Keynote

Session Keynote presentation

Shapes & DOF: on the use of modal concepts in the context of parametric non-linear studies
E. Balmes \(^{1,2}\)

\(^{1}\) Arts et Métiers Paristech, France
\(^{2}\) SDTools, France

Automotive NVH – Methodology for Future Innovative Product Development
P.-O. Sturesson \(^{1}\)

\(^{1}\) AB Volvo, Sweden
Synthesis of vibration signals with prescribed power spectral density and kurtosis value
E. Pesaresi (1), M. Troncossi (1)
(1) University of Bologna, Italy

Analysis of a transport equation as boundary condition in an acoustic transmission line.
E. De Bono (1), M. Collet (1), S. Karkar (1)
(1) Ecole Centrale de Lyon, France.

On the noise reduction of active sidewall aircraft panels using feedforward control with embedded systems
M. Misol (1), S. Algermissen (1), M. Rose (1)
(1) DLR - German Aerospace Center, Germany

A multimodal nonlinear piezoelectric vibration absorber
G. Raze (1), B. Lossouarn (2), A. Paknejad (3), G. Zhao (3), J.-F. Deu (2), C. Collette (3), G. Kerschen (1)
(1) University of Liège, Belgium
(2) CNAM - Conservatoire National des Arts et Métiers, France
(3) Université Libre de Bruxelles, Belgium

Mechatronic control of the car response based on VFC
D. Antonelli (1), L. Nesi (1), G. Pepe (1), A. Carcaterra (1)
(1) Sapienza University of Rome, Italy

FLOP: feedback local optimality control of the inverse pendulum oscillations
G. Pepe (1), D. Antonelli (1), L. Nesi (1), A. Carcaterra (1)
(1) Sapienza University of Rome, Italy

Active noise control in pipes and ducts using carbon nanotube thermophones
A. Barnard (1), S. Senczyszyn (1)
(1) Michigan Technological University, United States of America

Vibration suppression using the concept of a semi-active magnetorheological inerter device
M. Tipuric (1), D. Wagg (1), N. D. Sims (1)
(1) University of Sheffield, United Kingdom

Active vibration reduction on a quadrocopter
T. Bartel (1), H. Atzrodt (1), D. Wilczynski (1)
(1) Fraunhofer Institute for Structural Durability and System Reliability, Germany

H-infinity optimization of positive position feedback control for mitigation of nonlinear vibrations
G. Zhao (1), A. Paknejad (1), G. Raze (2), G. Kerschen (2), C. Collette (1)
(1) Université Libre de Bruxelles, Belgium
(2) University of Liège, Belgium
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-input multi-output aeroelastic control using the receptance method</td>
<td>153</td>
</tr>
<tr>
<td>B. Mokrani (1), F. Palazzo (2), S. Fichera (1), L. J. Adamson (1), J. E. Mottershead (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Liverpool, United Kingdom</td>
<td>153</td>
</tr>
<tr>
<td>(2) Politecnico di Torino, Italy</td>
<td></td>
</tr>
<tr>
<td>Minimisation of the effect of aleatory uncertainties on dynamic systems by active control using the method of receptances</td>
<td>165</td>
</tr>
<tr>
<td>L. J. Adamson (1), S. Fichera (1), J. E. Mottershead (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Liverpool, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>The effect of active vibration control on the sound field scattered from a flexible structure</td>
<td>175</td>
</tr>
<tr>
<td>C. House (1), J. Cheer (1), S. Daley (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Southampton, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>An investigation on a semi-active damping of forced structural vibrations by means of controllable structural nodes</td>
<td>189</td>
</tr>
<tr>
<td>G. Mikulowski (1), B. Poplawski (1), R. Wiszowaty (1), A. Mróz (2), Ł. Jankowski (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Institute of Fundamental Technological Research Polish Academy of Sciences, Poland</td>
<td></td>
</tr>
<tr>
<td>(2) Adaptronica Sp. z o.o., Poland</td>
<td></td>
</tr>
<tr>
<td>Design of an inertial mass actuator for active vibration control of a planetary gearbox using piezoelectric shear actuator</td>
<td>203</td>
</tr>
<tr>
<td>P. Zech (1), D. F. Plöger (1), T. Bartel (2), T. Röglin (2), S. Rinderknecht (1)</td>
<td></td>
</tr>
<tr>
<td>(1) TU Darmstadt, Germany</td>
<td></td>
</tr>
<tr>
<td>(2) Fraunhofer Institute for Structural Durability and System Reliability, Germany</td>
<td></td>
</tr>
<tr>
<td>Self-adaptive fluid-based absorbers for impact mitigation and vibration damping</td>
<td>217</td>
</tr>
<tr>
<td>C. Graczykowski (1), R. Faraj (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Institute of Fundamental Technological Research Polish Academy of Sciences, Poland</td>
<td></td>
</tr>
<tr>
<td>Simulation of active control systems considering different levels of detail in the signal processing chain</td>
<td>229</td>
</tr>
<tr>
<td>J. Millitzer (1), J. Rohling (2), V. Mees (1), A. Döring (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Fraunhofer Institute for Structural Durability and System Reliability LBF, Germany.</td>
<td></td>
</tr>
<tr>
<td>(2) Fraunhofer Institute for Building Physics IBP, Germany.</td>
<td></td>
</tr>
<tr>
<td>Control of fluctuations of a tethered unmanned-underwater-vehicle</td>
<td>241</td>
</tr>
<tr>
<td>E. Paifelman (1,2), G. Pepe (1), F. La Gala (2), A. Carcaterra (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Sapienza University of Rome, Italy</td>
<td></td>
</tr>
<tr>
<td>(2) CNR - National Research Council, Italy</td>
<td></td>
</tr>
<tr>
<td>Optimization of skyhook control strategies and an alternative approach for the operational conditions</td>
<td>253</td>
</tr>
<tr>
<td>G. Papaioannou (1), D. Koulocheris (1)</td>
<td></td>
</tr>
<tr>
<td>(1) National Technical University of Athens, Greece</td>
<td></td>
</tr>
<tr>
<td>A compact and light acoustic transducer using dielectric elastomer films for low frequency active noise cancellation</td>
<td>267</td>
</tr>
<tr>
<td>A. Paradeisiotis (1), C. Yiakopoulos (1), I. Antoniadis (1)</td>
<td></td>
</tr>
<tr>
<td>(1) National Technical University of Athens, Greece</td>
<td></td>
</tr>
</tbody>
</table>
Simulink-PSpice co-simulation of Power Amplifier for driving piezoelectric actuators
Y. J. Park (1), T. Bartel (1), T. Rögl (1), G. Stoll (1), P. Zech (2), D. F. Plöger (2), S. Rinderknecht (2)
(1) Fraunhofer Institute for Structural Durability and System Reliability, Germany
(2) TU Darmstadt, Germany

A practical approach of active vibration control with the use of piezoelectric actuators
D. J. Williams (1), H. Haddad Khodaparast (1), C. Yang (1)
(1) Swansea University, United Kingdom

Wave-based control of a planar mechanical structure by piezoelectric actuators
P. Beneš (1), Z. Neusser (1), Z. Šika (1), M. Valášek (1), J. Zavřel (1)
(1) Czech Technical University in Prague, Czech Republic

Decentralized and distributed MIMO H-infinity robust control of vibration suppression of planar structures
Z. Šika (1), M. Hromčík (1), F. Svoboda (1), J. Volech (1), J. Zavřel (1), J. Karlíček (1)
(1) Czech Technical University in Prague, Czech Republic

Session Advanced training and research in energy efficient smart structures

Virtual sensing of wheel center loads on a McPherson suspension
E. Risaliti (1,2), T. Tamarozzi (1,2), B. Cornelis (1), W. Desmet (2,3)
(1) Siemens PLM Software, Belgium
(2) KU Leuven, Belgium
(3) Flanders Make, Belgium

Nonlinear feedback control of a stroke limited inertial actuator using a state estimation approach
M. Dal Borgo (1), M. Ghandchi Tehrani (1), S. J. Elliott (1)
(1) University of Southampton, United Kingdom

Piezoelectric patches with multi-resonant shunts for multiple frequency band vibration control
M. Zientek (1), P. Gardonio (1), L. Dal Bo (1)
(1) University of Udine, Italy

Experimental decentralised control of vibration on a plate with inertial actuators
S. Camperi (1), M. Ghandchi Tehrani (1), S. J. Elliott (1)
(1) University of Southampton, United Kingdom

Experimental tests of a flywheel proof mass actuator for velocity feedback control
A. Kras (1), P. Gardonio (1)
(1) University of Udine, Italy

Numerical modeling of a flexural displacement-converter mechanism to excite a flat acoustic source driven by piezoelectric stack actuators
F. Tajdari (1), A. Berkhoff (1,2), A. de Boer (1)
(1) University of Twente, The Netherlands
(2) TNO Technical Sciences, Acoustics and Sonar, The Netherlands
Active vibration control of a system subject to random excitation using impulsive parametric damping
M. Ghandchi Tehrani (1), T. Pumhoessel (2)
(1) University of Southampton, United Kingdom
(2) Johannes Kepler University Linz, Austria

A study on important criteria for the effectiveness of piezoelectric energy harvesters under a constant volume
N. AboulFotoh (1,2), J. Twiefel (1)
(1) Leibniz University Hannover, Germany
(2) Cairo University, Egypt

Stability, performance and power consumption of a centralised and decentralised active vibration control system
G. Lapiccirella (1), J. Rohlfing (2)
(1) Fraunhofer Institute for Building Physics, Germany
(2) Fraunhofer Institute for Structural Durability and System Reliability, Germany

Efficient assembly of unit cells with Krylov based model order reduction
S. van Ophem (1,2), E. Deckers (1,2), W. Desmet (1,2)
(1) KU Leuven, Belgium
(2) Flanders Make, Belgium

Nonlinearity assessment of MIMO electroacoustic systems on Direct Field Environmental Acoustic Testing
M. Alvarez Blanco (1,2), P. Z. Csurcsia (1,3), K. Janssens (1), B. Peeters (1), W. Desmet (2,4)
(1) Siemens Industry Software NV, Belgium
(2) KU Leuven, Belgium
(3) Vrije Universiteit Brussel, Belgium
(4) Flanders Make, Belgium

