<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Ensemble Learning for Effective Run-Time Hardware-Based Malware Detection: A Comprehensive Analysis and Classification</td>
<td>Hossein Sayadi, Nisarg Patel, Sai Manoj Pudukotai Dinakarrao, Avesta Sasan, Setareh Rafatirad, Houman Homayoun</td>
</tr>
<tr>
<td>10.3</td>
<td>DWE: Decrypting Learning with Errors with Errors</td>
<td>Song Bian, Masayuki Hiromoto, Takashi Sato</td>
</tr>
<tr>
<td>10.4</td>
<td>Reverse Engineering Convolutional Neural Networks Through Side-channel Information Leaks</td>
<td>Weizhe Hua, Zhiru Zhang, G. Edward Suh</td>
</tr>
<tr>
<td>11.1</td>
<td>OFTL: Ordering-Aware FTL for Maximizing Performance of the Journaling File System</td>
<td>Daekyu Park, Dong Hyun Kang, Young Ik Eom</td>
</tr>
<tr>
<td>11.2</td>
<td>LAWN: Boosting the Performance of NVMM File System through Reducing Write Amplification</td>
<td>Chundong Wang, Sudipta Chattopadhyay</td>
</tr>
<tr>
<td>11.3</td>
<td>FastGC: Accelerate Garbage Collection via an Efficient Copyback-Based Data Migration in SSDs</td>
<td>Fei Wu, Jiaona Zhou, Shunzhuo Wang, Yajuan Du, Chengmo Yang, Changsheng Xie</td>
</tr>
<tr>
<td>11.4</td>
<td>Dynamic Management of Key States for Reinforcement Learning-Assisted Garbage Collection to Reduce Long Tail Latency in SSD</td>
<td>Wonkyung Kang, Sungjoo Yoo</td>
</tr>
<tr>
<td>12.1</td>
<td>WB-Trees: A Topological Representation for FinFET-Based Analog Layout Designs</td>
<td>Yu-Sheng Lu, Yu-Hsuan Chang, Yao-Wen Chang</td>
</tr>
<tr>
<td>12.3</td>
<td>Multi-Objective Bayesian Optimization for Analog/RF Circuit Synthesis</td>
<td>Wenlong Lyu, Fan Yang, Changhao Yan, Dian Zhou, Xuan Zeng, Wei Cai</td>
</tr>
<tr>
<td>12.4</td>
<td>Calibrating Process Variation at System Level with In-Situ Low-Precision Transfer Learning for Analog Neural Network Processors</td>
<td>Kaige Jia, Zheyu Liu, Qi Wei, Fei Qiao, Xinjun Liu, Yi Yang, Hua Fan, Huazhong Yang</td>
</tr>
<tr>
<td>13.1</td>
<td>Negative Capacitance Transistors</td>
<td>Sayeef Salahuddin</td>
</tr>
<tr>
<td>13.2</td>
<td>Negative Capacitance FETs and Other Ferroelectric Devices in Advanced Technology Nodes</td>
<td>Zoran Krivokapic</td>
</tr>
</tbody>
</table>
13.3 - Beyond Logic Applications for Ferroelectric Field Effect Transistors
Michael Niemier

14.1 - DPS: Dynamic Precision Scaling for Stochastic Computing-Based Deep Neural Networks
Hyeonuk Sim, Saken Kenzhegulov, Jongeun Lee

14.2 - DyHard-DNN: Even More DNN Acceleration With Dynamic Hardware Reconfiguration
Mateja Putic, Swagath Venkataramani, Schuyler Eldridge, Alper Buyuktosunoglu, Mircea Stan, Pradip Bose

14.3 - Exploring the Programmability for Deep Learning Processors: from Architecture to Tensorization
Chixiao Chen, Huwan Peng, Xindi Liu, Hongwei Ding, C.-J. Richard Shi

14.4 - LCP: Layer Clusters Paralleling Mapping Mechanism for Accelerating Inception and Residual Networks on FPGA
Xinhan Lin, Shouyi Yin, Fengbin Tu, LeiBo Liu, Xiangyu Li, Shaojun Wei

15.1 - Memory Characterization for Mobile Workloads
Daehyun Kim

15.2 - Memory-centric Accelerators in High-performance Systems
Nuwan Jayasena

15.3 - Energy-Efficient DRAM for High-bandwidth Applications
Mike O'Connor

19.1 - Ares: A Framework for Quantifying the Resilience of Deep Neural Networks
Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul N Whatmough, Sae Kyu Lee, Niamh Mulholland, Gu-Yeon Wei, David Brooks

19.2 - DeepN-JPEG: A Deep Neural Network Favorable JPEG-based Image Compression Framework
Zihao Liu, Tao Liu, Wujie Wen, Lei Jiang, Jie Xu, Yanzhi Wang, Gang Quan

19.3 - ThUnderVolt: Enabling Aggressive Voltage Underscaling and Timing Error Resilience for Energy Efficient Deep Learning Accelerators
Jeff Zhang, Kartheek Rangineni, Zahra Ghodsi, Siddharth Garg

19.4 - Loom: Exploiting Weight and Activation Precisions to Accelerate Convolutional Neural Networks
Sayeh Sharifymoghaddam, Alberto Delmas Lascorz, Patrick Judd, Andreas Moshovos

20.1 - Parallelizing SRAM Arrays with Customized Bit-Cell for Binary Neural Networks
Rui Liu, Xiaochen Peng, Xiaoyu Sun, Win-San Khwa, Xin Si, Jia-Jing Chen, Jia-Fang Li, Meng-Fan Chang, Shimeng Yu

