TABLE OF CONTENTS

Technical Papers .. iv
Welcome from the General Chair ... xviii
Welcome from the Technical Program Committee Chair .. xix
IEEE IFCS 2016 Organizing Committee .. xx
IEEE IFCS 2016 Technical Program Committee .. xxi
Special Thanks .. xxiii
Exhibitors .. xxv
IEEE IFCS 2016 Awards .. xxx
Student Paper Competition ... xxxi
Memorials .. xxxiii
Future Symposia ... xxxv
Tutorial Schedule .. xxxvi
IEEE Women in Engineering ... xxxvii
Student Career Panel ... xxxvii
Plenary Session Invited Talks ... xxxviii
Tuesday, May 10

Session: A1L-A: Trapped-Ion Optical Clocks

Evaluation of the Blackbody Radiation Shift Uncertainty of NRC’s Sr+ Ion Clock

Bin Jian{1}, Pierre Dubé{1}, Alan Madej{2}
{1}National Research Council of Canada, Canada; {2}York University, Canada

Introduction of Software-Defined Receivers in Two-Way Satellite Time and Frequency Transfer

Yi-Jiun Huang{3}, Wen-Hung Tseng{3}, Shinn-Yan Lin{3}, Sung-Hoon Yang{1}, Miho Fujieda{2}
{1}Korea Research Institute of Standards and Science, Korea, South; {2}National Institute of Information and Communications Technology, Japan; {3}Telecommunication Laboratories, Chunghwa Telecom, Co., Ltd., Taiwan

Session: A1L-B: Two-way Time & Frequency Transfer Systems

Global Internet Access from Space for Humanitarian Applications

Timothy Lee
Boeing, United States

Validity of Cross-Spectrum PN Measurement

Ulrich Rohde{2}, Ajay Poddar{4}, Karl-Heinz Hoffmann{1}, Enrico Rubiola{3}
{1}Bayerische Akademie, Munich, Germany; {2}BTU Cottbus, Germany; {3}FEMTO-ST Institute, Besancon, France; {4}Synergy Microwave Corp, United States

Improved Optically SILPLL Based Forced Oscillators

Tianchi Sun{1}, Afshin Daryoush{1}, Ajay Poddar{2}, Li Zhang{2}, Ulrich Rohde{2}
{1}Drexel University, United States; {2}Synergy Microwave Corp, United States

Power Splitter Thermal Noise Correlations in Cross-Spectrum Noise Measurements

Archita Hati{1}, Craig Nelson{1}, C.F. Magnus Danielson{2}
{1}NIST, United States; {2}Net Insight AB, Sweden

Session: A1L-C: Phase Noise and OEO’s

Ultra low noise 10 GHz dual loop optoelectronic oscillator: experimental results and simple model Oriane

O. Lelièvre{3}, Vincent Crozatier{4}, Ghaya Baili{4}, Perrine Berger{4}, Grégoire Pillet{4}, Daniel Dolfi{4}, Loïc Morvan{4}, Fabienne Goldfarb{1}, Fabien Bretenaker{1}, Olivier Lartigue{1}
{1}Laboratoire Aimé Cotton, France; {2}Laboratoire d’Analyse et d’Architecture des Systèmes, France; {3}Thales Research & Technology, France; {4}Thales Research & Technology, France

Session: A2L-A: FOCUS SESSION: Space Clocks

Space Passive Hydrogen Maser -A Passive Hydrogen Maser for Space Applications-

Jing Li, Jihong Zhang, Yingnan Bu, Chunyan Cao, Wenming Wang, Hefei Zheng
Beijing Institute of Radio Metrology and Measurement, China

Session: A2L-B: Spectroscopic Sensors

High Speed Mid-Infrared Detectors Based on MEMS Resonators and Spectrally Selective Metamaterials

Michael Breen, Will Streyer, Ruochen Lu, Anming Gao, Daniel Wasserman, Songbin Gong
University of Illinois, United States

Optomechanical nanoresonator readout with optical downmixing

Luca Leoncinof{1}{3}, Marc Sansa{1}{3}, Geoffrey Scherrer{1}{3}, Marc Gely{1}{3}, Henri Blanc{1}{3}, Olivier Lartigue{1}{3}, Karen Ribaud{1}{3}, Philippe Grosse{1}{3}, Jean-Marc Fedeli{1}{3}, Pierre Labeye{1}{3}, Pierre Alain{2}, Eduardo Gil-Santos{2}, Ivan Favero{2}, Laurent Duraffourg{1}{3}, Guillaume Jourdan{1}{3}, Sébastien Hentz{1}{3}
{1}CEA, LETI, MINATEC Campus, France; {2}MPQ Paris Diderot, France; {3}Univ. Grenoble Alpes, France
A microfluidic platform for glucose sensing using Broadband Ultrasound Spectroscopy ... 43
Megha Agrawal, Ashwin Seshia
University of Cambridge, United Kingdom

Session: A2L-C: FOCUS SESSION: Quartz Resonators, Materials, & Oscillators

A Review of the Timing and Filtering Technologies in Smartphones .. 48
C.S. Lam
Skyworks Solutions, Inc., United States

SH-SAW Biosensor on Quartz ... 54
Mikihiro Goto{1}, Hiromi Yatsuda{1}, Jun Kondoh{2}
{1}Japan Radio Co., Ltd., Japan; {2}Shizuoka University, Japan

Session: A3P-D: Student Paper Competition

Observation of intrinsic mode splitting in a standalone micromechanical resonator ... 60
Adarsh Ganesan, Cuong Do, Ashwin Seshia
University of Cambridge, United Kingdom

An Analong Micro-electromechanical XOR .. 64
Mohammad Mahdavi, Alirea Ramezany, Harini Ravi, Siavash Pourkamali
University of Texas at Dallas, United States

Orientation-Dependent Acceleration Sensitivity of Silicon-Based MEMS Resonators ... 68
Beheshte Khazaeeili, Reza Abdolvand
University of Central Florida, United States

