Contents

Keynote

Very Short and Very Long Heat Treatments ... 1
H.K.D.H. Bhadeshia, University of Cambridge

Alloying Element Nitride Development in Ferritic Fe-Based Materials upon Nitriding ... 11
T. Steiner and E.J. Mittemeijer
Max Planck Institute for Intelligent Systems

Nitriding

The Effects of Process Parameters on Nitrogen Infiltration and the Controlling of Nitrogen Concentration in Vacuum Nitriding .. 19
M. Okumiya1, Y. Tsunekawa1, J.-H. Kong1, and S.-G. Kim2
(1) Toyota Technological Institute
(2) Korea Institute of Industrial Technology

Gas Phase Deep Nitriding of 33CrMoV12-9 Steel—Microstructural Characterization of the Precipitates ... 25
O. Skiba1, J. Dulcy1, G. Marcos1, T. Czerwiec1, A. Courleux2, and S. Becquerelle2
(1) Université de Lorraine
(2) Hispano-Suiza, groupe Safran

Effect of Plasma Nitriding on Corrosion Behavior of AISI 4330 Low Alloy Steel 31
V. Patil, J. Sherkar, A. Supare, and R. Singh
Bharat Forge Ltd.

Low Temperature Nitriding of Strain Induced Martensite and Laser Quenched Austenite ... 38
V. Leskovšek1, M. Godec1, and P. Kogej2
(1) Institute of Metals and Technology
(2) RLS Merilna Tehnika d.o.o.

Influence of Strain Hardening on Gaseous Nitriding of Steels 46
B. Guillot, S. Jégou, and L. Barrallier
Arts et Métiers ParisTech

Low Temperature Surface Hardening of Stainless Steel—The Role of Plastic Deformation ... 51
Technical University of Denmark
Effects of Different Microstructural and Hardness Gradients Generated by Single and Combined Surface Treatments with a Nitriding Top Layer 55
A. Buchwalder¹, H.-J. Spies¹, N. Klose¹, A. Jung¹, and R. Zenker²
(1) TU Bergakademie Freiberg
(2) Zenker Consult

Optimization of Gaseous Nitriding of Steels by Multiphysics Modelling 63
S. Jégou¹, L. Barralier¹, and G. Fallot²
(1) Arts et Métiers ParisTech
(2) Airbus Helicopters

Vacuum Processes and Technology

In-Line, High-Volume, Low-Distortion, Precision Case Hardening for Automotive, Transmission, and Bearing Industry ... 71
M. Korecki¹ and E. Wolowiec-Korecka²
(1) Seco/Warwick S.A.
(2) Lodz University of Technology

Quenching and Quenchants

Press Quench Process Design for a Bevel Gear Using Computer Modeling 78
Z. Li¹, A.M. Freborg¹, B.L. Ferguson¹, P. Ding², and M. Hebbes²
(1) Dante Solutions, Inc.
(2) ANSYS, Inc.

Intensive Quenching of AISI 5160 Spring Steel Using Small Scale Laboratory Equipment—A Progress Report .. 88
L.M. Albano¹, J.G. Lúcio², F.S. Misina¹, V. Leskovisek³, G.E. Totten⁴ and L.C.F. Canale¹
(1) University of São Paulo
(2) Rassini NHK
(3) University of Ljubljana
(4) Portland State University

Ionic Liquids for Immersion Quenching of Aluminium Alloys 94
M. Beck, M. Reich, O. Keßler, C. Neise, U. Kragl, M. Ahrenberg, and C. Schick
University of Rostock

Beer, Blood and Urine—Mythological Quenchants of Ancient Blacksmiths 101
D.S. MacKenzie and G. Graham
Houghton International, Inc.

Selection of Oil Quenchants for Heat Treating Processes .. 110

Why Fine Filtering for Quench Oil Systems is a Must! .. 118
J. Pfaffenberger, C.C. Jensen Inc.
Innovative Quenching Process for Pipe and Bar ... 123

P. della Putta¹, M. Fabro², K. Sawamiphakdi³, D. Bader¹, and S.J. Nalawadi³

(1) SMS Meer SpA
(2) SMS U.S.A. LLC
(3) Timken Steel

A New Probe to Measure and Evaluate the Real Quenching Intensity Based on
Temperature Gradients .. 132

