2016 14th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2016)

Espoo, Finland
11-14 April 2016
TABLE OF CONTENTS

THEORY AND EM MODELS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:</td>
<td>GENERALIZATION OF THE VAN CITTERT–ZERNIKE THEOREM TO OBSERVERS</td>
</tr>
<tr>
<td>MOVING WITH RESPECT TO SOURCES</td>
<td>Younes Monjid, Bernard Rougé, Yann H. Kerr, Centre d’Etudes Spatiales de la Biosphère (CESBIO), France; Daniel Braun, Institut für theoretische Physik, Universität Tübingen, Germany</td>
</tr>
</tbody>
</table>

SATELLITE MISSIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>STATUS OF AQUARIUS AND THE SALINITY RETRIEVAL</td>
</tr>
<tr>
<td></td>
<td>David Le Vine, NASA Goddard Space Flight Center, United States; Emmanuel Dinnat, Chapman University, United States; Thomas Meissner, Frank Wentz, Remote Sensing Systems, United States; Gary Lagerloef, Earth and Space Research, United States</td>
</tr>
<tr>
<td>5:</td>
<td>MICROWAVE SCANNER-SOUNDER MTVZA-GY ON NEW RUSSIAN METEOROLOGICAL SATELLITE METEOR-M NO. 2: MODELING, CALIBRATION AND MEASUREMENTS</td>
</tr>
</tbody>
</table>

CURRENT AND FUTURE MISSIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>SMOS PAYLOAD STATUS AFTER SIX YEARS IN ORBIT: OPERATIONAL AND THERMAL PERFORMANCE, CALIBRATION STRATEGY AND RFI MANAGEMENT</td>
</tr>
<tr>
<td></td>
<td>Mariano Kornberg, ESA, ESTEC, European Space Research and Technology Centre, Netherlands; Jorge Fauste, ESA, ESAC, European Space Astronomy Centre, Spain; Manuel Martín-Neira, ESA, ESTEC, European Space Research and Technology Centre, Netherlands; Roger Oliva, ESA, ESAC, European Space Astronomy Centre, Spain; Elena Daganzo-Eusebio, Elena Checa, ESA, European Space Research and Technology Centre, Netherlands</td>
</tr>
<tr>
<td>2:</td>
<td>ANTENNA SPACING AND PATTERN DIFFERENCES: THEIR IMPACT IN MIRAS RECONSTRUCTION ERROR</td>
</tr>
<tr>
<td></td>
<td>Raúl Díez-García, Manuel Martín-Neira, European Space Agency, Spain</td>
</tr>
<tr>
<td>3:</td>
<td>FARADAY ROTATION WITH THE SMAP RADIOMETER</td>
</tr>
<tr>
<td></td>
<td>David Le Vine, NASA Goddard Space Flight Center, United States; Saji Abraham, Wyle Information Systems, United States</td>
</tr>
<tr>
<td>4:</td>
<td>THE ICE CLOUD IMAGER (ICI) PRELIMINARY DESIGN AND PERFORMANCE</td>
</tr>
<tr>
<td></td>
<td>Marc Bergadà, Raquel González, Jaione Martínez, Miguel Ángel Palacios, Massimo Labriola, David Marote, Ana Andrés, José Luis García, Daniel Sánchez-Pascuala, EADS CASA Espacio, SL, Spain</td>
</tr>
<tr>
<td>6:</td>
<td>MICROWAVE IMAGER INSTRUMENT FOR METOP SECOND GENERATION: DESIGN AND VERIFICATION</td>
</tr>
<tr>
<td></td>
<td>Tito Lupi, Fabio Tominetti, Marco Grilli, Walter Di Nicolantonio, CGS S.p.A Compagnia Generale per lo Spazio, Italy; Carine Bredin, Christian Tabart, Franck Bayle, Airbus Defence and Space SAS, France; Enrico Vetrano, Elena De Viti, Lorenzo Scialino, Alfredo Catalani, Space Engineering S.p.A., Italy; Salvatore D’Addio, European Space Agency, Netherlands</td>
</tr>
<tr>
<td>7:</td>
<td>REQUIREMENTS FOR A ROBUST PRECIPITATION CONSTELLATION</td>
</tr>
<tr>
<td></td>
<td>George Huffman, NASA Goddard Space Flight Center, United States; Ralph Ferraro, National Oceanic and Atmospheric Administration, United States; Christopher Kidd, University of Maryland, United States; Vincenzo Levizzani, CNR-Institute of Atmospheric Sciences and Climate, Italy; F. Joseph Turk, NASA Jet Propulsion Laboratory, CalTech, United States</td>
</tr>
</tbody>
</table>
SMALL SATELLITE INSTRUMENTS AND MISSIONS