Efficiently assessing changes in boundary conditions using vibro-acoustic information
P. Becht (1,2), S. van Ophem (1,2), E. Deckers (1,2), C. Claeyss (1,2), B. Pluymers (1,2), W. Desmet (1,2)
(1) KU Leuven, Belgium
(2) Flanders Make, Belgium

Object-oriented model-based condition monitoring
M. Gonzalez (1,2), O. Salgado (1), J. Croes (2,3), B. Pluymers (2,3), W. Desmet (2,3)
(1) IK4-Ikerlan, Spain
(2) KU Leuven, Belgium
(3) Flanders Make, Belgium

AE

Session Aero-elasticity

Metamodel-based optimization of an energy harvester from stall-induced pitching oscillations of airfoils
C. R. dos Santos (1), M. M. da Silva (1), F. D. Marques (1)
(1) University of São Paulo, Brazil
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-line tracking of aircraft aeroelastic modes during flutter flight tests</td>
<td>B. Jacquier (1), F. Ayme (2)</td>
<td>515</td>
</tr>
<tr>
<td>(1) ONERA - Office National d'Etudes et de Recherches Aéropatiales, France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Airbus, France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On the effect of control surface deflections on the aeroelastic response of an aerofoil at transonic buffet conditions</td>
<td>N. F. Giannelis (1), G. A. Vio (1)</td>
<td>531</td>
</tr>
<tr>
<td>(1) University of Sydney, Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of a nonlinear state space model of the forces acting on an aerofoil oscillating in pitch</td>
<td>M. F. Siddiqui (1), J. Ertvelt (2), J. Decuyper (1), T. De Troyer (1), J. Schoukens (1), M. C. Runacres (1)</td>
<td>547</td>
</tr>
<tr>
<td>(1) Department of Engineering Technology, Vrije Universiteit Brussel, Belgium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Department of Mechanical Engineering, Vrije Universiteit Brussel, Belgium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computationally-efficient aeroelastic analysis tool for shortwing / propeller configuration on compound helicopters</td>
<td>Z. Wang (1), A. A. Popov (1)</td>
<td>559</td>
</tr>
<tr>
<td>(1) University Of Nottingham, United Kingdom</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AA

Session Aeroacoustics and flow noise

A recursive transfer admittance formulation in time domain | H. Denayer (1,2), W. De Roeck (1), W. Desmet (1,2) | 571 |
(1) KU Leuven, Belgium		
(2) Flanders Make, Belgium		
Monte-carlo computation of wall-pressure spectra under turbulent boundary layers for trailing-edge noise prediction.	G. Grasso (1,2), P. Jaiswal (2), S. Moreau (2)	585
(1) Ecole Centrale de Lyon, France		
(2) Université de Sherbrooke, Canada		
Experimental analysis of aeroacoustic instabilities in Helmholtz resonators	L. Criscuolo (1,2), H. Denayer (1,2), W. De Roeck (1), W. Desmet (1,2)	601
(1) KU Leuven, Belgium		
(2) Flanders Make, Belgium		
Broadband noise from serrated UAS propellers: validation of a lattice Boltzmann approach	B. G. Marinus (1), D. Bontea (2), A. Halimi (3), A. Pire (1)	613
(1) Royal Military Academy, Belgium		
(2) Military Technical Academy, Romania		
(3) National Polytechnic School of Algiers, Algeria		
Inverse methods in aeroacoustic three-dimensional volumetric noise source localization	G. Battista (1), P. Chiariotti (1), M. Martarelli (2), P. Castellini (1)	621
(1) Università Politecnica delle Marche, Italy		
(2) Università degli studi e-Campus, Italy		
Prediction of outdoor sound propagation from firearms shooting ranges: a comparison
B. G. Marinus (1), K. Harri (1)
(1) Royal Military Academy, Belgium

Axial propagation of flow-induced vibrations in thick walled pipes and hoses
I. F. Rodrigues (1), I. Lopez Arteaga (1)
(1) Eindhoven University of Technology, The Netherlands

CAM2
Session Characterisation, design and optimisation of Acoustic Materials

Predicting the sound insulation of finite double-leaf walls with a flexible frame
J. C. E. Van den Wyngaert (1), M. Schevenels (1), E. Reynders (1)
(1) KU Leuven, Belgium

Finite element analysis of the acoustic behavior of poroelastic materials based on experimentally determined frequency-dependent material properties
P. Schrader (1), F. Duvigneau (1), M. Gavila-Lloret (2), H. Rottengruber (1), U. Gabbert (1)
(1) Otto-von-Guericke-University Magdeburg, Germany
(2) BMW Group, Germany

Experimental-numerical methods for inverse characterization of the anisotropic-anelastic properties of porous materials, based on dynamic Digital Image Correlation.
L. Manzari (1), H. Mao (1), P. Goransson (1), J. Cuenca (1,2), I. Lopez Arteaga (1)
(1) KTH Royal Institute of Technology, Sweden
(2) Siemens Industry Software NV, Belgium

CAM
Session Characterisation, design and optimisation of acoustic materials

Microstructure based modelling of the thermal and viscous dissipation of a transversely isotropic porous fibrous insulation material.
B. P. Semeniuk (1), P. Goransson (1), O. Dazel (2)
(1) KTH Royal Institute of Technology, Sweden
(2) Le Mans Université, France

Modelling of nonlinear prestrain effects on the dynamic properties of viscoelastic materials
L. Rouleau (1), J.-F. Deü (1)
(1) CNAM - Conservatoire National des Arts et Métiers, France

Installation effects on sound absorption and flow resistivity of glass wool fibres
G. Petrone (1), A. Sorrentino (1), E. De Bono (1), T. Polito (1), F. Marulo (1)
(1) University of Naples Federico II, Italy

Simulations and experiments for vibro-acoustical behaviours of circular multi-layered plates
T. Deng (1), X. Sheng (1), Y. Ma (2), J. Li (2)
(1) Southwest Jiaotong University, People’s Republic of China
(2) Sichuan University, People’s Republic of China
OPTIMIZATION AND TESTING OF PERIODIC AND LOCALLY RESONANT DEAD-END PORES FOR SOUND ABSORPTION IN FREQUENCIES BELOW 1000 Hz

A. Carvalho de Sousa\(^1,2\), M. Bartczak Camargo\(^3\), A. Lenzi\(^3\), C. Claeys\(^{1,2}\), E. Deckers\(^{1,2}\)

(1) KU Leuven, Belgium
(2) Flanders Make, Belgium
(3) Federal University of Santa Catarina, Brazil

CM

Session Condition monitoring

Detection of faulty accelerometer mounting

R. B. Randall\(^1\), W. A. Smith\(^1\)

(1) University of New South Wales, Australia

Aircraft braking dynamics and brake system modeling for fault detection and isolation

L. C. Navarro\(^1\), L. C. S. Goes\(^1\)

(1) ITA - Instituto Tecnológico de Aeronáutica, Brazil

Employment of an auto regressive moving average model for on-board knock detection of a spark ignited engine

D. Siano\(^1\), M. A. Panza\(^1\)

(1) CNR - National Research Council, Italy

Speed-dependent wet road surface detection using acoustic measurements, octave-band frequency analysis and Support Vector Machines

S. Kanarachos\(^1\), M. Kalliris\(^1\), M. Blundell\(^1\), R. Kotsakis\(^2\)

(1) Coventry University, United Kingdom
(2) Aristotle University of Thessaloniki, Greece

CMRM

Session Condition monitoring of rotating machinery

A diagnostic protocol for the monitoring of bearing fault evolution based on blind deconvolution algorithms

M. Buzzoni\(^1\), E. Soave\(^1\), G. D’Elia\(^1\), E. Mucchi\(^1\), G. Dalpiaz\(^1\)

(1) University of Ferrara, Italy

Fleet-wide condition monitoring combining vibration signal processing and machine learning rolled out in a cloud-computing environment

J. Helsen\(^1\), C. Peeters\(^1\), T. Verstraeten\(^1\), J. Verbeke\(^1\), N. Gioia\(^1\), A. Nowé\(^1\)

(1) Vrije Universiteit Brussel, Belgium

Development and testing of health monitoring of the bearings of traction system of a regional train locomotive during commercial service

P. Pennacchi\(^1\), S. Chatterton\(^1\), A. Vania\(^1\)

(1) Politecnico di Milano, Italy

A novel multi-harmonic demodulation technique for instantaneous speed estimation

C. Peeters\(^1\), J. Antoni\(^2\), N. Gioia\(^1\), P. Guillaume\(^1\), J. Helsen\(^1\)

(1) Vrije Universiteit Brussel, Belgium
(2) INSA Lyon, France
A comparison of different features for discrepancy analysis-based bearing diagnostics
S. Schmidt (1), P. S. Heyns (1), K. Gryllias (2,3)
(1) University of Pretoria, South Africa
(2) KU Leuven, Belgium
(3) Flanders Make, Belgium

Experimental validation of a bearing fault model for an independent cart conveyor
M. Cocconcelli (1), J. C. Cavalaglio Camargo Molano (1), R. Rubini (1), L. Capelli (2)
(1) University of Modena and Reggio Emilia, Italy
(2) Tetra Pak Packaging Solutions SpA, Italy

Methodologies for designing new condition indicators
(1) Université de Lyon, France
(2) University of New South Wales, Australia
(3) Université Libanaise, Liban
(4) KU Leuven, Belgium
(5) DMMS Lab, Flanders Make

Online fault identification for rotating machinery
C. E. Ludwig (1,2), U. Wever (1)
(1) Siemens AG, Germany
(2) Technical University of Munich, Germany

Cyclostationary-based tools for bearing diagnostics
A. Mauricio (1,2), W. A. Smith (3), R. B. Randall (3), J. Antoni (4), K. Gryllias (1,2)
(1) KU Leuven, Belgium
(2) Flanders Make, Belgium
(3) University of New South Wales, Australia
(4) Université de Lyon, France

Optimal frequency band selection via stationarity testing in time frequency domain
A. Michalak (1), A. Wyłomańska (1), J. Wodecki (1), R. Zimroz (2), K. Gryllias (3,4)
(1) KGHM Cuprum Ltd, Research and Development Centre, Poland
(2) Wroclaw University of Science and Technology, Poland
(3) KU Leuven, Belgium
(4) DMMS, Flanders Make, Belgium