20.2 - An Ultra-Low Energy Internally Analog, Externally Digital Vector-Matrix Multiplier Circuit Based on NOR Flash Memory Technology
Mohammad R Mahmoodi, Dmitri Strukov
20.3 - Coding Approach for Low-Power 3D Interconnects
Lennart J Bamberg, Robert Schmidt, Alberto García-Ortiz

20.4 - A Novel 3D DRAM Memory Cube Architecture for Space Applications
Anthony D Agnesina, Amanvir S Sidana, James Yamaguchi, Christian Krutzik, John Carson, Jean Yang-Scharlotta, Sung Kyu Lim

Fulin Peng, Changhao Yan, Chunyang Feng, Jianquan Zheng, Sheng-Guo Wang, Dian Zhou, Xuan Zeng

21.2 - VirtualSync: Timing Optimization by Synchronizing Logic Waves with Sequential and Combinational Components as Delay Units
Li Zhang, Bing Li, Masanori Hashimoto, Ulf Schlichtmann

21.3 - Noise-Aware DVFS Transition Sequence Optimization for Battery-Powered IoT Devices
Shaoheng Luo, Cheng Zhuo, Houle Gan

21.4 - Accurate Processor-Level Wirelength Distribution Model for Technology Pathfinding Using a Modernized Interpretation of Rent’s Rule
Divya Prasad, Saurabh Sinha, Brian Cline, Steve Moore, Azad Naeemi

22.1 - Semi-automatic Safety Analysis and Optimization
Peter Munk, Andreas Abele, Arne Nordmann, Eike Thaden, Rakshith Amarnath, Markus Schweizer, Simon Burton

22.2 - Reasoning about Safety of Learning-enabled Components in Autonomous Cyber-physical Systems
Cumhur Erkan Tuncali, James P Kapinski, Hisahiro Ito, Jyotirmoy Deshmukh

22.3 - Runtime Monitoring for Safety of Intelligent Vehicles
Kosuke Watanabe, Eunsuk Kang, Chung-Wei Lin, Shinichi Shiraiishi

23.1 - Revisiting Context-Based Authentication in IoT
Markus Miettinen, Thien Duc Nguyen, N. Asokan, Ahmad-Reza Sadeghi

23.2 - MAXelerator: FPGA Accelerator for Privacy Preserving Multiply-Accumulate (MAC) on Cloud Servers
Siam Umar Hussain, Bita Darvish Rouhani, Mohammad Ghasemzadeh, Farinaz Koushanfar

23.3 - Hypernel: A Hardware-Assisted Framework for Kernel Protection Without Nested Paging
Donghyun Kwon, Kuenwhee Oh, Junmo Park, Seunhyung Yang, Yeongpil Cho, Brent Byunghoon Kang, Yunheung Paek

23.4 - Reducing the Overhead of Authenticated Memory Encryption Using Delta Encoding and ECC Memory
Salessawi Ferede Yitbarek, Todd Austin

24.1 - Reducing Time and Effort in IC Implementation: A Roadmap of Challenges and Solutions
Andrew Kahng
Design Automation Conference 2018 Table of Contents

24.2 - Efficient Reinforcement Learning for Automating Human Decision-Making in SoC Design
- Shankar Sadasivam, Rajeev Jain, Zhuo Chen, Jinwon Lee

24.3 - Machine-learning Opportunities in Design Automation
- Mayukh Bhattacharya

28.1 - Compensated-DNN: Energy Efficient Low-Precision Deep Neural Networks by Compensating Quantization Errors
- Shubham Jain, Swagath Venkataramani, Vijayalakshmi Srinivasan, Jungwook Choi, Pierce I Chuang, Leland Chang

28.2 - Thermal-Aware Optimizations of ReRAM-Based Neuromorphic Computing Systems
- Majed Valad Beigi, Gokhan Memik

28.3 - Compiler-Guided Instruction-Level Clock Scheduling for Timing Speculative Processors
- Yuanbo Fan, Tianyu Jia, Jie Gu, Simone Campanoni, Russ Joseph

28.4 - SRAM Based Opportunistic Energy Efficiency Improvement in Dual-Supply Near-Threshold Processors
- Yunfei Gu, Dengxue Yan, Vaibhav Verma, Mircea Stan, Xuan Zhang

28.5 - Enhancing Workload-Dependent Voltage Scaling for Energy-Efficient, Ultra-Low-Power Embedded Systems
- Veni Mohan, Akhilesh Iyer, John Sartori

28.6 - Efficient and Reliable Power Delivery in Voltage-Stacked Manycore System with Hybrid Charge-Recycling Regulators
- An Zou, Jingwen Leng, Xin He, Yazhou Zu, Vijay Janapa Reddi, Xuan Zhang

29.1 - Exact Algorithms for Delay-Bounded Steiner Arborescences
- Stephan Held, Benjamin M Rockel

29.2 - Efficient Multi-Layer Obstacle-Avoiding Region-to-Region Rectilinear Steiner Tree Construction

29.3 - Obstacle-Avoiding Open-Net Connector with Precise Shortest Distance Estimation
- Guan-Qi Fang, Yong Zhong, Yi-Hao Cheng, Shao-Yun Fang

29.4 - COSAT: Congestion, Obstacle, and Slew Aware Tree Construction for Multiple Power Domain Design
- Chien-Pang Lu, Iris Hui-Ru Jiang