4: CUBESAT SCALE RECEIVERS FOR MEASUREMENT OF ICE IN CLOUDS .. 42
Pekka Kangaslahti, Erich Schlecht, NASA Jet Propulsion Laboratory, CalTech, United States; Steven Reising, Colorado State University, United States; William Deal, Alex Zamora, Kevin Leong, Northrop Grumman Corporation, United States; Xavier Bosch-Lluis, Mehmet Ogut, Colorado State University, United States; Jonathan Jiang, NASA Jet Propulsion Laboratory, CalTech, United States

SMALL SATELLITE AND UAV INSTRUMENTS AND MISSIONS

1: ANALYSIS AND DESIGN OF MM-WAVE DETECTORS IN SIGE SOC .. 48
RADIOMETERS FOR SPACEBORNE OBSERVATIONS OF SOLAR FLARES
Luca Aluigi, Domenico Zito, Tyndall National Institute, Ireland

4: DEVELOPMENT OF COMPACT HIGH ALTITUDE IMAGER AND SOUNDING ... 54
RADIOMETER (CHAISR)
Reno K. Y. Choi, National Institute of Meteorological Sciences, Republic of Korea; Seunghyun Min, Satrec Initiative Co., Ltd, Republic of Korea; Marian Klein, Boulder Environmental Sciences and Technology, United States; B. J. Sohn, H. S. Jang, Seoul National University, Republic of Korea; Jong-Chul Ha, Young-Jun Cho, Ki-Hun Kim, Eunha Im, National Institute of Meteorological Sciences, Republic of Korea

EXPERIMENTAL CAMPAIGNS

RFI AND SPECTRUM MANAGEMENT

3: PERFORMANCE OF A PROCESSOR FOR ON-BOARD RFI DETECTION AND MITIGATION IN METOPSG RADIOMETERS .. 58
Niels Skou, Steen S. Kristensen, Technical University of Denmark, Denmark; Arhippa Kovanen, Janne Lahtinen, Harp Technologies Ltd, Finland

4: EVALUATION AND COMPARISON OF RFI DETECTION ALGORITHMS .. 62
Janne Lahtinen, Josu Uusitalo, Teemu Ruokokoski, Harp Technologies Ltd, Finland; Jukka Ruoskanen, Finnish Defence Research Agency, Finland

5: COMPARISON OF TIME-FREQUENCY RFI MITIGATION TECHNIQUES IN MICROWAVE RADIOMETRY 68
Jorge Querol Borras, Raul Onrubia, Daniel Pascual, Huyk Park, Adriano Camps, UPC-BarcelonaTech, Spain

RFI AND SPECTRUM MANAGEMENT

1: PERFORMANCE ANALYSIS OF A HARDWARE IMPLEMENTED COMPLEX SIGNAL KURTOSIS RADIO-FREQUENCY INTERFERENCE DETECTOR ... 71
Adam Schoenwald, Damon Bradley, Priscilla Mohammed, Jeffrey Piepmeier, Mark Wong, NASA Goddard Space Flight Center, United States

2: CORRUPTION OF THE TRMM MICROWAVE IMAGER COLD SKY MIRROR DUE TO RFI .. 76
Spencer Farrar, Linwood Jones, University of Central Florida, United States
SOIL MOISTURE

VEGETATION

SOIL AND HYDROLOGY

5: MONITORING BOREAL AND ARCTIC FREEZE/THAW WITH THE FIRST YEAR OF SMAP BRIGHTESS TEMPERATURES
Alexandre Roy, Alain Royer, Université de Sherbrooke, Canada; Chris Derksen, Peter Toose, Environment Canada, Canada; Ludovic Brucker, NASA Goddard Space Flight Center, United States; Arnaud Mialon, Centre d’Etudes Spatiales de la Biosphère (CESBIO), France; Alexandre Langlois, Université de Sherbrooke, Canada; Yann H. Kerr, Centre d’Etudes Spatiales de la Biosphère (CESBIO), France