Semi-blind Wiener filtering of mechanical source vibrations: theory and application to aircraft gearbox surveillance
D. Abboud (1), Y. Marnissi (1), M. El-badaoui (1,2)
(1) Safran Group, France
(2) Université de Lyon, France

Gearbox fault diagnosis based on Convolutional Neural Networks
Z. Chen (1,2), W. Li (1), K. Gryllias (2,3)
(1) South China University of Technology, People’s Republic of China
(2) KU Leuven, Belgium
(3) Flanders Make, Belgium
Table of Contents

Blade tip timing based condition monitoring of bladed disks in rotating machines
N. Jamia (1), M. I. Friswell (1), S. El-Borgi (2), P. Rajendran (3)
(1) Swansea University, United Kingdom
(2) University at Qatar, Qatar
(3) Deemed University, Tamil Nadu, India

A comparison of the prognostic approaches for rolling element bearings
P. Shakya (1), A. K. Darpe (2), M. S. Kulkarni (3)
(1) IIT Madras, India
(2) IIT Delhi, India
(3) IIT Bombay, India

Multi-fault diagnosis based on bi-frequency cyclostationary maps clustering
P. Kruczek (1), J. Wodecki (1), A. Wylomańska (1), R. Zimroz (2), K. Gryllias (3,4)
(1) KGHM Cuprum Ltd, Research and Development Centre, Poland
(2) Wroclaw University of Science and Technology, Poland
(3) KU Leuven, Belgium
(4) DMMS, Flanders Make, Belgium

D

Session Damping

Stabilised Layer Method for linear and nonlinear spatial non classical damping identification
D. Lisitano (1), E. Bonisoli (1), J. E. Mottershead (2)
(1) Politecnico di Torino, Italy
(2) University of Liverpool, United Kingdom

Analysis and simulation of structures with local visco-elastic damping from elastomers
M. Böswald (1), M. Gröhlich (1), J. Biedermann (1), R. Winter (1)
(1) DLR - German Aerospace Center, Germany

The effect of friction damping on the dynamic response of vibrating structures: an insight into model validation
M. Umer (1), C. Gastaldi (1), D. Botto (1)
(1) Politecnico di Torino Italy

Identification of hysteretic systems for damping modelization
V. Kehr-Candille (1)
(1) ONERA - Office National d’Etudes et de Recherches Aérospatiales, France

Semi-active damping of forced vibrations by means of pneumatic supports
G. Mikułowski (1)
(1) Institute of Fundamental Technological Research Polish Academy of Sciences, Poland

Implementation and comparison of advanced friction representations within finite element models
A. T. Mathis (1), A. R. Brink (2), D. D. Quinn (1)
(1) The University of Akron, United States of America
(2) Sandia National Laboratories, United States of America
DNRMS

Session Designs for noise reducing materials and structures

Sound transmission through checkerboard sandwich panels 1073
B. Van Damme (1), G. Hannema (1), A. Zemp (1)
(1) EMPA - Swiss Federal Laboratories for Materials Science and Technology, Switzerland

Design of a Kelvin cell acoustic metamaterial 1081
H. Rice (1), J. Kennedy (1), P. Goransson (2)
(1) Trinity College Dublin, Ireland
(2) KTH Royal Institute of Technology, Sweden

A concept demonstrator of adaptive sound absorber/insulator involving microstructure-based modelling and 3D printing 1091
K. C. Opiela (1), M. Rak (1), T. G. Zielinski (1)
(1) the Polish Academy of Sciences, Poland

The use of a benchmark periodic metamaterial to inform numerical modelling and additive manufacturing approaches. 1105
L. Dowling (1), L. Flanagan (1), H. Rice (1), D. Trimble (1), J. Kennedy (1)
(1) Trinity College Dublin, Ireland

Study of sound absorption capability of silencers based on the acoustic black hole effect 1121
N. L. K. Sharma (1), O. Umnova (1)
(1) University of Salford, United Kingdom

Simplification of the transfer matrix model for acoustic screens 1127
M. Gaborit (1,2), P. Goransson (2), O. Dazel (1)
(1) Le Mans Université, France
(2) KTH Royal Institute of Technology, Sweden

A numerical study on the shielding performance of a periodic vibration protection device 1135
L. Godinho (1), C. Albino (1), P. Alves-Costa (2), P. Amado-Mendes (1), A. Pinto (2), D. Soares Jr. (3)
(1) University of Coimbra, Portugal
(2) University of Porto, Portugal
(3) Federal University of Juiz de Fora, Brazil

Perceptual evaluation of metamaterials as insulation partitions: A listening test within the COST action DENORMS (CA15125) 1147
(1) Siemens Industry Software NV, Belgium
(2) University of Zagreb, Croatia
(3) KU Leuven, Belgium
(4) STU - Slovak University of Technology, Slovakia
(5) Le Mans Université, France
(6) Universidad Politécnica de Valencia, Spain
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A combined design-manufacturing-testing investigation of micro- to macro-scale tailoring of open poroelastic materials based on perturbed Kelvin cell micro-geometries.</td>
<td>1163</td>
</tr>
<tr>
<td>L. Dowling (1), H. Mao (2), L. Flanagan (1), J. Kennedy (1), H. Rice (1), D. Trimble (1), P. Goransson (2), J. Cuenca (2)</td>
<td></td>
</tr>
<tr>
<td>(1) Trinity College Dublin, Ireland</td>
<td></td>
</tr>
<tr>
<td>(2) KTH Royal Institute of Technology, Sweden</td>
<td></td>
</tr>
<tr>
<td>A periodic acoustic meta-material concept incorporating negative stiffness elements for low-frequency acoustic insulation/ absorption</td>
<td>1179</td>
</tr>
<tr>
<td>I. Antoniadis (1), A. Paradeisiotis (1)</td>
<td></td>
</tr>
<tr>
<td>(1) National Technical University of Athens, Greece</td>
<td></td>
</tr>
<tr>
<td>Influencing the wave-attenuating coupling of solid and fluid phases in poroelastic layers using piezoelectric inclusions and locally added masses</td>
<td>1195</td>
</tr>
<tr>
<td>T. G. Zielinski (1), M.-A. Galland (2), E. Deckers (3,4)</td>
<td></td>
</tr>
<tr>
<td>(1) the Polish Academy of Sciences, Poland</td>
<td></td>
</tr>
<tr>
<td>(2) Ecole Centrale de Lyon, France</td>
<td></td>
</tr>
<tr>
<td>(3) KU Leuven, Belgium</td>
<td></td>
</tr>
<tr>
<td>(4) Flanders Make, Belgium</td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td></td>
</tr>
<tr>
<td>Session Dynamic testing: methods and instrumentation</td>
<td></td>
</tr>
<tr>
<td>Numerical and experimental study of first passage time of a steel strip subjected to forced and parametric excitations</td>
<td>1209</td>
</tr>
<tr>
<td>E. J. Delhez (1), H. Vanvinckenroye (1), J.-C. J. G. Golinval (1), V. Denoël (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Liège, Belgium</td>
<td></td>
</tr>
<tr>
<td>Response of a curved panel subjected to local heating and base excitation</td>
<td>1223</td>
</tr>
<tr>
<td>D. A. Ehrhardt (1,2), B. Gockel (2), T. Beberniss (2)</td>
<td></td>
</tr>
<tr>
<td>(1) Ehrhardt Engineering LLC, United States of America</td>
<td></td>
</tr>
<tr>
<td>(2) Wright Patterson Air Force Base, United States of America</td>
<td></td>
</tr>
<tr>
<td>Effect of in-flight differential pressure in modal behaviour of an aircraft demonstrator using HS 3D-DIC.</td>
<td>1235</td>
</tr>
<tr>
<td>Á. J. Molina-Viedma (1), A. González-Centeno (1), E. López-Alba (1), L. Felipe-Sesé (1), F. Díaz (1)</td>
<td>1245</td>
</tr>
<tr>
<td>(1) Universidad de Jaén, Spain</td>
<td></td>
</tr>
<tr>
<td>Design and validation of a nonlinear test rig with hardening stiffness in multiple degrees of freedom</td>
<td>1245</td>
</tr>
<tr>
<td>N. Pandiya (1), R. J. Alleman (2), A. W. Phillips (2)</td>
<td>1259</td>
</tr>
<tr>
<td>(1) Robert Bosch GmbH, Germany</td>
<td></td>
</tr>
<tr>
<td>(2) University of Cincinnati, United States of America</td>
<td></td>
</tr>
<tr>
<td>Drives power reduction procedure to fill in the multipleinput multiple-output random control reference matrix</td>
<td>1259</td>
</tr>
<tr>
<td>G. D’Elia (1), U. Musella (2), E. Mucchi (1), B. Peeters (2), P. Guillaume (3)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Ferrara, Italy</td>
<td></td>
</tr>
<tr>
<td>(2) Siemens Industry Software NV, Belgium</td>
<td></td>
</tr>
<tr>
<td>(3) Vrije Universiteit Brussel, Belgium</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Fully automated vibration measurements of aircraft fuselages in the mid-frequency range</td>
<td>1271</td>
</tr>
<tr>
<td>R. Winter (1), S. Heyen (1), M. Böswald (1)</td>
<td></td>
</tr>
<tr>
<td>(1) DLR - German Aerospace Center, Germany</td>
<td></td>
</tr>
<tr>
<td>Robust algorithm for optimal configuration of a multi-type network of sensors</td>
<td>1281</td>
</tr>
<tr>
<td>M. Khalil (1,2), C. Heinrich (2), R. Wüchner (1), K.-U. Bletzinger (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Technical University of Munich, Germany</td>
<td></td>
</tr>
<tr>
<td>(2) Siemens AG, Germany</td>
<td></td>
</tr>
<tr>
<td>Nonlinear system identification using digital image correlation</td>
<td>1295</td>
</tr>
<tr>
<td>D. R. Roettgen (1), E. M. C. Jones (1), A. R. Brink (1), P. L. Reu (1), D. P. Rohe (1), J. Wagner (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Sandia National Laboratories, United States of America</td>
<td></td>
</tr>
<tr>
<td>Detecting cavitation inception in external gear pumps by means of vibro-acoustic measurements</td>
<td>1309</td>
</tr>
<tr>
<td>M. Battarra (1), E. Mucchi (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Ferrara, Italy</td>
<td></td>
</tr>
<tr>
<td>Spectral optical flow imaging: measuring full-field subpixel oscillations without a high-speed camera</td>
<td>1323</td>
</tr>
<tr>
<td>J. Slavič (1), J. Javh (1), M. Boltežar (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Ljubljana, Slovenia</td>
<td></td>
</tr>
<tr>
<td>Hardware in the loop testing using a hydraulic shaking table</td>
<td>1331</td>
</tr>
<tr>
<td>M. Böswald (1), M. Tang (1)</td>
<td></td>
</tr>
<tr>
<td>(1) DLR - German Aerospace Center, Germany</td>
<td></td>
</tr>
<tr>
<td>Statistical analysis of cup-horn ultrasonic proximity sensor output</td>
<td>1349</td>
</tr>
<tr>
<td>S. Jackson (1), A. J. Croxford (1), B. W. Drinkwater (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Bristol, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Easy sensor localization using an RGB camera</td>
<td>1361</td>
</tr>
<tr>
<td>S. Sels (1), B. Bogaerts (1), S. Vanlanduit (1), R. Penne (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Antwerp, Belgium</td>
<td></td>
</tr>
<tr>
<td>Optimal positioning of continuous optical fiber sensors for the modal analysis of turbine blades with optical backscatter reflectometer technology</td>
<td>1371</td>
</tr>
<tr>
<td>P. Pennacchi (1), G. Cazzulani (1), M. Chieppi (1), A. Colombi (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Politecnico di Milano, Italy</td>
<td></td>
</tr>
<tr>
<td>Experimental evaluation of pressure dependent tangential contact stiffness</td>
<td>1385</td>
</tr>
<tr>
<td>M. Kreider (1), C. W. Schwingshackl (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Imperial College London, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Consideration of estimation error in multiple coherence approaches: application to the inside/outside coherence analysis of aircraft flight tests</td>
<td>1395</td>
</tr>
<tr>
<td>Q. Leclère (1), J. Antoni (1), E. Julliard (2), A. Pintado-Peño (2)</td>
<td></td>
</tr>
<tr>
<td>(1) INSA Lyon, France</td>
<td></td>
</tr>
<tr>
<td>(2) Airbus, France</td>
<td></td>
</tr>
<tr>
<td>Model validation of an aeroelastically-tailored forward swept wing using fibre-optical strain measurements</td>
<td>1403</td>
</tr>
<tr>
<td>Y. Govers (1), M. Y. Meddaikar (1), K. Sinha (1)</td>
<td></td>
</tr>
<tr>
<td>(1) DLR - German Aerospace Center, Germany</td>
<td></td>
</tr>
</tbody>
</table>
Top 10 mechanical experiments for the teaching of sound and vibration in mechanical engineering
M. A. Peres (1), A. Barnard (2)
(1) The Modal Shop, Inc., United States of America
(2) Michigan Technological University, United States of America