29.5 - A Machine Learning Framework to Identify Detailed Routing Short Violations from a Placed Netlist
- Aysa Fakheri Tabrizi, Nima Karimpour Darav, Shuchang Xu, Logan Rakai, Ismail Bustany, Andrew Kennings, Laleh Behjat

29.6 - DSA-Friendly Detailed Routing Considering Double Patterning and DSA Template Assignments
- Hai-Juan Yu, Yao-Wen Chang
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1</td>
<td>Developing Synthesis Flows Without Human Knowledge</td>
<td>Cunxi Yu, Houping Xiao, Giovanni De Micheli</td>
</tr>
<tr>
<td>31.2</td>
<td>Efficient Computation of ECO Patch Functions</td>
<td>Ai Quoc Dao, Nian-Ze Lee, Li-Cheng Chen, Mark Po-Hung Lin, Jie-Hong Roland Jiang, Alan Mishchenko, Robert Brayton</td>
</tr>
<tr>
<td>31.3</td>
<td>Canonical Computation Without Canonical Representation</td>
<td>Alan Mishchenko, Robert K Brayton, Ana Petkovska, Mathias Soeken, Luca Amarù, Antun Domic</td>
</tr>
<tr>
<td>31.4</td>
<td>SAT Based Exact Synthesis Using DAG Topology Families</td>
<td>Winston J Haaswijk, Alan Mishchenko, Mathias Soeken, Giovanni De Micheli</td>
</tr>
<tr>
<td>31.5</td>
<td>Efficient Batch Statistical Error Estimation for Iterative Multi-Level Approximate Logic Synthesis</td>
<td>Sanbao Su, Yi Wu, Weikang Qian</td>
</tr>
<tr>
<td>31.6</td>
<td>BLASYS: Approximate Logic Synthesis Using Boolean Matrix Factorization</td>
<td>Soheil Hashemi, Hokchhay Tann, Sherief Reda</td>
</tr>
<tr>
<td>36.1</td>
<td>Optimized I/O Determinism for Emerging NVM-Based NVMe SSD in an Enterprise System</td>
<td>Seonbong Kim, Joon-Sung Yang</td>
</tr>
<tr>
<td>36.2</td>
<td>Improving Runtime Performance of Deduplication System With Host-Managed SMR Storage Drives</td>
<td>Chun-Feng Wu, Ming-Chang Yang, Yuan-Hao Chang</td>
</tr>
<tr>
<td>36.3</td>
<td>Wear Leveling for Crossbar Resistive Memory</td>
<td>Wen Wen, Youtao Zhang, Jun Yang</td>
</tr>
<tr>
<td>36.4</td>
<td>RADAR: A 3D-ReRAM Based DNA Alignment Accelerator Architecture</td>
<td>Wenqin Huangfu, Shuangchen Li, Xing Hu, Yuan Xie</td>
</tr>
<tr>
<td>37.1</td>
<td>Mamba: Closing the Performance Gap in Productive Hardware Design Frameworks</td>
<td>Shunning Jiang, Berkin Ilbeyi, Christopher Batten</td>
</tr>
<tr>
<td>37.2</td>
<td>ACED: A Hardware Library for Generating DSP Systems</td>
<td>Angie Wang, Paul Rigge, Adam M Izraelevitz, Chick W Markley, Jonathan Bachrach, Borivoje Nikolić</td>
</tr>
<tr>
<td>37.4</td>
<td>Aging-Constrained Performance Optimization for Multi Cores</td>
<td>Heba Khdr, Hussam Amrouch, Jörg Henkel</td>
</tr>
<tr>
<td>38.1</td>
<td>A Measurement System for Capacitive PUF-Based Security Enclosures</td>
<td>Johannes Obermaier, Vincent Immler, Matthias Hiller, Georg Sigl</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>38.2</td>
<td>It's Hammer Time: How to Attack (Rowhammer-Based) DRAM-PUFs</td>
<td>Shaza Zeitouni, David Gens, Ahmad-Reza Sadeghi</td>
</tr>
<tr>
<td>38.3</td>
<td>CamPUF: Physically Unclonable Function Based on CMOS Image Sensor Fixed Pattern Noise</td>
<td>Younghyun Kim, Yongwoo Lee</td>
</tr>
<tr>
<td>38.4</td>
<td>Tamper-Resistant Pin-Constrained Digital Microfluidic Biochips</td>
<td>Jack Tang, Mohamed S Ibrahim, Krishnendu Chakrabarty, Ramesh Karri</td>
</tr>
<tr>
<td>39.1</td>
<td>Verification of Deep Neural Networks with SMT</td>
<td>Clark Barrett</td>
</tr>
<tr>
<td>39.2</td>
<td>Formal Methods for Deep Learning</td>
<td>Sanjit Seshia</td>
</tr>
<tr>
<td>39.3</td>
<td>Automated Systematic Testing of Deep Learning Systems</td>
<td>Suman Jana</td>
</tr>
<tr>
<td>40.1</td>
<td>Approximation-Aware Coordinated Power/Performance Management for Heterogeneous Multi-Cores</td>
<td>Anil Kanduri, Antonio Miele, Amir M. Rahmani, Pasi Liljeberg, Cristiana Bolchini, Nikil Dutt</td>
</tr>
<tr>
<td>40.2</td>
<td>QoS-Aware Stochastic Power Management for Many-Cores</td>
<td>Anuj Pathania, Heba Khdr, Muhammad Shafique, Tulika Mitra, Jörg Henkel</td>
</tr>
<tr>
<td>40.3</td>
<td>Employing Classification-Based Algorithms for General-Purpose Approximate Computing</td>
<td>Geraldo Francisco De Oliveira Junior, Larissa Rozales Gonçalves, Marcelo Brandalero, Antonio Carlos Schneider Beck, Luigi Carro</td>
</tr>
<tr>
<td>40.4</td>
<td>Using Imprecise Computing for Improved Non-Preemptive Real-Time Scheduling</td>
<td>Lin Huang, Youmeng Li, Sachin S Sapatnekar, Jiang Hu</td>
</tr>
<tr>
<td>41.1</td>
<td>A Modular Digital VLSI Flow for High-productivity SoC Design</td>
<td>Brucek Khailany, Evgeni Krimer, Rangharajan Venkatesan, Jason Clemmons, Joel Emer, Matthew Fojtik, Alicia Klinefelter, Michael Pellauer, Nathaniel Pinckney, Yakun Sophia Shao, Shreesha Srinath, Christopher Torng, Sam (Likun) Xi, Yanqing Zhang, Brian Zimmer</td>
</tr>
<tr>
<td>41.2</td>
<td>Enabling Generator-Based Design</td>
<td>Elad Alon</td>
</tr>
<tr>
<td>41.3</td>
<td>BaseJump STL: SystemVerilog Needs a Standard Template Library for Hardware Design</td>
<td>Michael Taylor</td>
</tr>
<tr>
<td>45.1</td>
<td>TRIG: Hardware Accelerator for Inference-Based Applications and Experimental Demonstration Using Carbon Nanotube FETs</td>
<td>Gage Hills, Daniel Bankman, Bert Moons, Lita Yang, Jake Hillard, Alex B Kahng, Rebecca Park, Marian Verhelst, Boris Murmann, Max Shulaker, H.-S. Philip Wong, Subhasish Mitra</td>
</tr>
</tbody>
</table>
Design Automation Conference 2018 Table of Contents