RF-Powered Micromechanical Clock Generator .. 73
Ruonan Liu, Jalal Naghsh Nilchi, Clark Nguyen
University of California at Berkeley, United States

Phase Noise Measurements of High Overtone Bulk Acoustic Wave Resonators .. 79
Etienne Vaillant{3}, Guillaume Combe{3}, Valérie Petrini{3}, Gilles Martin{3}, Joël Imbaud{3}, Thomas Baron{3}, Fabrice
Sthal{3}, François-Xavier Esnault{1}, Gilles Cibiel{1}, Jean-Marc Lesage{2}
{1}CNES, France; {2}DGA, France; {3}FEMTO-ST, France

Area Optimized CORDIC-Based Numerically Controlled Oscillator for Electrical Bio-Impedance Spectroscopy ... 83
Paulo Roberto Bueno de Carvalho, José Alejandro Amaya Palacio, Wilhlemus Van Noije
University of São Paulo, Brazil

Improved Optically SILPLL Based Forced Oscillaltors .. 89
Tianchi Sun{1}, Afshin Daryoush{1}, Ajay Poddar{2}, Li Zhang{2}, Ulrich Rohde{2}
{1}Drexel University, United States; {2}Synergy Microwave Corp, United States

Colpitts Oscillator: A New Criterion of Energy Saving for High Performance Signal Sources .. 92
Anisha Apte{1}, Ajay Poddar{3}, Ulrich Rohde{1}, Enrico Rubiola{2}
{1}Brandenburg Technical University Cottbus, Germany; {2}FEMTO-ST Institute, France; {3}Synergy Microwave Corp.,
New Jersey, United States

Research on Glowworm Swarm Optimization Localization Algorithm Based on Wireless Sensor Network 99
Ting Zeng, Yu Hua, Xian Zhao, Tao Liu
National Time Service Center, Chinese Academy of Sciences, China

A microfluidic platform for glucose sensing using Broadband Ultrasound Spectroscopy ... 104
Megha Agrawal, Ashwin Seshia
University of Cambridge, United Kingdom
Characterization of Thin Film Lead Zirconate Titanate (PZT) Multimode Piezoelectric Cantilevers Vibrating in Ultrasonic Band .. 109
Xu-Qian Zheng{1}, Luz Sanchez{2}, Jeffrey Pulskamp{2}, Ronald Polcawich{2}, Philip Feng{1}
{1}Case Western Reserve University, United States; {2}U.S. Army Research Laboratory, United States

High Speed Mid-Infrared Detectors Based on MEMS Resonators and Spectrally Selective Metamaterials 112
Michael Breen, Will Streyer, Ruochen Lu, Anming Gao, Dan Wasserman, Songbin Gong
University of Illinois, United States

Miniaturized Aerosol Impactor with Integrated Piezoelectric Thin Film Resonant Mass Balance 118
Maribel Maldonado-Garcia{1}, Mohammad Mahdavi{1}, Siavash Pourkamali{1}, James Wilson{2}
{1}University of Texas at Dallas, United States; {2}University of Denver, United States;

Session: A3P-E: Resonator Theory, Materials & Processing Techniques

Improving Manufacturability of FBAR filters on 200mm wafers .. 122
Sergey Mishin, Yury Oshmyansky
Advanced Modular Systems, Inc., United States

Analysis of Spurious Modes Suppressed on Inverted Mesa Quartz Resonators .. 126
Zi-Gui Huang{1}, Jhe-Wei Li{1}, Chien-Cheng Yang{2}, Min-Wei Weng{2}
{1}National Formosa University, Taiwan; {2}Taitien Electronics Co., Ltd., Taiwan

Development of Small BVA Quartz Resonator ... 130
Wei Cui, Lihu Pan, Lin Ye, Weiping Zhou, Wengiang Zheng, Zuoyu Wang, Xiaoguang Liu, Zhifeng Qiao
Beijing Institute of Radio Metrology and Measurement, China

Impact of Coatings on the Quality Factor of a Quartz Crystal Resonator at Liquid Helium Temperature 133
Samuel Delégelse{3}, Leonhard Neuhaus{3}, Thibaut Karassoulloff{3}, Tristan Briant{3}, Pierre-François Cohadon{3},
Antoine Heidmann{3}, V. Dolique{1}, L. Pinard{1}, C. Michel{1}, G. Cagnoli{1}*
{1}CNRS/IN2P3, France; {2}FEMTO-ST, France; {3}LKB, France; {4}UWA, Australia; *Université Claude Bernard Lyon I, France

Thickness Shear Vibration of ZnO Thin Film with Dissipation ... 136
Jianke Du, Xian Fu, Jia Lou, Bin Huang, Ji Wang
Ningbo University, China

Anchor Loss Dependence on Electrode Materials in Contour Mode Resonators 140
Andrea Lozzi{1}, Luis Guillermo Villanueva{1}, Ernest Ting-Ta Yen{2}
{1}École polytechnique fédérale de Lausanne, Switzerland; {2}Texas Instruments Inc, United States

Single- and Few-Layer Transfer-Printed CVD MoS2 Nanomechanical Resonators with Enhancement by Thermal Annealing ... 144
Hao Jia{1}, Rui Yang{1}, Ariana Nguyen{2}, Sahar Naghibi{2}, Sarah Bobek{2}, Michelle Wurch{2}, Chun-Yu Huang{2},
Ludwig Bartels{2}, Philip Feng{1}
{1}Case Western Reserve University, United States; {2}University of California, Riverside, United States

SAW Reflective Delay Line Multi-transit Analysis .. 147
Donald Malocha
University of Central Florida, United States

Piezoelectric Coefficients of AlScN Thin Films in Comparison ... 151
Ramin Matloub, Mahmoud Hadad, Paul Muralt
EPFL, Switzerland

Session: A3P-F: Oscillators, Synthesizers, Noise & Circuit Techniques I

A Novel Voltage Controlled Temperature Compensated Crystal Oscillator for Eliminating the Trim Effect 153
Qingsong Bai, Xianhe Huang, Dong Liu
University of Electronic Science and Technology of China, China
Investigation of new ultra low noise oscillation circuit based on pulse excitation technology
Alexandr Lepetaev, Anatoly Kosykh
Omsk state technical university, Russia