B. Liscic¹, B. Matijevic¹, G.E. Totten², and L.C.F. Canale³

(1) University of Zagreb
(2) Portland State University
(3) Universidade de Sao Paulo

Reliability and Process Control

Pre-Oxidation Treatment to Increase the Service Life of
Heat Treatment Furnace Conveyor Belts Made of
AISI 330Cb Industrial Application .. 139

C. Combe¹, P.F. Cardey¹, H. Buscaï², C. Issartel², F. Riffard², and R. Rolland²

(1) Centre Technique des Industries de la Mécanique
(2) Laboratoire Vellave sur l’Elaboration et l’Etude des Matériaux

Effect of Microstructure on the Fatigue Crack Growth Behavior in
Low Carbon Steel .. 146

D. Watanuki¹, H. Li², and P. Bowen²

(1) NSK Ltd.
(2) The University of Birmingham

Life Extension of Furnace and Fixture Alloys by Surface Engineering in
Carburizing Atmospheres ... 153

A. Wang and R.D. Sisson, Jr.
Worcester Polytechnic Institute

Advanced Thermal Processing

Design of Advanced Tempering Diagrams of Hot Work Tool Steel Using
Multifunctional CNPTB Specimen ... 161

B. Podgornik, G. Puš, V. Leskovšek, and M. Godec
Institute of Metals and Technology

Microstructural Evolution in Microalloyed Steels with
High-Speed Thermomechanical Bar and Rod Rolling .. 168

R. Cryderman, B. Whitely, and J. Speer
Colorado School of Mines
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Hydroforging of Lightweight Bimaterial Gears and Hollow Products</td>
<td>175</td>
</tr>
<tr>
<td>B. Chavdar<sup>1</sup>, R. Goldstein<sup>2</sup>, and L. Ferguson<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td>(1) Eaton</td>
<td></td>
</tr>
<tr>
<td>(2) Fluxtrol Inc.</td>
<td></td>
</tr>
<tr>
<td>(3) Dante Solutions Inc.</td>
<td></td>
</tr>
<tr>
<td>Effect of Processing Route on Microstructure and Impact Toughness of Duplex Stainless Steel</td>
<td>184</td>
</tr>
<tr>
<td>A. Powar, A. Gujar, N. Manthani, V. Pawar, and R. Singh</td>
<td></td>
</tr>
<tr>
<td>Bharat Forge Ltd.</td>
<td></td>
</tr>
<tr>
<td>Effect of Electron Beam Welding on Microstructure and Mechanical Properties of Ti-6Al-4V Alloy</td>
<td>190</td>
</tr>
<tr>
<td>S. Thakare<sup>1</sup>, N. Prabhu<sup>2</sup>, P. Kattire<sup>1</sup>, V. Bhavar<sup>1</sup>, and R.K.P. Singh<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>(1) Bharat Forge Limited</td>
<td></td>
</tr>
<tr>
<td>(2) IIT Bombay</td>
<td></td>
</tr>
<tr>
<td>Induction Hardening Shafts of Shafts and Shaft-Like Components</td>
<td>196</td>
</tr>
<tr>
<td>V. Rudnev, W. West, A. Goodwin, and S. Fillip</td>
<td></td>
</tr>
<tr>
<td>Inductoheat Inc.</td>
<td></td>
</tr>
<tr>
<td>Effects of the Inductive Hardening Process on the Martensitic Structure of a 50CrMo4 Steel</td>
<td>203</td>
</tr>
<tr>
<td>A. Vieweg, G. Ressel, P. Prevedel, S. Marsoner, and R. Ebner</td>
<td></td>
</tr>
<tr>
<td>Materials Center Loeben Forschung GmbH</td>
<td></td>
</tr>
<tr>
<td>Minimizing Case/Core Initiated Failures in Induction Hardened Components</td>
<td>210</td>
</tr>
<tr>
<td>M.A. Pershing, G. Raab, and W. Li</td>
<td></td>
</tr>
<tr>
<td>Caterpillar Inc.</td>
<td></td>
</tr>
<tr>
<td>Induction Camshaft Hardening Technology with Practically Undetectable Distortion</td>
<td>217</td>
</tr>
<tr>
<td>G. Doyon, V. Rudnev, J. Maher, R. Minnick, and G. Desmier</td>
<td></td>
</tr>
<tr>
<td>Inductoheat Inc.</td>
<td></td>
</tr>
<tr>
<td>Local Hardening of Ductile Cast Iron—The Importance of Temperature</td>
<td>223</td>
</tr>
<tr>
<td>D.E. Guisbert, M.H. Guisbert, and D.A. Guisbert</td>
<td></td>
</tr>
<tr>
<td>QA Metallurgical Services, LLC</td>
<td></td>
</tr>
<tr>
<td>Effect of the Surface Morphology and Surface Finish on the Corrosion Resistance of Ti6Al4V via Direct Metal Laser Sintering</td>
<td>229</td>
</tr>
<tr>
<td>Y. Xu, Y. Lu, J. Liang, and R.D. Sisson, Jr.</td>
<td></td>
</tr>
<tr>
<td>Worcester Polytechnic Institute</td>
<td></td>
</tr>
<tr>
<td>Future Trends of Low Temperature Surface Hardening of Stainless Steel</td>
<td>235</td>
</tr>
<tr>
<td>A. Karl<sup>1</sup>, M. Wägner<sup>1</sup>, and P. Jacquot<sup>2</sup></td>
<td></td>
</tr>
<tr>
<td>(1) Bodycote, Landsberg</td>
<td></td>
</tr>
<tr>
<td>(2) Bodycote, Pusignan</td>
<td></td>
</tr>
</tbody>
</table>
Computer Simulation of Induction Thermal Processing of Ferrous and Nonferrous Alloys ... 242
C. Russell and V. Rudnev
Inductoheat Inc.