45.2 - OPERON: Optical-Electrical Power-Efficient Route Synthesis for On-Chip Signals.....449
Derong Liu, Zheng Zhao, Zheng Wang, Zhoufeng Ying, Ray Chen, David Z. Pan

45.3 - Soft-FET: Phase Transition Material Assisted Soft Switching Field Effect Transistor for Supply Voltage Droop Mitigation.....455
Sai Subrahmanya Teja Nibhanupudi, Jaydeep Kulkarni

45.4 - Ultralow Power Acoustic Feature-Scoring Using Gaussian I-V Transistors.....461
Amit Trivedi, Ahish Shylendra

46.1 - Test Cost Reduction for X-Value Elimination By Scan Slice Correlation Analysis.....467
Hyunsu Chae, Joon-Sung Yang

46.2 - Cross-Layer Fault Space Pruning for Hardware-Assisted Fault Injection.....473
Christian Dietrich, Achim Schmidt, Oskar Pusz, Guillermo Payá Vayó, Daniel Lohmann

46.3 - A Machine Learning Based Hard Fault Recuperation Model for Approximate Hardware Accelerators.....479
Farah N Taher, Joseph Callenes-Sloan, Benjamin Carrion Schafer

47.1 - SOTERIA: Exploiting Process Variations to Enhance Hardware Security With Photonic NoC Architectures.....485
Sai Vineel Reddy Chittamuru, Ishan Thakkar, Varun Bhat, Sudeep Pasricha

47.2 - LEAD: Learning-Enabled Energy-Aware Dynamic Voltage/Frequency Scaling in NoCs.....491
Mark Clark, Avinash Kodi, Razvan Bunescu, Ahmed Louri

47.3 - Subutai: Distributed Synchronization Primitives in NoC Interfaces for Legacy Parallel-Applications.....497
Rodrigo C Cataldo, Ramon C Fernandes, Kevin J Martin, Johanna Sepulveda, Altamiro A Susin, César Augusto M Marcon, Jean-Philippe Diguet

47.4 - Packet Pump: Overcoming Network Bottleneck in On-Chip Interconnects for GPGPUs.....503
Xianwei Cheng, Yang Zhao, Hui Zhao, Yuan Xie

49.1 - STASH: SecuriTy Architecture for Smart Hybrid Memories.....509
Shivam Swami, Joydeep Rakshit, Kartik Mohanram

49.2 - ACME: Advanced Counter Mode Encryption for Secure Non-Volatile Memories.....515
Shivam Swami, Kartik Mohanram

49.3 - CASTLE: Compression Architecture for Secure Low Latency, Low Energy, High Endurance NVMs.....521
Poovaiah M Palangappa, Kartik Mohanram

49.4 - A Collaborative Defense against Wearout Attacks in Non-Volatile Processors.....527
Patrick T Cronin, Chengmo Yang, Yongpan Liu