SOIL MOISTURE AND VEGETATION I

SOIL MOISTURE AND VEGETATION II

4: EVALUATION OF MODELED HIGH RESOLUTION VIRTUAL BRIGHTNESS TEMPERATURES COMPARED TO SPACE-BORNE OBSERVATIONS FOR THE NECKAR CATCHMENT
Pablo Saavedra, Clemens Simmer, Bern Schalge, University of Bonn, Germany

5: AN ASSESSMENT OF SMOS VERSION 6.20 PRODUCTS THROUGH TRIPLE AND QUADRUPLE COLLOCATION TECHNIQUES CONSIDERING ASCAT, ERA/INTERIM LAND, ISMN AND Smap soil moisture data
Fabio Fascetti, Nazzareno Pierdicca, La Sapienza University of Rome, Italy; Luca Pulvirenti, CIMA Research Foundation, Italy; Raffaele Crapolicchio, Serco Sp.A, Italy; Joaquin Muñoz-Sabater, ECMWF, United Kingdom

OCEANS

SEA ICE

1: SEA ICE THICKNESS RETRIEVAL AT L-BAND: COMPARISON BETWEEN RESULTS FROM AQUARIUS AND Smap data
Paolo de Matthaeis, NASA Goddard Space Flight Center, United States

SNOW

1: SNOW ON LAKE ICE: OVERVIEW OF A MULTIYEAR AIRBORNE RADIOMETER DATA COLLECTION PROGRAM AND RELATED MODELING EFFORTS
Martti Hallikainen, Aalto University, Finland; Juha Lemmetyinen, Finnish Meteorological Institute, Finland; Matti Vaaja, Jaakko Seppänen, Jaan Praks, Aalto University, Finland

OCEAN AND ICE

SNOW AND ANTARCTICA

1: DIURNAL VARIATION OF BRIGHTNESS TEMPERATURE OF TERRESTRIAL SNOW DURING SNOWMELT
Martti Hallikainen, Aalto University, Finland; Juha Lemmetyinen, Finnish Meteorological Institute, Finland
PRECIPITATION

3: PRECIPITATION RETRIEVALS FROM PASSIVE MICROWAVE CROSS-TRACK ... 107

SOUNDED INSTRUMENTS
Christopher Kidd, University of Maryland, United States; Sarah Ringerud, USRA, United States; Gail Skofronick-Jackson, George Huffman, NASA Goddard Space Flight Center, United States

SNOWFALL RETRIEVAL AND ATMOSPHERIC MODELING

5: FORWARD MODELING OF AN ATMOSPHERIC SCENARIO: PATH ...110

CHARACTERIZATION IN TERMS OF SCATTERING INTENSITY
Ada Vittoria Bosio, CNR, Italy; Maria P. Cadeddu, Argonne National Laboratory, United States; Ermanno Fionda, Fondazione Ugo Bordoni, Italy; Piero Ciotti, Università degli Studi dell’Aquila, Italy

CLOUDS AND PRECIPITATION

ATMOSPHERE SOUNDING

1: THE NWP CONTRIBUTION FROM THE MICROWAVE SOUNDER (MWS) ON ...115

METOP-SECOND GENERATION
George Tennant, David Hurd, Airbus Defence and Space Ltd, United Kingdom; Ville Kangas, European Space Agency, Netherlands

ATMOSPHERE SOUNDING AND GLOBAL CHANGE

4: ON THE AMOUNT OF INFORMATION CONTENT IN MICROWAVE RADIOMETRY ... 121

FOR WET DELAY CORRECTION
Jose Maria Gual, Adriano Camps, Universitat Politecnica de Catalunya-Barcelona Tech, Spain

INSTRUMENTS AND TECHNIQUES

1: BRIGHTNESS TEMPERATURE SPATIAL CORRELATIONS IN SMOS ANTENNA... 125

Justino Martinez, Antonio Turiel, Verónica González-Gambau, Estrella Olmedo, Institute of Marine Sciences, CSIC, Spain

2: MITIGATION OF CROSS-POLAR ANTENNA PATTERN ERRORS IN SMOS: .. 131

SIMPLIFIED APPROACH
Israel Durán, Universitat Politècnica de Catalunya, Spain; Lin Wu, Key Laboratory of Microwave Remote Sensing, Chinese Academy of Sciences, China; Francesc Torres, Ignasi Corbella, Nuria Duffo, Universitat Politècnica de Catalunya, Spain; Manuel Martín-Neira, European Space Agency, Netherlands