Modeling of the Heating Sequences of Lightweight Steel/Aluminum Bimaterial Billets for Hot Forging and Hot Hydroforging 248
R. Goldstein¹, B. Chavdar², and L. Ferguson³
(1) Fluxtron Inc.
(2) Eaton
(3) Dante Solutions, Inc.

Influence of Synthesis on the Mechanical Properties of Sintered and Nanoporous Copper ... 256
A. Moore, D. Carroll, R. Behera, C. Deo, and A. Antoniou
Georgia Institute of Technology

Grain Refinement Strategies in High-Strength Cast Steel 262
D.C. Van Aken, T.O. Webb, and J.D. Green
Missouri University of Science and Technology

Modeling the Mechanical Properties of Quenched and Tempered Martensitic Steels 273
Worcester Polytechnic Institute

Thermodynamic and Kinetic Simulation and Experimental Results Homogenizing Advanced Alloys .. 279
P.D. Jablonski, J.J. Licavoli, and J.A. Hawk
United States Department of Energy

Improvement in Creep Rupture Ductility of Creep Strength Enhanced Ferritic Steel by New Heat Treatment Process with Intermediate Tempering ... 289
K. Kimura and K. Sawada
National Institute for Materials Science

Evaluation of Mechanical and Fatigue Properties of Weld Deposit and Its Comparison with that of Die Steel .. 295
Bharat Forge Ltd.

Cryogenic Processing

Sub-Zero Celsius Treatment—A Promising Option for Future Martensitic Stainless Steels ... 304
M. Villa, T.L. Christiansen, and M.A.J. Somers
Technical University of Denmark
Residual Stress Symposium

Modeling and Measurement of Residual Stresses and Machining Distortions in Aircraft Engine Disks ... 313
M.G. Glavicic¹, R. Ress, Ill², S. Srivatsa (retired)², J. Castle³, B.K. Chun¹, J.Y. Oh⁴, W.-T. Wu⁴, T.M. Holden⁵, B. Clausen⁶, D.W. Brown⁷, T. Sísneros⁸, M. Knezevic⁷, and J. Simmons⁸
(1) Rolls-Royce Corporation
(2) GE Aviation, Cincinnati
(3) Boeing Research and Technology
(4) Scientific Forming Technologies Corporation
(5) Northern Stress Technologies
(6) Los Alamos National Laboratory
(7) University of New Hampshire
(8) Air Force Research Laboratories

Distortion Potential of Cold Forming Prior to Induction Heat Treatment Processes 325
D. Nadolski, A. Schulz, and H.-W. Zoch
University of Bremen

Prediction of Quench-Induced Residual Stresses in Al-Cu-Mg Impeller Forgings 332
D. Carron¹, N. Chobaut², J.-M. Drezet², and P. Saelzle³
(1) Université Bretagne Sud
(2) Ecole Polytechnique Fédérale de Lausanne
(3) ABB Turbo Systems Ltd.