50.1 - IoT in SmartAg: Technology Applied to the Agro-food Supply Chain.....N/A
John P. Verboncoeur
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.2</td>
<td>Protecting the Supply Chain for Automotives and IoTs</td>
<td>Sandip Ray, Wen Chen, Rosario Cammarota</td>
</tr>
<tr>
<td>50.3</td>
<td>Reconciling Remote Attestation and Safety-Critical Operation of Simple IoT Devices</td>
<td>Xavier Carpent, Karim Eldefrawy, Norrathep Rattanavipanon, Ahmad-Reza Sadeghi, Gene Tsudik</td>
</tr>
<tr>
<td>54.1</td>
<td>Formal Security Verification of Concurrent Firmware in SoCs using Instruction-Level Abstraction for Hardware</td>
<td>Bo-Yuan Huang, Sayak Ray, Aarti Gupta, Jason M Fung, Sharad Malik</td>
</tr>
<tr>
<td>54.2</td>
<td>Application Level Hardware Tracing for Scaling Post-Silicon Debug</td>
<td>Debjit Pal, Abhishek Sharma, Sandip Ray, Flavio M de Paula, Shobha Vasudevan</td>
</tr>
<tr>
<td>54.3</td>
<td>Specification-Driven Automated Conformance Checking for Virtual Prototype and Post-Silicon Designs</td>
<td>Haifeng Gu, Mingsong Chen, Tongquan Wei, Li Lei, Fei Xie</td>
</tr>
<tr>
<td>54.4</td>
<td>Formal Micro-Architectural Analysis of On-Chip Ring Networks</td>
<td>Perry van Wesel, Julien Schmaltz</td>
</tr>
<tr>
<td>54.5</td>
<td>HFMV: Hybridizing Formal Methods and Machine Learning for Verification of Analog and Mixed-Signal Circuits</td>
<td>Hanbin Hu, Qingran Zheng, Ya Wang, Peng Li</td>
</tr>
<tr>
<td>54.6</td>
<td>Cost-Aware Patch Generation for Multi-Target Function Rectification in Engineering Change Orders</td>
<td>He-Teng Zhang, Jie-Hong (Roland) Jiang</td>
</tr>
<tr>
<td>55.1</td>
<td>Modelling Multicore Contention on the AURIX(TM) TC27x</td>
<td>Enrique Diaz, Enrico Mezzetti, Leonidas Kosmidis, Jaume Abella, Francisco J Cazorla</td>
</tr>
<tr>
<td>55.2</td>
<td>Cache Side-Channel Attacks and Time-Predictability in High-Performance Critical Real-Time Systems</td>
<td>David Trilla, Carles Hernandez, Jaume Abella, Francisco J Cazorla</td>
</tr>
<tr>
<td>55.3</td>
<td>Cross-Layer Dependency Analysis with Timing Dependence Graphs</td>
<td>Mischa Möstl, Rolf Ernst</td>
</tr>
<tr>
<td>55.4</td>
<td>Brook Auto: High-Level Certification-Friendly Programming for GPU-Powered Automotive Systems</td>
<td>Matina Maria Trompouki, Leonidas Kosmidis</td>
</tr>
<tr>
<td>55.5</td>
<td>Dynamic Vehicle Software with AUTOCONT</td>
<td>Christine Jakobs, Peter Tröger, Matthias Werner, Philipp Mundhenk, Karsten Schmidt</td>
</tr>
<tr>
<td>55.6</td>
<td>Automated Interpretation and Reduction of In-Vehicle Network Traces at a Large Scale</td>
<td>Artur Mrowca, Thomas Pramsohler, Sebastian Steinhorst, Uwe Baumgarten</td>
</tr>
</tbody>
</table>
56.1 - AtomLayer: A Universal ReRAM-Based CNN Accelerator with Atomic Layer Computation.....615
Ximing Qiao, Xiong Cao, Huanrui Yang, Linghao Song, Hai Li

56.2 - Towards Accurate and High-Speed Spiking Neuromorphic Systems with Data Quantization-Aware Deep Networks.....621
Fuqiang Liu, Chenchen Liu

56.3 - CMP-PIM: An Energy-Efficient Comparator-Based Processing-In-Memory Neural Network Accelerator.....627
Shaahin Angizi, Zhezhi He, Adnan Siraj Rakin, Deliang Fan

56.4 - SNrram: An Efficient Sparse Neural Network Computation Architecture Based on Resistive Random-Access Memory.....633
Peiqi Wang, Yu Ji, Chi Hong, Yongqiang Lyu, Dongsheng Wang, Yuan Xie

56.5 - Long Live TIME: Improving Lifetime for Training-In-Memory Engines by Structured Gradient Sparsification.....639
Yi Cai, Yujun Lin, Lixue Xia, Xiaoming Chen, Song Han, Yu Wang, Huazhong Yang

56.6 - Hierarchical Hyperdimensional Computing for Energy Efficient Classification.....645
Mohsen Imani, Chenyu Huang, Deqian Kong, Tajana Simunić Rosing

58.1 - Dadu-P: A Scalable Accelerator for Robot Motion Planning in a Dynamic Environment.....651
Shiqi Lian, Yinhe Han, Xiaoming Chen, Ying Wang, Hang Xiao

58.2 - Data Prediction for Response Flows in Packet Processing Cache.....657
Hayato Yamaki, Hiroaki Nishi, Shinobu Miwa, Hiroki Honda

58.3 - PULP-HD: Accelerating Brain-Inspired High-Dimensional Computing on a Parallel Ultra-Low Power Platform.....663
Fabio Montagna, Abbas Rahimi, Simone Benatti, Davide Rossi, Luca Benini

58.4 - Active Forwarding: Eliminate IOMMU Address Translation for Accelerator-Rich Architectures.....669
Hsueh-Chun Fu, Po-Han Wang, Chia-Lin Yang