3: SMOS SALINITY RETRIEVALS ENHANCEMENT IN COASTAL AREAS BY JOINT APPLICATION OF NODAL SAMPLING AND CORRECTED CORRELATOR EFFICIENCY .. 135

Verónica González-Gambau, Institute of Marine Sciences, CSIC, Spain; Estrella Olmedo, Antonio Turiel, Justino Martínez, Barcelona Expert Center, Spain; Israel Durán, Universitat Politècnica de Catalunya, Spain

5: SPARSITY-BASED APPROACHES FOR MULTISPECTRAL SUPER-RESOLUTION OF TROPICAL CYCLONE IMAGERY .. 139

Igor Yanovsky, Bjorn Lambregtsen, NASA Jet Propulsion Laboratory, CalTech, United States
INSTRUMENT TECHNOLOGY

INSTRUMENTS AND TECHNIQUES

1: MORPHOLOGICAL TOOLS FOR SPATIAL AND MULTISCALE ANALYSIS OF PASSIVE MICROWAVE REMOTE SENSING DATA
Sébastien Lefèvre, Université Bretagne Sud, France; Erchan Aptoula, Okan University, Turkey

2: ANTENNA ARRAY OPTIMIZATION FOR THE NEW GIMS DEMONSTRATOR
Cheng Zhang, Hao Liu, Key Laboratory of Microwave Remote Sensing, Chinese Academy of Sciences, China; Ji Wu, National Space Science Center, Chinese Academy of Science, China

3: TEMPORAL RESOLUTION ENHANCEMENT OF IMAGE SEQUENCES CAPTURING EVOLVING WEATHER PHENOMENA
Igor Yanovsky, Bjorn Lambrigtsen, NASA Jet Propulsion Laboratory, CalTech, United States

5: IMPROVEMENTS IN ATMOSPHERIC WATER VAPOR CONTENT RETRIEvals OVER OPEN OCEANS FROM SATELLITE PASSIVE MICROWAVE RADIOMETERS
Elizaveta Zabolotskikh, Russian State Hydrometeorological University, Russian Federation; Bertrand Chapron, IFREMER, France

SENSOR CALIBRATION

1: GLOBAL PRECIPITATION MEASUREMENT (GPM) MICROWAVE IMAGER (GMI) ON-ORBIT CALIBRATION
David Draper, David Newell, Ball Aerospace & Technologies Corp., United States; Frank Wentz, Remote Sensing Systems, United States

3: IMPACT OF AMPLITUDE CALIBRATION ERRORS ON SMOS GLOBAL IMAGES
Israel Durán, Ignasi Corbella, Francesc Torres, Nuria Daffo, Universitat Politècnica de Catalunya, Spain; Roger Oliva, Manuel Martín-Neira, European Space Agency, Spain

5: FULLY POLARIMETRIC RADIOMETER CALIBRATION: DETERMINING RETARDATION PLATE'S CHARACTERISTICS
Janne Lahtinen, Harp Technologies Ltd, Finland; Martti Hallikainen, Aalto University, Finland

SENSOR CALIBRATION

4: GEOLOCATION RESULTS FOR THE SMAP PASSIVE INSTRUMENT
Giovanni de Amici, Goddard Space Flight Center, United States; Jeffrey Piepmeier, NASA Goddard Space Flight Center, United States; Jinzheng Peng, Morgan State University, United States; Priscilla Mohammed, NASA Goddard Space Flight Center, United States

6: ADVANTAGES OF CALIBRATION ATTITUDE MANEUVERS FOR SPACEBORNE MICROWAVE RADIOMETER MISSIONS
Spencer Farrar, Linwood Jones, University of Central Florida, United States; David Draper, Ball Aerospace & Technologies Corp., United States

PASSIVE/ACTIVE INSTRUMENTS AND TECHNIQUES

4: POTENTIAL OF MICROWAVE IMAGER COMBINED ACTIVE/PASSIVE FOR THE RETRIEVAL OF SEA SURFACE SALINITY: A NEW MISSION CONCEPT
Xiaobin Yin, Hao Liu, Risheng Yun, Lin Wu, Xingou Xu, Di Zhu, Key Laboratory of Microwave Remote Sensing, Chinese Academy of Sciences, China