Study of Residual Stresses after Steel Quenching with Vegetable Oils 341
C. Civera¹, B. Rivolta², R.L.S. Otero³, J.G. Lúcio³, L.C.F. Canale³, and G.E. Totten⁴
(1) Siderval Spa
(2) Politecnico di Milano
(3) Universidade de Sao Paulo,
(4) Portland State University

Parallel PSO Method for Estimation Heat Transfer Coefficients 348
I. Felde¹, S. Szénási¹, G. Pintér¹, W. Shi², R. Colas³, and O. Zapata-Hernández³
(1) Óbuda University
(2) Tsinghua University
(3) Universidad Autónoma de Nuevo León

Residual Stress and Bending Fatigue Strength in Carburized and Quench Hardened Pyrowear 53 Steel Gears .. 354
B.L. Ferguson, A.M. Freborg, and Z. Li
Dante Solutions, Inc.

The Development of a Process-Structure-Properties-Performance Map for Aluminum-Zinc-Magnesium-Copper Alloys Used In Aircraft Applications 362
Georgia Institute of Technology

Metallurgical Aspects of Distortion and Residual Stresses in Heat Treated Parts 372
Surface Structuring as a Method to Influence on Rewetting during Liquid Quenching ... 383
 N. Kozlov and O. Kessler
 University of Rostock

Mathematical Modeling and Computer Simulation of Nonmonotonic Quenching 391
 B. Smoljan, D. Ilijačić, and L. Štic
 University of Rijeka

Using Heat Treat Simulation to Characterize Sensitivity of Quench Hardening Response in Hot Mill Steel Work Rolls .. 398
 A.M. Freborg, Z. Li, and B.L. Ferguson
 Dante Solutions, Inc.

Materials Characterization

Martensite Lattice Parameter Measured by Modern X-Ray Diffraction in Fe-C Alloy 404
 Y. Lu, H. Yu, X. Cai, Y. Rong, and R.D. Sisson
 Worcester Polytechnic Institute

In Situ X-Ray Diffraction Investigations of Martensitic Transformation and Austenite Modifications during Quenching of Low Alloy Steels .. 410
 J. Epp, University of Bremen

Hardness-Toughness Relationship of a Boron Alloyed Quench and Tempering Steel after Different Heat Treatment Cycles .. 418
 R.S.E. Schneider¹, K. Steineder¹, Y. Toshima², and M. Okumiya²
 (1) University of Applied Sciences Upper Austria
 (2) Toyota Technological Institute

Close Relations between Metallic Materials, Heat Treatment and Thermochemical Treatment on the Microstructure—Contribution of Metallographic Examinations Performed on Industrial Parts through Several Case Studies .. 425
 P. Jacquot, B. Stauder, N. Jacquot, and G. Fürst
 Bodycote

Microstructural Analysis of Carbides in Steel by Electrochemical Extraction Technique ... 434
 Worcester Polytechnic Institute

Study of Phase Transformations during Tempering of AISI L6 Tool Steel by Means of Dilatometry and High Temperature X-Ray Diffraction .. 440
 D.I. Quiñones-Salinas¹, R.D. Mercado-Solís¹, L.A. Leduc-Lezama¹, F. Fernandez-Guzman², and R. Cerda-Rojas²
 (1) Universidad Autónoma de Nuevo León, México
 (2) Frisa Forjados S.A. de C.V.
Hardenability Characterization and Microstructural Evolution in Heavy Gauge Plate Steels ... 445
 I. Vieira and E. De Moor
 Colorado School of Mines

Influence of Cooling and Heating Rates on the Thermal Properties of Ni-Ti Shape Memory Alloy .. 451
 B.B. Fraj and Z. Tourki
 Université de Sousse

Thermal Diffusivity in Cast Aluminum Alloys ... 457
 H. Arenas-García1, A.G. Esmeralda1, R. Colás1, A.F. Rodríguez2, and J. Talamantes-Silva2
 (1) Universidad Autónoma de Nuevo León
 (2) Nemak México, S.A. de C.V.

Calorimetry for the Study of Phase Transformations during Tempering of AISI L6 Low Alloy Tool Steel ... 464
 D.I. Quiñones-Salinas1, R.D. Mercado-Solís1, L.A. Leduc-Lezama1, F. Fernandez-Guzman2, and R. Cerda-Rojas2
 (1) Universidad Autónoma de Nuevo León
 (2) Frisa Forjados S.A. de C.V.