Impact testing lightweight structures
R. J. Allemang (1), A. W. Phillips (1), D. L. Brown (1)
(1) University of Cincinnati, United States of America

Vibration-based monitoring of the quality of clutch engagement in a forklift truck
A. Van Campen (1), T. Ooijevaar (1), C. Mannaerts (1), C. De Buyser (2), A. Bartic (1)
(1) Flanders Make, Belgium
(2) Dana Belgium N.V., Belgium

Experimental evaluation of a new two-microphone method for the mode detection and radiation of broadband noise in ducts
J. Chen (1,2), J. Melling (1), P. Joseph (1)
(1) University of Southampton, United Kingdom
(2) University of Leicester, United Kingdom

Huddle test of optical inertial sensors combined with slightly damped mechanics
B. Ding (1), J. Watchi (1), C. Collette (1,2)
(1) Université Libre de Bruxelles, Belgium
(2) University of Liège, Belgium

Experimental investigation on the acoustic impedance of Helmholtz resonators using an accelerometer for the volume velocity source
G. P. Guimarães (1), I. T. Ribeiro (1)
(1) UFOP - Federal University of Ouro Preto, Brazil

Compressive sensing-moving horizon estimator for periodic loads: experimental validation in structural dynamics with video-based measurements
M. Kirchner (1,2), J. Croes (1,2), F. Cosco (1,2), B. Pluymers (1,2), W. Desmet (1,2)
(1) KU Leuven, Belgium
(2) Flanders Make, Belgium

Accurate structural excitation through adaptive control
M. Norambuena (1), R. Winter (1), J. Biedermann (1)
(1) DLR - German Aerospace Center, Germany

Microphone random arrangements for near-field acoustic holography based on compressive sampling
B. Du (1), X. Liu (1), X. Wu (1), Z. Wang (1)
(1) Kunming University of Science and Technology, People’s Republic of China

CIV
Session Dynamics of civil structures

Validation of PIRAT, a novel tool for beam-like structures subject to seismic induced misalignment of guiding sleeves
M. S. Bonney (1), M. Zabiégo (1)
(1) CEA, France
Influence of diaphragm modelling on the dynamic performance of a reinforced concrete high-rise building
N. J. Savnik (1), E. I. Katsanos (1), S. Amador (1), C. E. Ventura (2), R. Brincker (1)
(1) Technical University of Denmark, Denmark
(2) University of British Columbia, Canada

Mass loading and temperature compensation for long-term ambient measurement data of a freeway bridge
T. Furtmüller (1), C. Adam (1), R. Veit-Egerer (2)
(1) University of Innsbruck, Austria
(2) VCE Vienna Consulting Engineers ZT GmbH, Austria

Soil-structure interaction and the added-foundation effect of surface foundations with application to groundborne vibration in buildings
G. Sanitate (1), J. P. Talbot (1)
(1) University of Cambridge, United Kingdom

Influence of transverse bracing beams on the dynamic behaviour of Arroyo Bracea I bridge in Madrid-Sevilla High-Speed railway line
E. Moliner (1), P. Galván Barrera (2), M. D. Martínez-Rodrigo (1), A. Romero Rodóñez (2)
(1) Universitat Jaume I, Spain
(2) Universidad de Sevilla, Spain

Specific dynamic response of truss railway bridge identified using operational modal analysis as an extension of typical dynamic load testing
G. Poprawa (1), S. Pradelok (1), M. Salamak (1)
(1) Silesian University of Technology, Poland

Modelling of prestressed concrete bridges with 3 dimensional finite elements for structural health monitoring with model updating techniques
S. Schommer (1), T. Kebig (1), V. H. Nguyen (1), A. Zürbes (2), S. Maas (1)
(1) University of Luxembourg, Luxembourg
(2) Bingen University of Applied Sciences, Germany

Simplified design of filler beam railway bridges for high-speed traffic
H. Bigelow (1), B. Hoffmeister (1), M. Feldmann (1)
(1) RWTH Aachen University, Germany

Examining the impact of critical building substructural elements on the building’s rail induced vibration responsiveness
J. D’Avillez (1)
(1) WSP, United Kingdom

Dynamic effects at sudden structural rebuilding of the “beam-foundation” system
V. Gordon (1), O. Pilipenko (1), V. Trifonov (2)
(1) Orel State University, Russian Federation
(2) GAZPROM, Russian Federation

Resonance and cancellation mechanisms in existing High-Speed railway bridges with an orthotropic plate behaviour
M. D. Martínez-Rodrigo (1), E. Moliner (1), A. Romero Rodóñez (2), P. Galván Barrera (2)
(1) Universitat Jaume I, Spain
(2) Universidad de Sevilla, Spain
Table of Contents

HARV

Session Dynamics of energy harvesters

- Ship roll control and energy harvesting using a U-tube anti-roll tank
 - N. Alujević (1), I. Čatipović (1), I. Senjanović (1), N. Vladimir (1), Š. Malenica (2)
 - (1) University of Zagreb, Croatia
 - (2) Bureau Veritas, France

- Modeling of partially covered piezoelectric energy harvester connected to SEH interface circuit
 - G. Hu (1), B. Zhao (2), L. Tang (1), J. Liang (2), R. Das (3)
 - (1) The University of Auckland, New Zealand
 - (2) ShanghaiTech University, People’s Republic of China
 - (3) RMIT University, Australia

- A nonlinear vibration energy harvester for spacecraft
 - H. Liu (1), D. Zhou (1), Y. Wang (1)
 - (1) Beijing Key Laboratory of Intelligent Space Robotic System Technology and Applications, China

- Tuned mass dampers as energy harvesters for railways
 - G. Nerubenko (1), A. Bograd (2), P. Kolomier (1)
 - (1) NERMAR Limited, Canada

- Analytical modeling of a cantilever beam type vibration energy harvester with a lever mechanism
 - S. Ertarla (1), C. V. Karadag (1), N. Topaloglu (1)
 - (1) Yeditepe University, Turkey

- Energy in Random Vibration – reduce, resist, recycle
 - A. Wasenczuk (1), I. Corni (2), N. Symonds (2)
 - (1) Perpetuum, United Kingdom
 - (2) University of Southampton, United Kingdom

JOINT

Session Dynamics of joints

- Response predictions of reduced models with whole joints
 - R. J. Kuether (1), D. A. Najera-Flores (2)
 - (1) Sandia National Laboratories, United States of America
 - (2) ATA Engineering, United States of America

- Modal impact testing for estimating bolted joint tightness
 - M. Brøns (1), J. J. Thomsen (1), A. Fidlin (2), D. Tcherniak (3), S. M. Sah (1)
 - (1) Technical University of Denmark, Denmark
 - (2) Karlsruhe Institute of Technology, Germany
 - (3) Brüel & Kjær Sound & Vibration Measurement A/S, Denmark

- Identification of contact parameters for dry friction joints
 - K. Willner (1)
 - (1) FAU Erlangen-Nürnberg, Germany
A block-Gauss Seidel algorithm with static reduction to predict damping in bolted joints
I. Zare (1), M. S. Allen (1)
(1) University of Wisconsin-Madison, United States of America

Extracting natural frequency and damping from time histories. Better than the frequency domain?
H. G. D. Goyder (1), D. P. T. Lancereau (1)
(1) Cranfield University, United Kingdom

The surrogate system hypothesis for joint mechanics: statement and evaluation through empirical parameter estimation
N. N. Balaji (1), M. R. W. Brake (1)
(1) Rice University, United States of America