58.5 - SARA: Self-Aware Resource Allocation for Heterogeneous MPSoCs.....675
Yang Song, Olivier Alavoine, Bill Lin

58.6 - PEP: Proactive Checkpointing for Efficient Preemption on GPUs.....681
Chen Li, Andrew Zigerelli, Jun Yang, Yang Guo

63.1 - FMMU: A Hardware-Accelerated Flash Map Management Unit for Scalable Performance of Flash-Based SSDs.....687
Yeong-Jae Woo, Sheayun Lee, Sang Lyul Min

63.2 - Minimizing Write Amplification to Enhance Lifetime of Large-Page Flash-Memory Storage Devices.....693
Wei-Lin Wang, Tseng-Yi Chen, Yuan-Hao Chang, Hsin-Wen Wei, Wei-Kuan Shih
Design Automation Conference 2018 Table of Contents

63.3 - Proactive Channel Adjustment to Improve Polar Code Capability for Flash Storage Devices.....699
Kun-Cheng Hsu, Che-Wei Tsao, Yuan-Hao Chang, Tei-Wei Kuo, Yu-Ming Huang

63.4 - Achieving Defect-Free Multilevel 3D Flash Memories with One-Shot Program Design.....705
Chien-Chung Ho, Yung-Chun Li, Yuan-Hao Chang, Yu-Ming Chang

64.1 - Power-Based Side-Channel Instruction-Level Disassembler.....711
Jungmin Park, Xiaolin Xu, Yier Jin, Domenic Forte, Mark Tehranipoor

64.2 - Side-Channel Security of Superscalar CPUs: Evaluating the Impact of Micro-Architectural Features.....717
Alessandro Bareghni, Gerardo Pelosi

64.3 - Electro-Magnetic Analysis of GPU-Based AES Implementation.....723
Yiwen Gao, Hailong Zhang, Wei Cheng, Yongbin Zhou, Yuchen Cao

64.4 - GPU Obfuscation: Attack and Defense Strategies.....729
Abhishek Chakraborty, Yang Xie, Ankur Srivastava

65.1 - Measurement-Based Cache Representativeness on Multipath Programs.....735
Suzana Milutinovic, Jaume Abella, Enrico Mezzetti, Francisco J Cazorla

65.2 - Resource-Aware Partitioned Scheduling for Heterogeneous Multicore Real-Time Systems.....741
Jianjun Han, Wen Cai, Dakai Zhu

65.3 - Response-Time Analysis of DAG Tasks Supporting Heterogeneous Computing.....747
Maria A. Serrano, Eduardo Quiñones

65.4 - Duet: An OLED & GPU Co-Management Scheme for Dynamic Resolution Adaptation.....753
Han-Yi Lin, Chia-Chun Hung, Pi-Cheng Hsiu, Tei-Wei Kuo

66.1 - Large Scale Integrated Circuit Reverse Engineering Below 14 nm. Motivation, Challenges, and Opportunities.....N/A
Chris Pawlowicz

66.2 - Fully Automated Plasma FIB IC Deprocessing and Reverse Engineering.....N/A
Edward Principe, Navid Asadi, Michael DiBattista, Nicolas Piche

66.3 - Semi-invasive Physical Attacks from IC Backside and Possible Countermeasures.....N/A
Shahin Tajik, Jean-Pierre Seifert, Christian Bolt

67.1 - RAMP: Resource-Aware Mapping for CGRAs.....759
Shail Dave, Mahesh Balasubramanian, Aviral Shrivastava

67.2 - An Architecture-Agnostic Integer Linear Programming Approach to CGRA Mapping.....765
S. Alexander Chin, Jason H Anderson
67.3 - DNestMap: Mapping Deeply-Nested Loops on Ultra-Low Power CGRAs.....771
 Manupa Karunaratne, Cheng Tan, Aditi Kulkarni Mohite, Tulika Mitra, Li-Shiuan Peh

67.4 - Locality-Aware Memory Assignment and Tiling.....777
 Samuel Rogers, Hamed Tabkhi

68.1 - GAN-OPC: Mask Optimization with Lithography-Guided Generative Adversarial Nets.....783
 Haoyu Yang, Shuhe Li, Yuzhe Ma, Bei Yu, Evangeline Young

68.2 - An Efficient Bayesian Yield Estimation Method for High Dimensional and High Sigma SRAM Circuits.....789
 Jinyuan Zhai, Changhao Yan, Sheng-Guo Wang, Dian Zhou

68.3 - RAIN: A Tool for Reliability Assessment of Interconnect Networks—Physics to Software.....795
 Ali Abbinasab, Malgorzata Marek-Sadowska

68.4 - A Fast and Robust Failure Analysis of Memory Circuits Using Adaptive Importance Sampling Method.....801
 Xiao Shi, Fengyuan Liu, Yang Jun, Lei He

69.1 - SpWA: An Efficient Sparse Winograd Convolutional Neural Networks Accelerator on FPGAs.....807
 Liqiang Lu, Yun Liang

69.2 - Efficient Winograd-Based Convolution Kernel Implementation on Edge Devices.....813
 Athanasios Xygkis, Lazaros Papadopoulos, David M Moloney, Dimitrios Soudris, Sofiane Yous

69.3 - An Efficient Kernel Transformation Architecture for Binary- and Ternary-Weight Neural Network Inference.....819
 Shixuan Zheng, Shouyi Yin, Yonggang Liu, Leibo Liu, Shaojun Wei