Development of High-Stability Miniaturized Oven Controlled Crystal Oscillator
Wan-Lin Hsieh, Chia-Wei Chen, Chen-Ya Weng, Che-Lung Hsu, Seng-Hsiang Kao, Chien-Wei Chiang
TXC Corporation, Taiwan

Low Power Frequency Subtractor for Temperature-Compensated Resonant Sensors
Cuong Do, Ashwin Seshia
University of Cambridge, United Kingdom

Temperature and Trim Effect Compensation of a VCXO Using a Multi-Dimensional Segmented Polynomial Array
John Esterline, Alan Snavely
Esterline Research and Design, United States

Improvement of Short-Term Frequency Stability of the Chip Scale Atomic Clock
Tomas Bagala(1), Adam Fibich(1), Peter Kubinec(1), Vladimir Stofaniak(2)
(1)FEEI SUT, Slovakia; (2)FEEI SUT/SAS, Slovakia

A Novel UWB Balun: Application in 5G Systems
Ajay Poddar(4), Ulrich Rohde(1), Vivek Madhavan(3), Shiban Koul(2)
(1)BTU Cottbus, Germany; (2)Indian Institute of Technology Delhi, India; (3)Synergy Microwave Corp, United States; (4)Synergy Microwave Corp., United States

Frequency Reference for Crystal Free Radio
Osama Khan, Brad Wheeler, David Burnett, Filip Maksimovic, Sahar Mesri, Kris Pister, Ali Niknejad
University of California, Berkeley, United States

A Four Point Mount 5X7 mm High Reliability Crystal Oscillator for Extreme Environmental Applications
George Maronich, Richard Duong, Annamalai Vishwanathan
Q-Tech Corporation, United States

Session: A3P-G: Microwave Clocks I

Frequency shift mitigation in a cold-atom CPT clock
Xiaochi Liu(1), Eugene Ivanov(2), John Kitching(1), Elizabeth Donley(1)
(1)NIST, United States; (2)UWA, Australia

Characterization & Consequences of GPS Rb Clock Lamplight Variations
James Camparo(2), Valerio Formichella(1), Iliaria Sesia(1), Giovanna Signorile(1), L. Galleani(3), Patrizia Tavella(1)
(1)INRiM, Italy; (2)The Aerospace Corporation, United States, (3)Department of Electronics and Telecommunications, Politecnico di Torino

A Vapor Cell Atomic Clock of 87Rb Based on Ramsey-CPT with Dispersion Detection
Pengfei Cheng(2), Xiaolin Sun(2), Chi Xu(2), Chao Gao(2), Lu Zhao(1), Jianwei Zhang(2), Lijun Wang(2)
(1)Beihang University, China; (2)Tsinghua University, China

Advances of Chip-Scale Atomic Clock in Peking University in 2015
Jianye Zhao, Yaolin Zhang, Shuangyou Zhang, Jianxiao Leng, Zhong Wang
Peking University, China

Acousto-Optic Modulators in Raman-Nath Diffraction Regime as Phase Modulators in Modulation Transfer Spectroscopy
Viacheslav Baryshev, Viacheslav Epikhin, Igor Blinov, Sergey Donchenko
FGUP VNIIFTRI, Russia

Progress of the dual-traps microwave frequency standard based on 113Cd+ ions
Yani Zuo, Kai Miao, Chao Gao, Jianwei Zhang, Lijun Wang
Tsinghua University, China
Progress Toward a CPT-Ramsey Clock Based on a Continuous Cold Cesium Beam .. 213
Xueshu Yan, Jiaqiang Huang, Chenfei Wu, Chao Gao, Jianwei Zhang, Lijun Wang
Tsinghua University, China

Session: A3P-H: Atomic Sensors

Long-term stability dependence of the quantum magnetometers dual scheme on the correlation of their double resonance signals .. 215
Alexey Baranov, Sergey Ermak, Roman Smolin, Vladimir Semenov
Peter the Great St. Petersburg Polytechnic University, Russia

Dead-zone Free Multi-beam Atomic Sensor for 4He Magnetometer .. 219
Wei Gong, Haidong Wang, Teng Wu, Zaisheng Lin, Wenhao Li, Xiang Peng, Jingbiao Chen, Hong Guo
Peking University, China

Unshielded scalar magnetometer based on nonlinear magneto-optical rotation with amplitude modulated light ... 223
Wenhao Li{2}, Xiang Peng{2}, Songjian Li{2}, Chuanfei Liu{2}, Hong Guo{2}, Pingwei Lin{1}, Wei Zhang{1}
{1}National Institute of Metrology (NIM), China; {2}Peking University, China

Session: A3P-J: Timekeeping, Time & Freq Transfer, GNSS Apps I

A New Steering Strategy For UTC(NTSC) Based on Hydrogen Maser ... 227
Shuhong Zhao, Shaowu Dong, Lih Qu, HaiBo Yuan, Shanshan Bai, Wenjun Wu, Xiang Wang, Dongshan Yin
National Time Service Center, Chinese Academy of Sciences, China

Propagation Frequency Shifts and Impact on Time and Frequency Transfer and Gravity Wave Detection 232
Michael Underhill
Underhill Research Limited, United Kingdom

Study of the monitored method of atomic clock data exception based on the model of dynamic neural network
time series-NAR .. 237
Xiang Wang, Huijie Song, Shanshan Bai, Ting Zeng, Shuhong Zhao, Wenjun Wu, Wei Li, Yongxin Liu
National Time Service Center, Chinese Academy of Science NTSC, China

On Systematic Uncertainties in UTC ...241
Demetrios Matsakis
U.S. Naval Observatory, United States

Session: A3P-K: Optical Frequency Standards & Applications I

Optical sampling ADC based on dual optical frequency combs with rubidium frequency reference 245
Hongling Meng, Jianxiao Leng, Jianye Zhao
Peking University, China

