2541
Abdulrahman Alaqeel, Sultan Almorqi, Mohammad Algassim, King Abdulaziz City for Science and Technology, Saudi Arabia; Osama Haraz, Saleh Alshebeili, Abdel-Razik Sebak, King Saud University, Saudi Arabia

FRP-A1.1A.5: A TRI-BAND BANDSTOP FILTER WITH SHARP REJECTION AND CONTROLLABLE 2543
BANDSTOP FREQUENCIES
Liang Liu, Ronghong Jin, Xudong Bai, Yezheng Li, Xianling Liang, Junping Geng, Chong He, Shanghai Jiao Tong University, China