Two types of dynamic joint behaviour: theoretical and experimental analysis
H. G. D. Goyder (1), D. P. T. Lancereau (1), P. Ind (2), D. Brown (2)
(1) Cranfield University, United Kingdom
(2) AWE - Atomic Weapons Establishment, United Kingdom

Dynamic response and energy loss in jointed structures using finite element methods: application to an aero-engine casing assembly
X. Chi (1), D. Di Maio (1), N. A. J. Lieven (1)
(1) University of Bristol, United Kingdom

Estimation of normal contact stiffness for different contact pairs: experiments and numerical approach
D. Tonazzi (1), F. Massi (1), L. Baillet (3), M. Salipante (1), Y. Berthier (2)
(1) Sapienza University of Rome, Italy
(2) LaMCoS - INSA Lyon, France
(3) Joseph Fourier University, France

Experimental and numerical modal analysis of dry friction-induced contact damping in assembled structures
B. Magyar (1), G. Csernak (1), R. Zana (1), R. Wohlfart (1), G. Stepan (1)
(1) Budapest University of Technology and Economics, Hungary

RMD
Session Dynamics of rotating machinery

Extension of the multi-stage cyclic symmetry methodology and application to modal and dynamic response analyses
N. C. Kill (1), F. d’Ambrosio (1)
(1) SAMTECH S.A., Belgium

Numerical and experimental vibration analysis of a two-pole induction motor mounted on an elastic machine test bed
S. Mathes (1), U. Werner (1), B. Christian (2)
(1) University of Applied Sciences Georg Simon Ohm Nuremberg, Germany
(2) Siemens AG, Germany

Frictional effects on the synchronisation of partial contact in rotating machinery
E. T. Chipato (1), A. D. Shaw (1), M. I. Friswell (1)
(1) Swansea University, United Kingdom
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balancing rotating structures using slow-speed data via optimized parametric excitation and nonlinear feedback</td>
<td>1907</td>
</tr>
<tr>
<td>A. Dolev $^{(1)}$, S. Tresser $^{(1)}$, I. Bucher $^{(1)}$</td>
<td></td>
</tr>
<tr>
<td>(1) Technion, Israel</td>
<td></td>
</tr>
<tr>
<td>Rotor-to-seal rubs in a steam turbine caused by deposits of carbonized oil</td>
<td>1921</td>
</tr>
<tr>
<td>A. Vania $^{(1)}$, P. Pennacchi $^{(1)}$, S. Chatterton $^{(1)}$, F. Cangioli $^{(1)}$</td>
<td></td>
</tr>
<tr>
<td>(1) Politecnico di Milano, Italy</td>
<td></td>
</tr>
<tr>
<td>Vibration dynamics in non-linear dual mass flywheels for heavy-duty trucks</td>
<td>1935</td>
</tr>
<tr>
<td>L. M. Wramner $^{(1,2)}$, V. Berbyuk $^{(2)}$, H. Johansson $^{(2)}$</td>
<td></td>
</tr>
<tr>
<td>(1) AB Volvo</td>
<td></td>
</tr>
<tr>
<td>(2) Chalmers University of Technology</td>
<td></td>
</tr>
<tr>
<td>Dynamic characterisation of rolling-element bearings - implementation of smooth contact-state transition</td>
<td>1949</td>
</tr>
<tr>
<td>M. Razpotnik $^{(1)}$, G. Čepon $^{(1)}$, M. Boltežar $^{(1)}$</td>
<td></td>
</tr>
<tr>
<td>(1) University of Ljubljana, Slovenia</td>
<td></td>
</tr>
<tr>
<td>Relative cyclic component mode synthesis and its application to nonlinear vibration analysis of mistuned bladed disks with friction joints</td>
<td>1965</td>
</tr>
<tr>
<td>S. M. Pourkiaee $^{(1)}$, S. Zucca $^{(1)}$, R. G. Parker $^{(1)}$</td>
<td></td>
</tr>
<tr>
<td>(1) Politecnico di Torino, Italy</td>
<td></td>
</tr>
<tr>
<td>Solution of rotor stator contact problems with the method of normal forms</td>
<td>1979</td>
</tr>
<tr>
<td>A. D. Shaw $^{(1)}$, A. R. Champneys $^{(2)}$, M. I. Friswell $^{(1)}$</td>
<td></td>
</tr>
<tr>
<td>(1) Swansea University, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>(2) University of Bristol, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Effects of geometrical nonlinearities for a rotating intentionally mistuned bladed-disk</td>
<td>1993</td>
</tr>
<tr>
<td>A. Picou $^{(1,2)}$, E. Capiez-Lernout $^{(1)}$, C. Soize $^{(1)}$, M. Mbaye $^{(2)}$</td>
<td></td>
</tr>
<tr>
<td>(1) Université Paris-Est, France</td>
<td></td>
</tr>
<tr>
<td>(2) Safran Group, France</td>
<td></td>
</tr>
<tr>
<td>A novel identification tool for rotors working under nonstationary conditions based on the IAS</td>
<td>2005</td>
</tr>
<tr>
<td>E. Sghaier $^{(1)}$, A. Bourdon $^{(1)}$, D. Rémont $^{(1)}$, J.-L. Dion $^{(2)}$, N. Peyret $^{(2)}$</td>
<td></td>
</tr>
<tr>
<td>(1) Université de Lyon, France</td>
<td></td>
</tr>
<tr>
<td>(2) Laboratoire QUARTZ, France</td>
<td></td>
</tr>
<tr>
<td>Influence of internal friction dampers on global dynamics of discrete cyclic structure</td>
<td>2013</td>
</tr>
<tr>
<td>M. Byrtus $^{(1)}$, M. Hajžman $^{(1)}$, L. Pešek $^{(2)}$, L. Půst $^{(2)}$</td>
<td></td>
</tr>
<tr>
<td>(1) University of West Bohemia, Czech Republic</td>
<td></td>
</tr>
<tr>
<td>(2) Czech Academy of Sciences, Czech Republic</td>
<td></td>
</tr>
<tr>
<td>Experimental investigation on timing belt drive dynamics with non-circular pulley</td>
<td>2029</td>
</tr>
<tr>
<td>S. Passos $^{(1,2)}$, L. Manin $^{(2)}$, D. Rémont $^{(2)}$, O. Sauvage $^{(1)}$, L. Rota $^{(1)}$, E. Besnier $^{(2)}$</td>
<td></td>
</tr>
<tr>
<td>(1) Groupe PSA, France</td>
<td></td>
</tr>
<tr>
<td>(2) LaMCoS - Laboratoire de Mécanique des Contacts et des Structures, France</td>
<td></td>
</tr>
<tr>
<td>Improvement of instantaneous angular speed estimation based on frequency demodulation method under non stationary conditions</td>
<td>2043</td>
</tr>
<tr>
<td>K. Lizoul $^{(1)}$, H. Andre $^{(1)}$, F. Guillet $^{(1)}$</td>
<td></td>
</tr>
<tr>
<td>(1) Université de Lyon, Université Jean Monnet, France</td>
<td></td>
</tr>
</tbody>
</table>
FSI

Session Fluid-structure interaction

Nonlinear dynamical analysis of a fluid-structure computational model with sloshing and capillarity
Q. Akkaoui (1), E. Capiez-Lernout (1), C. Soize (1), R. Ohayon (2)
(1) Université Paris-Est, France
(2) CNAM - Conservatoire National des Arts et Métiers, France

Energy dissipation due to sloshing in baffled fuel tanks
F. Buck (1,2), H. Hetzler (1), E. Fruend (2), S. Oexl (2)
(1) University of Kassel, Germany
(2) Daimler AG, Germany

Efficient time-domain modeling of floating structures with fluid-structure interaction by reduced order state-space approximations
Ø. W. Petersen (1), O. Øiseth (1)
(1) NTNU - Norwegian University of Science and Technology, Norway

High-speed 3D DIC random dynamic strain measurement of a panel subjected to Mach 2 flow
T. Beberniss (1)
(1) United States Air Force Research Lab, United States of America

Experimental and theoretical characterization of a dAFM cantilever dynamics
E. Pierro (1), F. Bottiglione (2), G. Carbone (2)
(1) Università degli Studi della Basilicata, Italy
(2) Politecnico di Bari, Italy

INV

Session Inverse methods - load identification

Using wavelet deconvolution method to determine the force applied by drops of water on dry plates and plates with shallow surface water
Y. Yu (1), C. Hopkins (1)
(1) University of Liverpool, United Kingdom

Localisation, characterisation and Identification of localised nonlinearity in structural dynamics using base excitation frequency response functions
J. Taghipour (1), H. Haddad Khodaparast (1), M. I. Friswell (1), H. Madinei (1), H. Jalali (1), X. Wang (2)
(1) Swansea University, United Kingdom
(2) University of Bristol, United Kingdom