Research on Cs Active Faraday Optical Frequency Standard with 459 nm Pumping ... 248
Xiaogang Zhang, Zhaojie Jiang, Zhiming Tao, Haosen Shang, Chi Zhang, Jingbiao Chen
Peking University, China

A Brewster’s angle designed Electro-Optic Modulator to reduce residual amplitude modulation 251
Zhaoyang Tai, Lulu Yan, Yanyan Zhang, Wenyu Zhao, Xiaofei Zhang, Haifeng Jiang, Shougang Zhang
National Time Service Center, China

Optical comb frequency-controlled by rotating polarization state .. 254
Yanyan Zhang, Lulu Yan, Songtiao Fan, Maoqiang Chen, Wenyu Zhao, Wenge Guo, Shougang Zhang, Haifeng Jiang
National Time Service Center, China

The implementation of optical frequency standard based on direct frequency comb and Rb two-photon transitions .. 257
Jianxiao Leng, Shuangyou Zhang, Yaolin Zhang, Jianye Zhao
Peking University, China
A Compact Optical Clock Scheme Based on Caesium Atomic Beam

Shengnan Zhang(2), Xiaogang Zhang(2), Zhaojie Jiang(2), Duo Pan(2), Xiang Peng(2), Haijun Chen(1), Jingbiao Chen(2), Hong Guo(2)
(1) Beijing Vacuum Research Institute, China; (2) Peking University, China

Rb-based optical frequency reference at 1572 nm

William Moreno, Renaud Matthey, Florian Gruet, Pierre Brochard, Stéphane Schilt, Gaetano Miletì
Université de Neuchâtel, Laboratoire Temps-fréquence, Switzerland

Detailed problems in cesium active optical clock

Duo Pan, Xiaobo Xue, Jingbiao Chen
Peking University, China
Wednesday, May 11

Session: B1L-A: Microwave Clocks and Precision Measurements

Present status of Primary Frequency Standards at NPL, India

Aishik Acharya, Poonam Arora, Vattikonda Bharath, Shuchi Yadav, Ashish Agarwal, Amitava Sen Gupta
CSIR National Physical Laboratory, India

Design Innovations Towards Miniaturized GPS-quality Clocks

Jennifer Sebby-Strabley, Chad Fertig, Ken Salit*, Karl Nelson, Rob Compton, Terry Stark*, Chad Langness*, Robin Livingston*
Honeywell Aerospace, United States
*Honeywell Automation and Control Solutions

Session: B1L-B: GNSS Systems

Progress on absolute calibrations of GNSS reception chains at CNES

Jerome Delporte, David Valat, Thomas Junique, Francois-Xavier Marmet
CNES, France

Long-Term GPS Carrier-Phase Time Transfer Noise: A Study based on Seven GPS Receivers at NIST

Jian Yao, Judah Levine
NIST, United States

Galileo In-Orbit Satellite Clocks Performance Assessment at NTSC

Huijun Zhang{2}, Xiaohui Li{1}, Feng Zhu{1}, BiiYun Yu{2}
{1}National Time Service Center, China; {2}University of Chinese Academy of Sciences, China

Investigating a Null Test of the Einstein Equivalence Principle with Clocks at Different Solar Gravitational Potentials

Demetrios Matsakis
USNO, United States

Session: B1L-C: FOCUS SESSION: Novel Micro Resonators and Applications

Turn-Key Operation and Stabilization of Kerr Frequency Combs

Andrey Matsko, Anatoliy Savchenkov, Danny Eliyahu, Wei Liang, Elijah Dale, Vladimir Ilchenko, Lute Maleki
OEwaves Inc., United States

Session: B2L-A: FOCUS SESSION: Optical Frequency Control (DODOS)

Chip-scale Optical Resonator Enabled Synthesizer: (CORES) Miniature systems for optical frequency synthesis

{1}Aurion, United States; {2}Caltech, United States; {3}EPFL, Switzerland; {4}NIST, United States; {5}UCSB, United States; {6}UVA, United States

Session: B2L-B: FOCUS SESSION: 50 Years of the Allan Deviation

Memory-efficient high-speed algorithm for multi-r PDEV analysis

Magnus Danielson{2}, Francois Vernotte{3}, Enrico Rubiola{1}
{1}CNRS FEMTO-ST Institute, Dept Time and Frequency, France; {2}Net Insight AB, Sweden; {3}Observatory THETA/UTINAM, UBFC/UGC and CNRS, France