Influence of UNSM Treatment Temperature on Microstructure and Mechanical Properties of Inconel 600 ... 471
 J.-H. Kim, A. Amanov, Y.-S. Pyun, and H.-D. Kim
 Sun Moon University

Influence of Heat Treatment on Fatigue and Fracture Toughness Behavior of AISI 4140 Steel ... 473
 P. Jadhav1, R. Mane1, M. Ukhande1, S. Arangi1, and R.C. Prasad2
 (1) Bharat Forge Ltd.
 (2) Indian Institute of Technology Bombay

Coating Technology

Manufacture, Examination and Application of Modern Composite Materials with a Nanocarbon Dispersion Phase .. 481
 T. Babul and A. Olbrycht
 Institute of Precision Mechanics

Carburizing and Nitrocarburizing

Simulation of The Effect of Temperature and Time on the Tempering Behavior of Carburized Steels ... 487
 Worcester Polytechnic Institute
Fluidized-Bed Carburizing in Chemically Active Powders of C22 Steel 493
A. Ciski1, T. Babul1, K. Lankiewicz1, J. Nižňanská2, and P. Šuchmann2
(1) Institute of Precision Mechanics
(2) Comtes FHT a.s.

An Enhancement to the Low Pressure Carburizing Simulation ... 499
L. Zhang and R.D. Sisson, Jr.
Worcester Polytechnic Institute

Pre-Nit Technology for Accelerated Vacuum Carburizing .. 504
M. Lister, Seco-Warwick

Tribology and Wear of Engineered Surfaces

Influence of Ultrasonic Nanocrystal Surface Modification Treatment Temperature on Microstructure and Tribological Behavior of Bearing Steel ... 511
A. Amanov, J.-H. Kim, and Y.-S. Pyun
Sun Moon University

The Erosion Behavior of Die-Steel Salt-Bath-Nitrocarburized with Lithium-Iron Compound Oxide Layer in Molten Al-Si-Cu Alloy .. 513
H. Ishizuka, Y. Hirai, and Y. Watanabe
Parker Netsushori Kogyo Co., Ltd.

Poster Session

Development of a Laboratory Intensive Quenching System .. 523
L.M. Albano1, F.S. Misina1, G.E. Totten2, and L.C.F. Canale1
(1) University of São Paulo
(2) Portland State University

Effects of Quench and Partitioning Heat Treatment in Mechanical Properties and the Microstructural Characterization of AISI 300M ... 529
R.G. Gregui1, L.C.F. Canale2, and D.A. Ludewigs3
(1) Instituto Federal de São Paulo
(2) Universidade de São Paulo
(3) Durferrit Company – HEF Group

Effect of Quenching and Tempering in Microalloyed Steels Containing Boron and Titanium ... 536
A.I. Filho1, R.V. da Silva1, W.M. Souza2, J.B.R. Martins2, L.C. Casteletti2, and G.E. Totten4
(1) Instituto Federal de Educação
(2) ArcelorMittal Tubarão
(3) Universidade de São Paulo
(4) Portland State University
Characterization of BN/TiBN/TiN Multilayer Coatings Prepared by Pulsed DC Plasma-Enhanced Chemical Vapor Deposition .. 541

K. Kawata and T. Kidachi
Oriental Engineering Co., Ltd.

Application of Nanostructured Copper-Polymer Catalyst for Activation of Gas Nitriding of Steels ... 547

L.G. Petrova, I.M. Papisov, I.S. Belashova, V.A. Aleksandrov, G.Y. Ostaeva,
A.I. Papisova, and A.E. Perekrestov
Moscow Automobile and Road Construction State Technical University

Effect of Deep Cryogenic Treatment on Fracture Toughness of 300M Steel Using Circumferentially Notched KIC Test Specimens .. 554

D. Schuller and V. Leskovšek
(1) Universidade de São Paulo
(2) Institute of Metals and Technology

Uphill Quenching of Aluminum Alloys—A Process Review .. 560

(1) University of São Paulo
(2) Portland State University
(3) Houghton International Inc.
(4) Metallurgical Service

Wear Behavior of Layers Produced by Boriding and PVD plus Boriding Treatments on AISI H13 Tool Steel ... 566

(1) Universidade de São Paulo
(2) Federal Technological University of Paraná
(3) Portland State University

Author Index ... 569