Random force identification via Kalman filtering on a cantilevered structure
R. P. Álvarez-Briceño (1), L. de Oliveira (1)
(1) University of São Paulo, Brazil
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse parameter estimation in resonant, coupled fluid-structure</td>
<td>2155</td>
</tr>
<tr>
<td>interaction problems</td>
<td></td>
</tr>
<tr>
<td>J. Cuenca (1,2), P. Goransson (2), L. De Ryck (1), T. Lähivaara (3)</td>
<td></td>
</tr>
<tr>
<td>(1) Siemens Industry Software NV, Belgium</td>
<td></td>
</tr>
<tr>
<td>(2) KTH Royal Institute of Technology, Sweden</td>
<td></td>
</tr>
<tr>
<td>(3) University of Eastern Finland, Finland</td>
<td></td>
</tr>
<tr>
<td>Identification of wave forces from acceleration and wave elevation</td>
<td>2171</td>
</tr>
<tr>
<td>data using inverse methods and spectral wave field reconstruction</td>
<td></td>
</tr>
<tr>
<td>Ø. W. Petersen (1), O. Øiseth (1), E.-M. Lourens (1)</td>
<td></td>
</tr>
<tr>
<td>(1) NTNU - Norwegian University of Science and Technology, Norway</td>
<td></td>
</tr>
<tr>
<td>Investigation of virtual sensing techniques on a rear twistbeam</td>
<td>2181</td>
</tr>
<tr>
<td>suspension by performing multiple-input/state estimation</td>
<td></td>
</tr>
<tr>
<td>R. Cumbo (1), T. Tamarozzi (1,2), K. Janssens (1), W. Desmet (2)</td>
<td></td>
</tr>
<tr>
<td>(1) Siemens Industry Software NV, Belgium</td>
<td></td>
</tr>
<tr>
<td>(2) KU Leuven, Belgium</td>
<td></td>
</tr>
<tr>
<td>LW</td>
<td>2197</td>
</tr>
<tr>
<td>Session Lightweight structures and materials</td>
<td></td>
</tr>
<tr>
<td>Linking manufacturing simulation with functional performance</td>
<td>2197</td>
</tr>
<tr>
<td>engineering for composites applications</td>
<td></td>
</tr>
<tr>
<td>K. Vanclooster (1), L. Spina (2), S. Donders (1), R. Lombardi (3),</td>
<td></td>
</tr>
<tr>
<td>R. D’Ippolito (3), L. Farkas (1), D. Mundo (2)</td>
<td></td>
</tr>
<tr>
<td>(1) Siemens Industry Software NV, Belgium</td>
<td></td>
</tr>
<tr>
<td>(2) University of Calabria, Italy</td>
<td></td>
</tr>
<tr>
<td>(3) Noesis Solutions, Belgium</td>
<td></td>
</tr>
<tr>
<td>Mesoscale structure of periodic textile composites effect on wave</td>
<td>2213</td>
</tr>
<tr>
<td>propagation</td>
<td></td>
</tr>
<tr>
<td>V. Thierry (1), L. Brown (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Nottingham, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Modal frequency and damping analysis of tow steered CFRP composite</td>
<td>2223</td>
</tr>
<tr>
<td>plates</td>
<td></td>
</tr>
<tr>
<td>D. d. A. Pereira (1,3), T. A. M. Guimaraes (2), D. A. Rade (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Division of Mechanical Engineering, ITA - Technological Institute</td>
<td></td>
</tr>
<tr>
<td>of Aeronautics, Brazil</td>
<td></td>
</tr>
<tr>
<td>(2) School of Mechanical Engineering, UFU - Federal University of</td>
<td></td>
</tr>
<tr>
<td>Uberlândia, Brazil</td>
<td></td>
</tr>
<tr>
<td>(3) Lightweight Structures Laboratory, IPT - Institute for</td>
<td></td>
</tr>
<tr>
<td>Technological Research, Brazil</td>
<td></td>
</tr>
<tr>
<td>Numerical and experimental investigation of prestress effect on</td>
<td>2239</td>
</tr>
<tr>
<td>natural frequencies of composite beams</td>
<td></td>
</tr>
<tr>
<td>A. Orlowska (1), C. Graczykowski (1), A. Galezia (2)</td>
<td></td>
</tr>
<tr>
<td>(1) Institute of Fundamental Technological Research Polish Academy</td>
<td></td>
</tr>
<tr>
<td>of Sciences, Poland</td>
<td></td>
</tr>
<tr>
<td>(2) Warsaw University of Technology, Poland</td>
<td></td>
</tr>
<tr>
<td>Multi-attribute evaluation of concept variants for lightweight</td>
<td>2249</td>
</tr>
<tr>
<td>structures</td>
<td></td>
</tr>
<tr>
<td>C. Lopez (1), M. Boucher (1,2), B. Van Doninck (1), F. Maurin</td>
<td></td>
</tr>
<tr>
<td>(1), V. Iliopoulou (1), J. Stroobants (1), S. Jonckheere (1,2),</td>
<td></td>
</tr>
<tr>
<td>E. Deckers (1,2), S. van Poppel (1), B. Pluymers (1,2)</td>
<td></td>
</tr>
<tr>
<td>(1) Flanders Make, Belgium</td>
<td></td>
</tr>
<tr>
<td>(2) KU Leuven, Belgium</td>
<td></td>
</tr>
</tbody>
</table>
The effect of the weaving architecture of periodic composite structures on structural damping
V. Thierry (1), D. Chronopoulos (1)
(1) University of Nottingham, United Kingdom

Analysis of Sound Transmission Loss of a Rectangular Plate with Acoustic Treatments
S. Zhang (1), X. Sheng (1)
(1) Southwest Jiaotong University, People’s Republic of China

MHF

Session Medium and high frequency techniques

Narrow band analysis of structure borne noise in complex dynamical systems using energy methods
G. Borello (1), L. Gagliardini (2), T. Lambert (2), I. Abettan (2)
(1) InterAC, France
(2) Groupe PSA, France

Dynamical energy analysis modelling by using transfer path analysis
S. Morita (1), T. Hartmann (2), G. Tanner (2)
(1) Yanmar R&D Europe, Italy
(2) University of Nottingham, United Kingdom

A fast and efficient approach for simulating ultrasonic waves and their interaction with defects in periodic structures
M. K. Malik (1,2), D. Chronopoulos (1), G. Tanner (1), Y. Essa (2), F. de la Escalera Cutillas (2)
(1) University of Nottingham, United Kingdom
(2) Aernnova S.A., Spain

Band-averaged variance prediction in the hybrid deterministic – statistical energy analysis of vibro-acoustic systems
E. Reynders (1), R. S. Langley (2)
(1) KU Leuven, Belgium
(2) University of Cambridge, United Kingdom

An experimental investigation of the three-dimensional vibration characteristics of ultrasonic irrigation tips
M. Dannemann (1), M. Kucher (1), M.-T. Weber (1), N. Modler (1)
(1) Technical University of Dresden, Germany

Tunnelling corrections to wave transmissions on shell structures
N. M. Mohammed (1,3), S. Creagh (1), G. Tanner (1), D. Chappell (2)
(1) University of Nottingham, United Kingdom.
(2) Nottingham Trent University, United Kingdom.
(3) University of Sulaimani, Iraq.

Connectivity in waves and vibrations: one-to-six, one-to-all, all-to-all and random connections
A. Carcaterra (1), N. Roveri (1), A. Akay (2)
(1) Sapienza, University of Rome, Italy
(2) Bilkent University, Ankara, Turkey
Table of Contents

Waves path in an elastic membrane with selective nonlocality
F. Coppo (1), A. S. Rezaei (1), F. Mezzani (1), S. Pensalfini (1), A. Carcaterra (1)
(1) Sapienza University of Rome, Italy

MOR

Session Model order reduction

Model order reduction of large stroke flexure hinges using modal derivatives
J. P. Schilder (1), F. M. Segeth (1), M. H. M. Ellenbroek (1), M. van den Belt (1), A. de Boer (1)
(1) University of Twente, The Netherlands

A full PGD/HBM-based algorithm for a low-dimensional NNM continuation with modal enrichment
L. Meyrand (1), E. Sarrouy (1), B. Cochelin (1), G. Ricciardi (2)
(1) Aix-Marseille University, France
(2) CEA Cadarache, France

Amultivariate, well-conditioned asymptotic waveform evaluation for finite element solutions with complex parametric dependence
R. Rumpler (1), R. Rodríguez Sánchez (2), P. Goransson (1)
(1) KTH Royal Institute of Technology, Sweden
(2) Technical University of Munich, Germany

Model order reduction for nonlinear dynamics engineering applications
F. Naets (1,2), T. Tamarozzi (1,3), W. Rottiers (1,2), S. Donders (3), H. Van der Auweraer (3), W. Desmet (1,2)
(1) KU Leuven, Belgium
(2) Flanders Make, Belgium
(3) Siemens Industry Software NV

The application of artificial neural networks in mechatronics system development
P. Mas (1), S. B. Maddina (1), F. L. Marques dos Santos (1), C. Sobie (1), H. Van der Auweraer (1)
(1) Siemens Industry Software NV, Belgium

Non-intrusive model-order reduction of geometrically nonlinear finite elements: enhancement with static augmentation
M. Karamooz Mahdabadi (1), D. J. Rixen (1)
(1) Technical University of Munich, Germany

Parametric model order reduction for efficient frequency response evaluation
V. Cool (1), F. Naets (1,2), W. Rottiers (1,2), W. Desmet (1,2)
(1) KU Leuven, Belgium
(2) Flanders Make, Belgium

MTOA

Session Modeling, testing, and optimization of acoustic metamaterials

Application of the wave finite element method to the analysis of locally resonant band gaps in periodic structures with viscoelastic properties
J.-M. Mencik (1), V. Denis (1), M. Caliez (1), S. Méo (2)
(1) INSA Centre Val de Loire, France
(2) Université de Tours, France
Investigating simple designs of phononic crystal plates and their influence on the wave propagation properties
E. D. Nobrega (1,2), M.-L. Gobert (3), J. M. C. Dos Santos (1), J.-M. Mencik (3)
(1) State University of Campinas, Brazil
(2) Federal University of Maranhão, Brazil
(3) INSA Centre Val de Loire, France

Computing the dispersion diagram and the forced response of periodic elastic structures using a state-space formulation
(1) Unicamp - University of Campinas, Brazil
(2) IFMA - Federal Institute of Maranhão, Brazil

MB
Session Multi-body dynamics and control

Increasing the threshold of vibration stability of soft mounted induction motors with elastic rotors and sleeve bearings using active motor foot mounts
U. Werner (1)
(1) University of Applied Sciences Georg Simon Ohm Nuremberg, Germany

Separation of structural response and excitation characteristics in planetary gearboxes
D. F. Plöger (1), J. Jungblut (1), P. Zech (1), S. Rinderknecht (1)
(1) TU Darmstadt, Germany

Full model multibody approach for the sound calculation of gearboxes
D. Werner (1), S. Falkenberger (2), B. Graf (1), F. Wegerer (1), J. Neher (3), B. Wender (1)
(1) University of Applied Sciences of Ulm, Germany
(2) Continental Automotive, Germany
(3) MAN Diesel & Turbo SE, Germany

Comparison of finite-element methods to compute the transmission error to noise transfer function of a simple gear box.
Y. Goth (1)
(1) CETIM - Centre Technique des Industries Mécaniques, France

An absolute interface coordinates floating frame of reference formulation for plates
M. van den Belt (1), J. P. Schilder (1), D. M. Brouwer (1)
(1) University of Twente, The Netherlands

Topology optimization of a high-speed cutting mechanism
K. Asrih (1), F. Naets (1,2), W. Desmet (1,2)
(1) KU Leuven, Belgium
(2) Flanders Make, Belgium