Three-Cornered Hat versus Allan Covariance

Francois Vernotte{3}, Claudio Eligio Calosso{2}, Enrico Rubiola{1},
{1}CNRS/Femto-ST, France; {2}INRIM/Physics Metrology Division, Italy; {3}UBFC/UGC/Observatory THETA/UTINAM, France
<table>
<thead>
<tr>
<th>Session: B2L-C: Novel Resonant Circuits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RF-Powered Micromechanical Clock Generator</td>
<td>Ruonan Liu, Jalal Naghsh Nilchi, Clark T.-C. Nguyen</td>
</tr>
<tr>
<td>University of California at Berkeley, United States</td>
<td></td>
</tr>
<tr>
<td>An Analong Micro-electromechanical XOR</td>
<td>Mohammad Mahdavi, Alireza Ramezany, Harini Ravi, Siavash Pourkamali</td>
</tr>
<tr>
<td>University of Texas at Dallas, United States</td>
<td></td>
</tr>
<tr>
<td>Observation of intrinsic mode splitting in a standalone micromechanical resonator</td>
<td>Adarsh Ganesan, Cuong Do, Ashwin Seshia</td>
</tr>
<tr>
<td>University of Cambridge, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Piezoelectric Disk Flexure Resonator with 1 dB Loss</td>
<td>Ryan Rudy(2), Jeffrey Pulskamp(2), Sarah Bedair(2), Jonathan Puder(1), Ronald Polcawich(2),</td>
</tr>
<tr>
<td>{1}Oak Ridge Institute for Science and Education, United States; {2}US Army Research Laboratory, United States</td>
<td></td>
</tr>
<tr>
<td>Ferroelectric PZT MEMS HF/VHF Resonators/Filters</td>
<td>Jeffrey Pulskamp, Ryan Rudy, Sarah Bedair, Jonathan Puder, Michael G. Breen, Ronald Polcawich</td>
</tr>
<tr>
<td>US Army Research Laboratory, United States</td>
<td></td>
</tr>
<tr>
<td>Thick Aluminum Nitride Contour-Mode Resonators Mitigate Thermomelastic Damping</td>
<td>Cristian Cassella(2), Gianluca Piazza(1)</td>
</tr>
<tr>
<td>{1}Carnegie Mellon University, United States; {2}Northeastern University, United States</td>
<td></td>
</tr>
<tr>
<td>Improvement of Methods in Analyzing The Propagation of Plate Waves in FBARs</td>
<td>Ngoc Nguyen(1), Stig Rooth(2), Agne Johannessen(1), Ulrik Hanke(1)</td>
</tr>
<tr>
<td>{1}University College of Southeast Norway, Norway; {2} Kongsberg Norspace AS, Norway</td>
<td></td>
</tr>
<tr>
<td>An Ovenized CMOS-MEMS Oscillator with Isothermal Resonator and Sub-mW Heating Power</td>
<td>Chun-You Liu, Ming-Huang Li, Chao-Yu Chen, Sheng-Shian Li</td>
</tr>
<tr>
<td>National Tsing Hua University, Taiwan</td>
<td></td>
</tr>
<tr>
<td>New Radio-Frequency resonators based on Periodically Poled Lithium Niobate thin film and ridge structures</td>
<td>Florent Bassignot(2), Gregory Haye(2), Fabien Henrot(3), Ludovic Gauthier-Manuel(3), Blandine Guichardaz(3), Hervé Maillote(3), Sylvain Ballandras(4), Emilie Courjon(4), Jean-Marc Lesage(1)</td>
</tr>
<tr>
<td>{1}DGA/CELAR, France; {2}Femto-Engineering, France; {3}Femto-st, France; {4}Frec’N’Sys, France</td>
<td></td>
</tr>
<tr>
<td>Ultra Wideband Balanced Fan-Shaped Three-Transducer Low-Loss Leaky SAW Filters</td>
<td>Sergei Doberstein</td>
</tr>
<tr>
<td>ONIIP, Russia</td>
<td></td>
</tr>
<tr>
<td>Solidly Mounted Resonator Using Shear Horizontal Mode Plate Wave in LiNbO3 Plate</td>
<td>Michio Kadota, Shuji Tanaka</td>
</tr>
<tr>
<td>Tohoku University, Japan</td>
<td></td>
</tr>
<tr>
<td>High Velocity Lamb Waves in LiTaO3 Thin Plate for High Frequency Filters</td>
<td>Najoua Assila, Michio Kadota, Yuji Ohashi, Shuji Tanaka</td>
</tr>
<tr>
<td>Tohoku University, Japan</td>
<td></td>
</tr>
<tr>
<td>Cross-Sectional Lamé Mode Filters for UHF Wideband Applications</td>
<td>Cristian Cassella, Guofeng Chen, Zhenyun Qian, Gwendolin Hummel, Matteo Rinaldi</td>
</tr>
<tr>
<td>Northeastern University, United States</td>
<td></td>
</tr>
<tr>
<td>Kotelnikov IRE RAS, Russia</td>
<td></td>
</tr>
</tbody>
</table>
Passive Temperature Compensation Method in Nonlinear NEMS Resonators Based on the Nonlinear Duffing Effect .. 374
Guillermo Sobreviela{2}, Martin Riverola{2}, Arantxa Uranga{2}, Nuria Barniol{2}, Eloi Marigó{1}, Mohanraj Soundaran-Pandian{1}
{1}SilTerra, Malaysia; {2}Universidad Autónoma de Barcelona, Spain

Intrinsic Feedthrough Current Cancellation in a Seesaw CMOS-MEMS Resonator for Integrated Oscillators 378
Martin Riverola, Guillermo Sobreviela, Arantxa Uranga, Nuria Barniol
Universitat Autònoma de Barcelona, Spain

A SAW Filter Using SiO2/LiNbO3 Layered-Structure Phononic Crystals .. 382
Jia-Hong Sun, Yuan-Hai Yu
Chang Gung University, Taiwan

Design and Characterization of Micromachined Piezoelectric Acoustic Flexural Plate Wave Devices 385
Nicole Weckman, Ashwin Seshia
University of Cambridge, United Kingdom

Measurement of AM-to-PM Conversion in a Quartz-MEMS Resonator .. 390
Archita Hati, Craig Nelson, David Howe
NIST, United States

Session: B3P-F: Oscillators, Synthesizers, Noise & Circuit Techniques II

High spectral purity OEO (Opto-Electronic Oscillator) for high dynamic environment platform ... 394
Jean-Marc Lesage, Christophe Hallet, Mathieu Le Pipec
DGA, France

A Quality Factor Enhanced Dual-loop Optoelectronic Oscillator .. 398
Wen-Hung Tseng{2}, Kai-Ming Feng{1}
{1}Institute of Communications Engineering, National Tsing Hua University, Taiwan; {2}Telecommunication Laboratories, Chunghwa Telecom, Taiwan

Coupled optoelectronic oscillators: design and performance comparison at 10 GHz and 30 GHz 403
Vincent Auroux{1}, Arnaud Fernandez{1}, Olivier Llopis{1}, Patrick Beaure d’Augères{2}, Alexandre Vouzellaud{2}
{1}LAAS-CNRS, France; {2}OSAT, France

Oscillator Resistor Noise Optimisation Paradigm ... 407
Michael Underhill
Underhill Research Limited, United Kingdom