69.4 - Content Addressable Memory Based Binarized Neural Network Accelerator Using Time-Domain Signal Processing.....825
 Woong Choi, Kwanghyo Jeong, Kyungrak Choi, Kyeongho Lee, Jongsun Park

70.1 - A Security Vulnerability Analysis of SoC FPGA Architectures.....831
 Sumanta Chaudhuri

70.2 - Raise Your Game for Split Manufacturing: Restoring the True Functionality Through BEOL.....837
 Satwik Patnaik, Mohammed Ashraf, Johann Knechtel, Ozgur Sinanoglu

70.3 - Analysis of Security of Split Manufacturing Using Machine Learning.....843
 Boyu Zhang, Jonathon Magana, Azadeh Davoodi

70.4 - Inducing Local Timing Fault Through EM Injection.....849
 Marjan Ghodrati, Bilgiday Yuce, Surabhi Gujar, Chinmay Deshpande, Leyla Nazhandali, Patrick Schaumont
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.1</td>
<td>Identifying Implicit Assumptions to Facilitate Validation in Medical Cyber-Physical System</td>
<td>Zhicheng Fu, Zhao Wang, Chunhui Guo, Zhenyu Zhang, Shangping Ren, Lui Sha</td>
</tr>
<tr>
<td>71.2</td>
<td>TMA: An Efficient Timestamp-Based Monitoring Approach to Test Timing Constraints of Cyber-Physical Systems</td>
<td>Mohammadreza Mehrabian, Mohammad Khayatian, Ahmed Mousa, Aviral Shrivastava, Ya-Shian Li-Baboud, Patricia Derler, Edward Griffor, Hugo A Andrade, Marc Weiss, John Eidson, Dhananjay Anand</td>
</tr>
<tr>
<td>71.3</td>
<td>Runtime Adjustment of IoT SoCs for Minimum Energy Operation</td>
<td>Mohammad Saber Golanbari, Mehdi B. Tahoori</td>
</tr>
<tr>
<td>71.4</td>
<td>Edge-Cloud Collaborative Processing for Intelligent Internet of Things: A Case Study on Smart Surveillance</td>
<td>Burhan A Mudassar, Jong Hwan Ko, Saibal Mukhopadhyay</td>
</tr>
<tr>
<td>72.1</td>
<td>Co-designing for AI: Thinking About Deep Learning at the Systems Level</td>
<td>Amir Khosrowshahi</td>
</tr>
<tr>
<td>72.2</td>
<td>Bandwidth-Efficient Deep Learning</td>
<td>Song Han, William Dally</td>
</tr>
<tr>
<td>72.3</td>
<td>Co-Design of Deep Neural Nets and Neural Net Accelerators for Embedded Vision Applications</td>
<td>Alon Amid, Amir Gholami, Kiseok Kwon, Bichen Wu, Krste Asanovic, Kurt Keutzer</td>
</tr>
<tr>
<td>73.1</td>
<td>Generalized Augmented Lagrangian and Its Applications to VLSI Global Placement</td>
<td>Ziran Zhu, Jianli Chen, Zheng Peng, Wenxing Zhu, Yao-Wen Chang</td>
</tr>
<tr>
<td>73.2</td>
<td>Routability-Driven and Fence-Aware Legalization for Mixed-Cell-Height Circuits</td>
<td>Haocheng Li, Wing-Kai Chow, Gengjie CHEN, Evangeline Young, Bei Yu</td>
</tr>
<tr>
<td>73.3</td>
<td>PlanarONoC: Concurrent Placement and Routing Considering Crossing Minimization for Optical Networks-on-Chip</td>
<td>Yu-Kai Chuang, Kuan-Jung Chen, Kun-Lin Lin, Shao-Yun Fang, Bing Li, Ulf Schlichtmann</td>
</tr>
<tr>
<td>73.4</td>
<td>Similarity-Aware Spectral Sparsification by Edge Filtering</td>
<td>Zhuo Feng</td>
</tr>
<tr>
<td>74.1</td>
<td>S2FA: An Accelerator Automation Framework for Heterogeneous Computing in Datacenters</td>
<td>Cody Hao Yu, Peng Wei, Max Grossman, Peng Zhang, Vivek Sarkar, Jason Cong</td>
</tr>
<tr>
<td>74.2</td>
<td>Automated Accelerator Generation and Optimization with Composable, Parallel and Pipeline Architecture</td>
<td>Jason Cong, Peng Wei, Cody Hao Yu, Peng Zhang</td>
</tr>
<tr>
<td>74.3</td>
<td>TAO: Techniques for Algorithm-Level Obfuscation During High-Level Synthesis</td>
<td>Christian Pilato, Francesco Regazzoni, Ramesh Karri, Siddharth Garg</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>74.4</td>
<td>Parallelizing Non-Stencil Memory Accesses Through Coloring Weighted Conflict Graphs</td>
<td>Mingjie Lin, Juan Escobedo</td>
</tr>
<tr>
<td>75.1</td>
<td>SMApproxLib: Library of FPGA-Based Approximate Multipliers</td>
<td>Salim Ullah, Sanjeev S Murthy, Akash Kumar</td>
</tr>
<tr>
<td>75.2</td>
<td>Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks</td>
<td>Aidyn Zhakatayev, Sugil Lee, Hyeonuk Sim, Jongeun Lee</td>
</tr>
<tr>
<td>75.3</td>
<td>Area-Optimized Low-Latency Approximate Multipliers for FPGA-Based Hardware Accelerators</td>
<td>Salim Ullah, Semeen Rehman, Bharath Srinivas Prabakaran, Florian Kriebel, Muhammad Abdullah Hanif, Muhammad Shafique, Akash Kumar</td>
</tr>
<tr>
<td>75.4</td>
<td>Approximate On-the-Fly Coarse-Grained Reconfigurable Acceleration for General-Purpose Applications</td>
<td>Marcelo Brandalero, Luigi Carro, Antonio Carlos Schneider Beck, Muhammad Shafique</td>
</tr>
<tr>
<td>75.5</td>
<td>LEMAX: Learning-based Energy Consumption Minimization in Approximate Computing with Quality Guarantee</td>
<td>Vahideh Akhlaghi, Sicun Gao, Rajesh K Gupta</td>
</tr>
<tr>
<td>76.1</td>
<td>PIMA-Logic: A Novel Processing-in-Memory Architecture for Highly Flexible and Energy-Efficient Logic Computation</td>
<td>Shaahin Angizi, Zhezhi He, Deliang Fan</td>
</tr>
<tr>
<td>76.2</td>
<td>Columba S: A Scalable Co-Layout Design Automation Tool for Microfluidic Large-Scale Integration</td>
<td>Tsun-Ming Tseng, Mengchu Li, Daniel N Freitas, Amy Mongersun, Ismail Emre Araci, Tsung-Yi Ho, Ulf Schlichtmann</td>
</tr>
<tr>
<td>76.3</td>
<td>Design-For-Testability for Continuous-Flow Microfluidic Biochips</td>
<td>Chunfeng Liu, Bing Li, Tsung-Yi Ho, Krishnendu Chakrabarty, Ulf Schlichtmann</td>
</tr>
<tr>
<td>76.4</td>
<td>Design and Architectural Co-Optimization of Monolithic 3D Liquid State Machine-Based Neuromorphic Processor</td>
<td>Bon Woong Ku, Yu Liu, Yingyezhe Jin, Sandeep K Samal, Peng Li, Sung Kyu Lim</td>
</tr>
<tr>
<td>76.5</td>
<td>Enabling a New Era of Brain-Inspired Computing: Energy-Efficient Spiking Neural Network with Ring Topology</td>
<td>Kangjun Bai, Jialing Li, Kian Hamedani, (Cindy) Yang Yi</td>
</tr>
<tr>
<td>76.6</td>
<td>A Neuromorphic Design Using Chaotic Mott Memristor with Relaxation Oscillation</td>
<td>Bonan Yan, Xiong Cao, Hai Li</td>
</tr>
<tr>
<td>77.1</td>
<td>DrAcc: A DRAM Based Accelerator for Accurate CNN Inference</td>
<td>Quan Deng, Lei Jiang, Youtao Zhang, Minxuan Zhang, Jun Yang</td>
</tr>
</tbody>
</table>
77.2 - On-Chip Deep Neural Network Storage With Multi-Level eNVM.....1011
Marco Donato, Brandon Reagen, Lillian Pentecost, Udit Gupta, David Brooks, Gu-Yeon Wei

