American Gear Manufacturers Association Fall Technical Meeting 2016

Pittsburgh, Pennsylvania, USA
2 – 4 October 2016

ISBN: 978-1-5108-3241-1
TABLE OF CONTENTS

Efficient Hard Finishing of Asymmetric Tooth Profiles and Topological Modifications by Generating Grinding .. 1
A. Mehr, S. Yoders

The Whirling Process in a Company that Produces Worm Gear Drives .. 14
M. Turci, G. Giacomozzi

Worm Screw High-Speed Manufacturing .. 36
J. Feutren

Twist Control Grinding (TCG) .. 51
W. Graf

Review of Microstructure and Properties of Non-Ferrous Alloys for Worm Gear Application and Advantages of Centrifugally Cast Gears .. 64
G. Rajendran, J. Hassen

Pre-Nitriding: A Means of Significantly Increasing Carburizing Throughput .. 75
T. Hart

Performance and Machining of Advanced Engineering Steels in Power Transmission Applications – Continued Developments .. 85
L. Kamjou, N. Bylund, B. Marsh, T. Bjork, J. Fagerlund

Gear Design Relevant Cleanliness Metrics .. 101
E. Damm, P. Glaws

Developments of High Hardness-Cast Gears for High-Power Applications in the Mining Industry .. 118
F. Wavelet

Computerized Design of Straight Bevel Gears with Optimized Profiles for Forging, Molding, or 3D Printing .. 132
A. Fuentes, I. Gonzalez-Perez, H. Pasapula

Contact Fatigue Characterization of Through-Hardened Steel for Low-Speed Applications Like Hoisting .. 153
M. Octrue, A. Nicolle, R. Genevier

Determination of Load Distributions on Double Helical-Geared Planetary Gear Boxes .. 171
T. Schulze

Designing Very Strong Gear Teeth by Means of High Pressure Angles .. 185
R. Miller

Impact of Surface Condition and Lubricant on Effective Gear Tooth Friction Coefficient .. 207
A. Isaacson, M. Wagner, S. Rao, G. Sroka

Surface Structure Shift for Ground Bevel Gears .. 219
S. Strunk

Developing an Energy-Efficient Industrial Gear Oil .. 239
S. Basu, D. Wilkerson, J. Vinci

Analysis of Excitation Behavior of a Two-Stage Gearbox Based on a Validated Simulation Model .. 253
C. Brecher, C. Lopenhaus, M. Schroers

An Experimental and Analytical Comparison of the Noise Generated by Gears of Austempered Ductile Iron (ADI) and Steel Materials .. 269
D. Houser, K. Hayyinen, S. Shon, J. Lefevre

Numerical Thermal 3D Model to Predict the Surface and Body Temperature of Spur and Helical Plastic Gears .. 294
N. Raghuraman, D. Houser, Z. Wright

Influence of the Defect Size on the Tooth Root Load Carrying Capacity .. 311
C. Brecher, C. Lopenhaus, J. Brimmers, J. Henser

Influence of Contact Conditions on the Onset of Micropitting in Rolling-Sliding Contacts Pertinent to Gear Applications .. 325
A. Kadiric, P. Rycerz

Comparison of Tooth Interior Fatigue Fracture Load Capacity to Standardized Gear Failure Modes .. 344
B. Al. R. Patel, P. Langloss

A New Approach to Repair Large Industrial Gears Damaged by Surface Degradation – The Refurbishment Using the Modification of Both the Profile Shift Coefficient and the Pressure Angle .. 363
H. Albertini, C. Gorla, F. Rosa

Author Index