Modal behavior and transient dynamic analysis of a planetary gear train with time-varying mesh stiffness using a multibody model
C. Alessio (1), D. Park (2), D. Mundo (1), T. Tamarozzi (2), A. Rezayat (2)
(1) University of Calabria, Italy
(2) Siemens Industry Software NV, Belgium
NL

Session Non-linearities: identification and modelling

A nonlinear energy harvester for torsional oscillations
B. Gunn (1), S. Theodossiades (1), S. Rothberg (1)
(1) Loughborough University, United Kingdom

On selecting appropriate training data to model an autonomous oscillator
J. Decuyper (1), T. De Troyer (1), M. C. Runacres (1), K. Tiels (2), J. Schoukens (1)
(1) Vrije Universiteit Brussel, Belgium
(2) Uppsala University, Sweden

Unsteady aerodynamics and nonlinear dynamics of freefalling rotating seeds
B. A. Roccia (1,2), M. L. Verstraete (1), G. Dimitriadis (2), O. Bruls (2), S. Preidikman (1)
(1) CONICET – National Council of Scientific and Technological Research Argentina
(2) University of Liège, Belgium

Predicting nonlinear system responses without a single simulation
G. Manson (1)
(1) University of Sheffield, United Kingdom

Experiments and simulations of an industrial assembly with nonlinear joints subjected to harmonic and random vibrations
T. Roncen (1,2), J.-J. Sinou (2,3), J.-P. Lambelin (1)
(1) CEA, France
(2) Ecole Centrale de Lyon, France
(3) Institut Universitaire de France, France

Modal analysis of an isolated nonlinear response mode using the Nyquist circle properties: numerical case
D. Di Maio (1)
(1) University of Twente, The Netherlands

Linearization of modal parameters in Duffing oscillator using the random decrement technique
K. K. Vesterholm (1), R. Brincker (1), A. Brandt (2)
(1) DTU - Centre for Oil and Gas, Technical University of Denmark, Denmark
(2) University of Southern Denmark, Denmark

Computation of nonlinear modes of non-conservative mechanical systems
M. Jahn (1), S. Tatzko (1), L. Panning-von Scheidt (1), J. Wallaschek (1)
(1) Leibniz University Hannover, Germany

Using the harmonic balance method to directly compute NNMs of geometrically nonlinear finite element models
C. I. Van Damme (1), A. E. Madrid (1), M. S. Allen (1)
(1) University of Wisconsin - Madison, United States of America

Nonlinear time series analysis of drillstring lateral vibrations
T. Kasper (1), S. Tatzko (1), J. Wallaschek (1)
(1) Leibniz University Hannover, Germany
Investigating the bi-stable behavior of a lumped system with frictional contact
J. Brunetti (1), W. D’Ambrogio (1), N. Hoffmann (2), F. Massi (3)
(1) Università dell’Aquila, Italy
(2) Hamburg University of Technology, Germany
(3) Sapienza University of Rome, Italy

Investigating a mechanism which causes divergence of a resonant decay from the backbone curve
A. K. M. Brown (1), T. L. Hill (1), S. Neild (1), I. Tartaruga (1)
(1) University of Bristol, United Kingdom

Manuscript preparation instructions
A. J. Elliott (1), I. Tartaruga (2), A. Cammarano (1), P. S. Dobson (1), S. Neild (2)
(1) University of Glasgow, United Kingdom
(2) University of Bristol, United Kingdom

On the identification of model error through observations of time-varying parameters
P. L. Green (1), E. Chodora (2), S. Atamturktur (2)
(1) University of Liverpool, United Kingdom
(2) Clemson University, United States

On NARX models using treed Gaussian processes
T. Zhang (1), R. J. Bartherpe (1), K. Worden (1)
(1) University of Sheffield, United Kingdom

OMA
Session Operational modal analysis

Optimal parameters in Data-driven stochastic subspace identification in Operational Modal Analysis
C.-Y. Tsai (1), Y. J. Chan (1), J.-L. Chen (1), C.-L. Chao (1), S.-Y. Chien (1)
(1) National Chung Hsing University, Taiwan

Operational modal analysis and fluid-structure interaction
M. Vigsø (1), T. Kabel (1), M. Tarpø (1), R. Brincker (2), C. T. Georgakis (1)
(1) Aarhus University, Denmark
(2) Technical University of Denmark, Denmark

Fatigue damage prediction based on strain field estimates using a smoothed Kalman filter and sparse measurements
U. Lagerblad (1,2), H. Wentzel (2), A. Kulachenko (1)
(1) KTH Royal Institute of Technology, Sweden
(2) Scania CV AB, Sweden

Dealing with harmonics in continuous modal analysis
N. Gioia (1), C. Peeters (1), P. J. Daems (1), P. Guillaume (1), J. Helsen (1)
(1) Vrije Universiteit Brussel, Belgium

Output-only recursive identification of time-varying systems subject to gross errors
Z.-S. Ma (1), Q. Ding (1), B. Wang (1)
(1) Tianjin University, People’s Republic of China
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational modal analysis of a turbine in big noise environment</td>
<td>2839</td>
</tr>
<tr>
<td>M. Zhao (1), L. Yue (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Nanjing University of Aeronautics and Astronautics, People’s Republic of China</td>
<td></td>
</tr>
<tr>
<td>Statistical error reduction for correlation-driven operational modal analysis</td>
<td>2851</td>
</tr>
<tr>
<td>M. Tarps (1), P. Olsen (1), M. Juul (1), S. Amador (2), T. Friis (2), R. Brincker (2)</td>
<td></td>
</tr>
<tr>
<td>(1) Aarhus University, Denmark</td>
<td></td>
</tr>
<tr>
<td>(2) Technical University of Denmark, Denmark</td>
<td></td>
</tr>
<tr>
<td>Regularized time-varying operational modal analysis illustrated on a wind tunnel testing measurement</td>
<td>2859</td>
</tr>
<tr>
<td>P. Z. Csurcsia (1,2), B. Peeters (2), J. Schoukens (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Vrije Universiteit Brussel, Belgium</td>
<td></td>
</tr>
<tr>
<td>(2) Siemens Industry Software NV, Belgium</td>
<td></td>
</tr>
<tr>
<td>Automated modal identification in operational conditions using 3D stabilization diagrams</td>
<td>2873</td>
</tr>
<tr>
<td>G. Marrongelli (1), F. Magalhães (2), C. Gentile (1), Á. Cunha (2)</td>
<td></td>
</tr>
<tr>
<td>(1) Politecnico di Milano, Italy</td>
<td></td>
</tr>
<tr>
<td>(2) University of Porto, Portugal</td>
<td></td>
</tr>
<tr>
<td>Operational modal analysis based on time-domain expansion of transmissibility</td>
<td>2887</td>
</tr>
<tr>
<td>J. Kang (1), L. Liu (1,2,3), S. D. Zhou (1,2,3), L. Yu (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Beijing Institute of Technology, People’s Republic of China</td>
<td></td>
</tr>
<tr>
<td>(2) Ministry of Education, People’s Republic of China</td>
<td></td>
</tr>
<tr>
<td>(3) Ministry of Industry and Information Technology, People’s Republic of China</td>
<td></td>
</tr>
<tr>
<td>Output-only modal parameter estimator of time-varying structures based on maximum correntropy criterion and kernelized TARMA model</td>
<td>2903</td>
</tr>
<tr>
<td>L. Yu (1), L. Liu (1,2,3), J. Kang (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Beijing Institute of Technology, People’s Republic of China</td>
<td></td>
</tr>
<tr>
<td>(2) Ministry of Education, People’s Republic of China</td>
<td></td>
</tr>
<tr>
<td>(3) Ministry of Industry and Information Technology, People’s Republic of China</td>
<td></td>
</tr>
</tbody>
</table>

PE

Session Parameter estimation

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of the modal parameters of systems with general damping.</td>
<td>2917</td>
</tr>
<tr>
<td>N. Feng (2), E. J. Hahn (1), M. Yu (3)</td>
<td></td>
</tr>
<tr>
<td>(1) University of New South Wales, Australia</td>
<td></td>
</tr>
<tr>
<td>(2) Shandong University, China</td>
<td></td>
</tr>
<tr>
<td>(3) Sun Yat-sen University, China</td>
<td></td>
</tr>
<tr>
<td>Automatic operational modal analysis using statistical modelling of pole locations</td>
<td>2927</td>
</tr>
<tr>
<td>S. S. Christensen (1), A. Brandt (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Southern Denmark, Denmark</td>
<td></td>
</tr>
<tr>
<td>Variance computation of the Modal Assurance Criterion</td>
<td>2939</td>
</tr>
<tr>
<td>S. Gres (1), M. Döhler (2), P. Andersen (3), L. Mevel (2)</td>
<td></td>
</tr>
<tr>
<td>(1) Aalborg University, Denmark</td>
<td></td>
</tr>
<tr>
<td>(2) Inria/IFSTTAR, France</td>
<td></td>
</tr>
<tr>
<td>(3) Structural Vibration Solutions A/S, Denmark</td>
<td></td>
</tr>
</tbody>
</table>
Recent advances in swept sine controlled excitation and processing for Multi-Input Multi-Output FRFs estimation

U. Musella (1,2,3), A. Longo (3), S. Vettori (4), S. Waimer (1,2), E. Di Lorenzo (2), B. Peeters (2), F. Marulo (3), P. Guillaume (1)
(1) Vrije Universiteit Brussel, Belgium
(2) Siemens Industry Software NV, Belgium
(3) University of Naples Federico II, Italy
(4) Sapienza University of Rome, Italy

Automatic modal parameter selection using a statistical model and a Kalman filter

K. Soal (1), Y. Govers (1), J. Bienert (2), A. Bekker (3)
(1) DLR - German Aerospace Center, Germany
(2) THI - Technische Hochschule Ingolstadt, Germany
(3) Stellenbosch University, South Africa

Identification and comparison of modal parameter in a structure during the vibration test using operational modal analysis

N. C. Costa (1), E. A. Camargo (2), R. Pirk (2)
(1) Brüel & Kjær Sound & Vibration Measurement A/S, Brazil
(2) ITA - Instituto Tecnológico de Aeronáutica, Brazil

Output-only damping estimation of friction systems in ambient vibrations

T. Friis (1), E. I. Katsanos (1), M. Tarpø (2), S. Amador (1), R. Brincker (1)
(1) Technical University of Denmark, Denmark
(2) Aarhus University, Denmark