The Impact of Thermal Energy on Cross Spectrum PM Noise Measurements .. 412
Yannick Gruson{1}, Vincent Giordano{1}, Ulrich L. Rohde{2}, Enrico Rubiola{1}
{1}Femto-ST Institute, France; {2}Synergy Microwave Corporation, United States

Phase Noise Measurements of High Overtone Bulk Acoustic Wave Resonators .. 417
Etienne Vaillant{3}, Guillaume Combe{3}, Valérie Petrinii{3}, Gilles Martin{3}, Joël Imbaud{3}, Thomas Baron{3}, Fabrice Sthal{3}, François-Xavier Esnault{1}, Gilles Cibiel{1}, Jean-Marc Lesage{2}
{1}CNES, France; {2}DGA, France; {3}FEMTO-ST, France

Precise Phase and Frequency Measurement using All Digital Dual Mixer Time Difference Technique 421
Aishik Acharya, Poonam Arora, Amitava Sen Gupta
CSIR-National Physical Laboratory, India

Precise Phase and Frequency Measurement using All Digital Dual Mixer Time Difference Technique 421
Aishik Acharya, Poonam Arora, Amitava Sen Gupta
CSIR-National Physical Laboratory, India

Phase Noise Measurements of High Overtone Bulk Acoustic Wave Resonators .. 417
Etienne Vaillant{3}, Guillaume Combe{3}, Valérie Petrinii{3}, Gilles Martin{3}, Joël Imbaud{3}, Thomas Baron{3}, Fabrice Sthal{3}, François-Xavier Esnault{1}, Gilles Cibiel{1}, Jean-Marc Lesage{2}
{1}CNES, France; {2}DGA, France; {3}FEMTO-ST, France

Compact photonic oscillator employing FP resonator based on travelling-waveguide-type EO modulator 423
Jian Dai, Gejun Xu, Xingyuan Xu, Yitang Dai, Feifei Yin, Yue Zhou, Jianqiang Li, Kun Xu
Beijing University of Posts and Telecommunications, China

Magnetic state selection impact on double resonance effect in H-maser ... 425
Michael Aleynikov
FGUP VNIIFTRI, Russia
Session: B3P-G: Microwave Clocks II

An Atomic Clock Based on Synchronously Stimulated Coherent Population Beating .. 428
Yuxin Zhuang, Xiaona Zhao, Ermeng Hu, Li Liu, Zhong Wang
Peking University, China

Dual-mode Ramsey cavity for a dual Rb/Cs atomic clock ... 432
Fuyu Sun, Xianhe Huang, Qingsong Bai
University of Electronic Science and Technology of China, China

Design and Experimental Study of the Hydrogen Source of Space Passive Hydrogen Maser .. 435
Wenming Wang, Guohui Shen, Hefei Zheng, Jing Li
Beijing Institute of Radio Metrology and Measurement, China

The study of second-order Zeeman shift of the cesium fountain clock NTSC-F1 ... 439
Xinliang Wang, Jun Ruan, Dandan Liu, Hui Zhang, Rui Lin, Jiang Chen, Yong Guan, Fengxiang Yu, Junru Shi, Tao Liu, Shougang Zhang
National Time Service Center, Chinese Academy of Science, China

Progress in Brazilian cesium atomic fountain-BrCsF ... 442
Andres David Rodriguez{2}, Vanderlei Salvador Bagnato{2}, Caio Bueno{1}, Rodrigo Duarte Pechonieri{1}, Müller S. T.{1},
Daniel Varela Magalhães{1}
{1}Escola de Engenharia de São Carlos, Brazil; {2}Instituto de Física de São Carlos, Brazil

Using QCM for field measurement of liquid viscosities in a novel mass-sensitivity-base method 446
Qingsong Bai, Jianguo Hu, Xianhe Huang, Hongyuan Huang
University of Electronic Science and Technology of China, China

Session: B3P-H: Sensors & Transducers

Sensitivity Improvement of SAW Pressure Sensors Based on Finite Element Analysis ... 449
Juan Ren, Kanat Anurakparadorn, Zhuangde Jiang, Xueyong Wei
Xi'an Jiaotong University, China

Feasibility Study of Liquid-Level Detection by Using a Trapped-Energy Resonator .. 453
Ken Yamada, Yuki Kunii
Tohoku-Gakuin University, Japan

Square-Extensional Mode Piezoelectric-on-Silicon Resonator for Physical Measurements of Liquids 455
Abid Ali{1}, Joshua E.-Y. Lee{2}
{1}Department of Electronic Engineering, City University of Hong Kong, Hong Kong; {2}State Key Laboratory of Millimeter Waves, City University of Hong Kong, Hong Kong

SAW Passive Multi-Sensor System: Status and Future Opportunities ... 459
Donald Malocha, James Humphries, Arthur Weeks, Figueroa, J.
University of Central Florida, United States

Characterization of materials for the design of wireless SAW sensors in a high temperature environment 464
Guillaume Wong{2}, Thomas Baron{2}, Lilia Arapan{2}, Bernard Dulmet{2}, Jean-Marc Lesage{1}
{1}DGA, France; {2}FEMTO-ST, France

Design of a Love wave mode device for use in a microfabricated glucose sensor .. 469
Trinh Bich Hoang, Ulrik Hanke, Erik Johannessen, Agne Johannessen
University College of Southeast Norway, Norway

Design of an Oscillator Circuit for Langasite (LGS) Based Resonant Pressure – Temperature Sensor 474
Suresh Kaluvan, Haifeng Zhang
University of North Texas, United States

Determination and Analysis of the Optimal Prediction Method of GNSS System Time Offset 480
Lin Zhu, Huijun Zhang, Xiaohui Li, Ye Ren, Yinhua Liu
National Time Service Center, China
Session: B3P-J: Timekeeping, Time & Freq Transfer, GNSS Apps II

The Application of Phase Smoothed Pseudo-range in Beidou Satellite clock evaluation ... 485
JiHai Zhang, HaiBo Yuan, Wei Guang, Wei Li, ShuHong Zhao, HuiJie Song
Nation Time Service Center of Chinese Academy of Sciences, China