77.3 - Closed Yet Open DRAM: Achieving Low Latency and High Performance in DRAM Memory Systems.....1017
Lavanya Subramanian, Kaushik Vaidyanathan, Anant Nori, Sreenivas Subramoney, Tanay Karnik, Hong Wang

77.4 - VRL-DRAM: Improving DRAM Performance via Variable Refresh Latency.....1023
Anup K Das, Hasan Hassan, Onur Mutlu

77.5 - Enabling Union Page Cache to Boost File Access Performance of NVRAM-Based Storage Device.....1029
Shuo-Han Chen, Tseng-Yi Chen, Yuan-Hao Chang, Hsin-Wen Wei, Wei-Kuan Shih

77.6 - FLOSS: FLOw Sensitive Scheduling on Mobile Platforms.....1035
Haibo Zhang, Prasanna Venkatesh Rengasamy, Nachiappan Chidambaram Nachiappan, Shulin Zhao,
Anand Sivasubramaniam, Mahmut T Kandemir, Chita R Das

79.1 - Context-Aware Dataflow Adaptation Technique for Low-Power Multi-Core Embedded Systems.....1041
Hyeonseok Jung, Hoeseok Yang

79.2 - Architecture Decomposition in System Synthesis of Heterogeneous Many-Core Systems.....1047
Valentina Richthammer, Tobias Schwarzer, Stefan Wildermann, Jürgen Teich, Michael Glaß

79.3 - NNSim: Fast Performance Estimation Based on Sampled Simulation of GPGPU Kernels for Neural
Networks.....1053
Jintaek Kang, Kwanghyun Chung, Youngmin Yi, Soonhoi Ha

79.4 - STAFF: Online Learning with Stabilized Adaptive Forgetting Factor and Feature Selection Algorithm.....1059
Ujjwal Gupta, Manoj Babu, Raid Ayoub, Michael Kishinevsky, Francesco Paterna, Umit Y Ogras

79.5 - Extensive Evaluation of Programming Models and ISAs Impact on Multicore Soft Error Reliability.....1065
Felipe Rosa, Luciana Ost, Vitor Bandeira, Ricardo Reis

79.6 - Optimized Selection of Wireless Network Topologies and Components via Efficient Pruning of Feasible
Paths.....1071
Dmitrii Kirov, Pierluigi Nuzzo, Roberto Passerone, Alberto L Sangiovanni-Vincentelli