The Evaluation of BeiDou Time Transfer performance ... 489
Wei Guang, Haibo Yuan, Shaowu Dong, Shuhong Zhao, Jihai Zhang, Yajing Wei
National Time Service Center, China

The Influence of Antenna Direction on TWSTFT ... 493
Yuejuan Jing{2}, Huijie Song{2}, Wei Guang{2}, Shaowu Dong{2}, Huanxin Li{1}, Hong Zhang{1}, Haibo Yuan{2}, Zhao Shuhong{2}, Jihai Zhang{1}
{1}National Time Service Center, China; {2}National Time Service Center,CAS, China

Practical Evaluation of a 50 km Fiber Link Utilizing a Commercial Modem 497
Corey Barnes, Archita Hati, Craig Nelson, David Howe
NIST, United States

The method on determining invisible satellite-ground clock difference with Inter-satellite-link 501
Weijin Qin, Pei Wei, XuHai Yang
NTSC,CAS, China

A Transportable Calcium Atomic Beam Optical Clock ... 506
Xiaogang Zhang{2}, Shengnan Zhang{2}, Zhaojie Jiang{2}, Min Li{2}, Haosen Shang{2}, Fei Meng{2}, Wei Zhuang{1}, Aimin Wang{2}, Jingbiao Chen{2}
{1}National Institute of Metrology, China; {2}Peking University, China

Study of a fully vacuum-sealed calcium atomic beam tube for optical frequency standard 510
Haijun Chen{1}, Youhuan Liang{1}, Jianqing Yang{1}, Zhongzheng Liu{1}, Jinjun Feng{1}, Xiaogang Zhang{2}, Shengnan Zhang{2}, Jingbiao Chen{2}
{1}Beijing Vacuum Electronics Research Institute, China; {2}Peking University, China

Self-Delay-Line-Referenced Optical Frequency Comb for Low-Phase Noise Microwave Generation 514
James Cahill{2}, Weimin Zhou{2}, Curtis Menyuk{1}
{1}UMBC, United States; {2}US Army Research Laboratory, United States

Cesium Faraday Anomalous Dispersion Optical Filter with Buffer Gas ... 517
Junyu Xiong{2}, Longfei Yin{2}, Hong Guo{2}, Bin Luo{1}
{1}Beijing University of Posts and Telecommunications, China; {2}Peking University, China

An excited state Voigt optical filter at 1.5 μm ... 520
Longfei Yin{2}, Junhui Li{2}, Junyu Xiong{2}, Hong Guo{2}, Bin Luo{1}
{1}Beijing University of Posts and Telecommunications, China; {2}Peking University, China

The stiffness analysis of vibration-insensitive spherical optical reference cavities 523
Guanjun Xu, Linbo Zhang, Long Chen, Dongdong Jiao, Jun Liu, Tao Liu
National Time Service Center, China
Thursday, May 12

Session: C1L-A: Optical Metrology and Applications

Ultra-low phase noise frequency-comb-based microwave generation and characterization ... 525
Daniele Nicolodi{4}, Romain Bouchand{4}, M. Lours {4}, Xiaopeng Xie{4}, Yann Le Coq{4}, Pierre-Alain Tremblin{5}, Giorgio Santarelli{5}, Michele Giunta{6}, Matthias Lezius{6}, Wolfgang Haensel{6}, Ronald Holzwarth{6}, Shubhashish Datta{3}, Abhay Joshi{2}, Christophe Alexandre{1}
{1}CNAM, France; {2}Discovery Semiconductor, United States; {3}Discovery Semiconductor Inc., United States; {4}LNE-SYRTE, France; {5}LP2N, France; {6}MenloSystems GmBH, Germany

An octave-bandwidth Kerr optical frequency comb on a silicon chip .. 528
Travis Briles{1}, Tara Drake{1}, Jordan Stone{1}, Scott Diddams{1}, Scott Papp{1}, Qing Li{2}, Daron Westly{2}, Rob Ilic{2}, Kartik Srinivasan{2}
{1}NIST-Boulder, United States; {2}NIST-Gaithersburg, United States

Session: C1L-B: FOCUS SESSION: Sensing for Oil and Gas

Recent Developments in High Precision Quartz and Langasite Pressure Sensors for High Temperature and High Pressure Applications .. 530
Bikash Sinha, Mihir Patel
Schlumberger-Doll Research, United States

Ultrasonic Signal Noise Reduction Processing in Borehole Imaging Application ... 543
Zhijuan Zhang, Wei Han, Roger Steinsiek, Doug Patterson
Baker Hughes, United States

MEMS Resonant Sensors for Real-Time Thin Film Sheer Stress Monitoring .. 549
Vahid Qaradaghi, Mohammad Mahdavi, Alireza Ramezany, Siavash Pourkamali
University of Texas at Dallas(UTD), United States

Session: C1L-C: Piezoelectric MEMS Technologies

Orientation-Dependent Acceleration Sensitivity of Silicon-Based MEMS Resonators .. 553
Beheshte Khazaeili, Reza Abdolvand
University of Central Florida, United States

Aluminum Nitride Cross-Sectional Lamé Mode Resonators with 260 MHz Lithographic Tuning Capability and High $k_t^2>4\%$... 558
Guofeng Chen, Cristian Cassella, Zhenyun Qian, Gwendolyn Hummel, Matteo Rinaldi
Northeastern University, United States

Mitigation of A0 Spurious Modes in A1N MEMS Resonators with SiO2 Addendums .. 561
Anming Gao, Ruochen Lu, Songbin Gong
University of Illinois at Urbana-Champaign, United States

Temperature Compensation of MEMS Resonators Using Sputtered Fluorine-Doped Silicon Dioxide 566
Sina Moradian, Sarah Shahraini, Reza Abdolvand
University of Central Florida, United States

Effects of Volume Scaling in AlN Nano Plate Resonators on Quality Factor ... 570
Zhenyun Qian, Yu Hui, Matteo Rinaldi
Northeastern University, United States

Electrode Design of AlN Lamb Wave Resonators ... 573
Jie Zou, C.S. Lam
Skyworks Solutions, Inc., United States
Session: C2L-A: Microwave Clocks and Applications

Progress toward a compact high performance coherent population trapping clock .. 578
Peter Yun, François Tricot, David Holleville, Emeric de Clercq, Stéphane Guérandel
LNE-SYRTE Observatoire de Paris, France

Session: C2L-B: Resonant Sensors

Miniaturized Aerosol Impactor with Integrated Piezoelectric Thin Film Resonant Mass Balance 580
Maribel Maldonado-Garcia{1}, Mohammad Mahdavi{1}, Siavash Pourkamali{1}, James Wilson{2}
{1}University of Texas at Dallas, United States; {2}University of Denver, United States

Particulate Mass Sensing with Piezoelectric Bulk Acoustic Mode Resonators ... 584
Arthur Zielinski, Markus Kalberer, Roderic Jones, Abhinav Prasad, Ashwin Seshia
University of Cambridge, United Kingdom

Characterization of Thin Film Lead Zirconate Titanate (PZT) Multimode Piezoelectric Cantilevers Vibrating in Ultrasonic Band ... 590
Xuqian Zheng{1}, Luz Sanchez{2}, Jeffrey Pulskamp{2}, Ronald Polcawich{2}, Philip Feng{1}
{1}Case Western Reserve University, United States; {2}U.S. Army Research Laboratory, United States

Session: C2L-C: Emerging Trends in Resonators

Design Considerations for an Axion Detector .. 597
David B. Tanner
University of Florida, United States

NIMS (Negative Index Möbius Strips): Resonator for Next Generation Electronic Signal Sources 599
Ajay Poddar{4}, Ulrich Rohde{2}, Ignaz Eisele{1}, Enrico Rubiola{3}
{1} EMFT, Munich, Germany; {2}BTU Cottbus, Germany; {3}CNRS FEMTO-ST Institute, Dept. Time & Frequency, France; {4}Synergy Microwave Corp., United States

Phase Noise Measurements of AIN Contour-Mode Resonators ... 609
{1}CMU, United States; {2}FEMTO-ST, France; {3}UPENN, United States, *CNES, Toulouse, France

Towards Cryogenic Quartz Oscillators: Coupling of a Bulk Acoustic Wave Quartz Resonator to a SQUID 613
Maxim Goryachev{2}, Eugene Ivanov{2}, Michael Tobar{2}, Serge Galliou{1}
{1}FEMTO-ST, France; {2}University of Western Australia, Australia

Session: C3L-B: Time Dissemination & Synchronization

Time Dissemination Services: the Experimental Results of the European H2020 DEMETRA Project 618
{1} INRIM, Italy; {2} ANTARES, Italy; {3}Observatoire Royal de Belgique, ORB, Belgium; {4}Thales Alenia Space France, TAS-F, France; {5}Thales Alenia Space Italy, TAS-I, Italy; {6}ELPROMA, Poland, {7}AIZOON, Italy; {8}Telepazio VEGA UK Ltd, United Kingdom; {9}DEIMOS, Spain; {10}METEC, Italy; {11}MIKES Metrology, VTT Technical Research Centre of Finland Ltd, Finland* {12}Politecnico di Torino, Italy

Implementation of an Optical Fiber Frequency Distribution via Commercial DWDM .. 623
Sven-Christian Ebenhag{2}, Martin Zelan{2}, Per Olaf Hedekvist{2}, Magnus Karlsson{1}
{1}Chalmers University of Technology, Sweden; {2}SP Technical Research Institute of Sweden, Sweden
The Field Trial of the Frequency Dissemination System for Square Kilometre Array Radio Telescope 625
Chao Gao, Bo Wang, Yibo Yuan, Xi Zhu, Lijun Wang
Tsinghua University, Beijing, China

DELAY MEASUREMENTS OF PPS SIGNALS IN TIMING SYSTEMS .. 628
Marco Siccardi{3}, Daniele Rovera{1}, Stefania Römisch{2}
{1}LNE-SYRTE Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ.Pari, France;
{2}NIST, United States; {3}SKK Electronics, Italy

Design of a Low Cost, Compact Round-Trip Delay Measurement System for Radio Telescope Time Transfer
Applications... 634
Francois Kapp{2}, T. Abbott{2}, Tim Gibbon{1}
{1}Nelson Mandela Metropolitan University, South Africa; {2}Square Kilometre Array, South Africa

Session: C3L-C: Integration Technologies

Co-Integration of a Quartz OCXO and Si MEMS Inertial Sensors for Improved Navigational Accuracy 638
Randall Kubena{1}, Fred Stratton{1}, L.X. Huang{1}, Richard Joyce{1}, Debbie Kirby{1}, David Chang{1}, Yook-Kong
Yong{1}
{1}HRL Laboratories, United States; {2}Rutgers University, United States

An 8V 50μW 1.2MHz CMOS-MEMS Oscillator... 644
Ming-Huang Li, Kuan-Ju Tseng, Chun-You Liu, Chao-Yu Chen, Sheng-Shian Li
National Tsing Hua University, Taiwan

Optimization of Unreleased CMOS-MEMS RBTs.. 647
Bichoy Bahr{1}, Luca Daniel{1}, Dana Weinstein{2}
{1}MIT, United States; {2}Purdue University, United States

3-GHz BAW Composite Resonators Integrated with CMOS in a Single-Chip Configuration.................................. 651
Gayathri Pillai{1}, Anurag A Zope{1}, Julius Ming-Lin Tsai{2}, Sheng-Shian Li{1}
{1}iNEMS, National Tsing Hua University, Taiwan; {2}Invensense Inc, United States

A Ring-Down Technique Implemented in CMOS-MEMS Resonator Circuits for Wide-Range Pressure Sensing
Applications.. 655
Wan-Cheng Chiu, Chin-Yu Chou, Ming-Huang Li, Sheng-Shian Li
National Tsing Hua University, Taiwan

Author Index .. 658