PBNv2

Session Pass-by noise

Approaches to the remote mapping of vehicle noise sources in a reverberant environment

A. Papaioannou (1), S. J. Elliott (1), J. Cheer (1)
(1) University of Southampton, United Kingdom

Model-based acoustic characterisation of muffler components and extrapolation to inhomogeneous thermal conditions

M. H. Alkmim (1), J. Cuenca (1), L. De Ryck (1), P. Goransson (2)
(1) Siemens Industry Software NV, Belgium
(2) KTH Royal Institute of Technology, Sweden

The design of a low-cost directional warning sound system for electric vehicles

N. Kournoutsos (1), J. Cheer (1), S. J. Elliott (1)
(1) University of Southampton, United Kingdom

PER

Session Periodic structures and metamaterials

Tailoring Phononic-like topologies for controlling the structural-acoustic coupling in fluid-filled cylinders

Y. Vered (1), I. Bucher (1)
(1) Technion, Israel
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonant metabarriers as seismic attenuators in granular media</td>
<td>R. Zaccherini (1), A. Palermo (2,3), S. Krödel (1), V. K. Dertimanis (1), A. Marzani (2), C. Daraio (3), E. N. Chatzi (1)</td>
<td>3047</td>
</tr>
<tr>
<td></td>
<td>(1) ETH Zürich, Switzerland (2) University of Bologna, Italy (3) California Institute of Technology, United States of America</td>
<td></td>
</tr>
<tr>
<td>The influence of uncertainties in periodic structures for vibro-acoustic problems</td>
<td>J. Henneberg (1,2), J. S. Gomez Nieto (1), K. Sepahvand (1), A. Gerlach (2), H. Cebulla (3), S. Marburg (1)</td>
<td>3059</td>
</tr>
<tr>
<td></td>
<td>(1) Technical University of Munich, Germany (2) Robert Bosch GmbH, Germany (3) Technical University Chemnitz, Germany</td>
<td></td>
</tr>
<tr>
<td>Diffusion-based design of locally resonant sub-systems using a reduced wave finite element framework</td>
<td>C. Droz (1), R. F. Boukadia (1), M. Ichchou (2), W. Desmet (1) (1) KU Leuven, Belgium (2) Ecole Centrale de Lyon, France</td>
<td>3071</td>
</tr>
<tr>
<td>Broadband resonance suppressions using a resonant beam damper with embedded acoustic black hole features</td>
<td>T. Zhou (1), L. Cheng (1) (1) Hong Kong Polytechnic University, Hong Kong S.A.R. (People’s Republic of China)</td>
<td>3085</td>
</tr>
<tr>
<td>Metamaterial characterization for acoustic cloaking applications</td>
<td>A. Hanford (1), P. Kerrian (1), B. Beck (1), D. Capone (1) (1) The Pennsylvania State University, United States of America</td>
<td>3097</td>
</tr>
<tr>
<td>Attenuation of the mass-spring-mass effect in the sound transmission loss of double panel partitions using vibroacoustic resonant metamaterials</td>
<td>N. G. Rocha de Melo Filho (1,2), L. Van Belle (1,2), C. Claeyss (1,2), E. Deckers (1,2), W. Desmet (1,2) (1) KU Leuven, Belgium (2) Flanders Make, Belgium</td>
<td>3111</td>
</tr>
<tr>
<td>Design tool for realisable vibro-acoustic metamaterials based on their NVH performance</td>
<td>M. E. S. Clasing Villanueva (1,2), C. Claeyss (1,2), N. G. Rocha de Melo Filho (1,2), E. Deckers (1,2), K. Geurts (2), I. Van de Weyenberg (2), P. Campestrini (2), B. Pluymers (1,2), W. Desmet (1,2) (1) KU Leuven, Belgium (2) Flanders Make, Belgium</td>
<td>3125</td>
</tr>
<tr>
<td>Control of edge modes in finite vibro-acoustic resonant metamaterials</td>
<td>L. Sangiuliano (1,2), E. Deckers (1,2), C. Claeyss (1,2) (1) KU Leuven, Belgium (2) Flanders Make, Belgium</td>
<td>3135</td>
</tr>
<tr>
<td>Formation mechanisms of vibration bandgaps based on block diagrams of wave transmission</td>
<td>S. Tomita (1), S. Nakano (1), R. Omote (1) (1) Toyota Inc., Japan (1) Toyota Inc., Japan</td>
<td>3145</td>
</tr>
<tr>
<td></td>
<td>(1) Sapienza University of Rome, Italy (2) University of Rome, Italy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) KU Leuven, Belgium (2) Flanders Make, Belgium (3) Toyota Inc., Japan</td>
<td></td>
</tr>
</tbody>
</table>
Influence of damping on the sound insulation of infinite and finite locally resonant metamaterial plates
L. Van Belle (1,2), C. Claeys (1,2), E. Deckers (1,2), W. Desmet (1,2)
(1) KU Leuven, Belgium
(2) Flanders Make, Belgium

3171

Revisited impedance tube for standard and metamaterial testing
L. A. Nascimento (1), G. K. Rodrigues (1), L. de Oliveira (1)
(1) University of São Paulo, Brazil

3185

Small-world based interactions in elastic metamaterials
n. roveri (1), s. pensalfini (1), a. carcaterra (1)
(1) Sapienza University of Rome, Italy

3199

RAIL
Session Railway dynamics and ground vibrations

Dynamic FEM simulation of wheel-rail rolling contact with friction in an Eulerian frame - Application to curve squeal
V. V. Lai (1,2), O. Chiello (2), J.-F. Brunel (1), P. Dufrénoy (1)
(1) University of Lille, France
(2) IFSTTAR, France

3213

Apodization and phase methods applied to the seismic detection of underground objects
E. Rustighi (1), Q. Leclère (2), J. M. Muggleton (1)
(1) University of Southampton, United Kingdom
(2) INSA Lyon, France

3227

Optimization of flow restrictor diameter in high speed railway vehicle suspensions
(1) University of Castilla-La Mancha, Spain

3243

Modelling of the track supports with elements over elastic foundation together with dynamic internal degrees of freedom
B. Blanco (1,2,3), L. Kari (3), N. Gil-Negrete (1,2), A. Alonso (2,4)
(1) CEIT-IK4, Spain
(2) University of Navarra, Spain
(3) KTH Royal Institute of Technology, Sweden
(4) CAF I+D, Spain

3255

Enabling the optimisation of the primary suspension with passive components for an industrial railway vehicle model
T. D. Lewis (1), Y. Li (1), J. Z. Jiang (1), S. Neild (1), G. Tucker (2), S. Iwnicki (2), R. Goodall (2), M. Smith (3)
(1) University of Bristol, United Kingdom
(2) University of Huddersfield, United Kingdom
(3) University of Cambridge, United Kingdom

3269
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An investigation on the influence of pantograph friction on its interaction with a catenary using co-simulations</td>
<td>3283</td>
</tr>
<tr>
<td>P. Zdziebko (1), A. Martowicz (1), T. Uhl (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Science and Technology AGH, Poland</td>
<td></td>
</tr>
<tr>
<td>Sensitivity of dynamic responses of railway prestressed concrete sleepers with under sleeper pads to impact energy</td>
<td>3295</td>
</tr>
<tr>
<td>C. Ngamkhanong (1), K. Goto (1,2), S. Kaewunruen (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Birmingham, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>(2) Railway Technical Research Institute, Japan</td>
<td></td>
</tr>
<tr>
<td>Enhancing the dynamic performance of a pantograph-catenary system via inerter-based damping technology</td>
<td>3305</td>
</tr>
<tr>
<td>M. Zhu (1), S. Y. Zhang (1), J. Z. Jiang (1), J. Macdonald (1), S. Neild (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Bristol, United Kingdom</td>
<td></td>
</tr>
</tbody>
</table>

SEV

Session Self-excited vibrations

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitigation of friction-induced vibrations in braking systems: prediction of the mitigation limit</td>
<td>3315</td>
</tr>
<tr>
<td>B. Bergeot (1), S. Bellizzi (2), S. Berger (1)</td>
<td></td>
</tr>
<tr>
<td>(1) INSA Centre Val de Loire, France</td>
<td></td>
</tr>
<tr>
<td>(2) LMA - Laboratoire de Mécanique et d'Acoustique, France</td>
<td></td>
</tr>
<tr>
<td>Structural modification of tool holder geometry as a chatter avoidance method</td>
<td>3331</td>
</tr>
<tr>
<td>T. J. Gibbons (1), E. Ozturk (1), L. Xu (2), N. D. Sims (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Sheffield, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>(2) The Boeing Company</td>
<td></td>
</tr>
<tr>
<td>Bifurcations and limit cycles due to self-excitation in nonlinear systems with joint friction: Phenomena and approximation schemes</td>
<td>3343</td>
</tr>
<tr>
<td>J. Kappauf (1), H. Hetzler (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Kassel, Germany</td>
<td></td>
</tr>
<tr>
<td>Flutter testing using ambient excitation</td>
<td>3353</td>
</tr>
<tr>
<td>J. Cooper (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Bristol, United Kingdom</td>
<td></td>
</tr>
</tbody>
</table>

SD

Session Structural dynamics: methods and case studies

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and analysing an electromechanical model of a bio-inspired flapping wing mini UAV</td>
<td>3365</td>
</tr>
<tr>
<td>M. Park (1), A. Abolfathi (1), J. Biggs (2), Y. Ventikos (1)</td>
<td></td>
</tr>
<tr>
<td>(1) University College London, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>(2) Politecnico di Milano, Italy</td>
<td></td>
</tr>
<tr>
<td>Dynamic behavior and vibration analysis of tensegrity - membrane structures</td>
<td>3373</td>
</tr>
<tr>
<td>P. Kurka (1), V. Paiva (1), L. Teixeira (1), J. Izuka (1), P. Gonzalez (1)</td>
<td></td>
</tr>
<tr>
<td>(1) Unicamp - University of Campinas, Brazil</td>
<td></td>
</tr>
</tbody>
</table>
Contactless 3D manipulation of silicon wafers using acoustic levitation
I. Bucher (1)
(1) Technion, Israel

Squeal measurement with 3D scanning laser doppler vibrometer: handling of the time varying system behavior and analysis improvement using FEM expansion
G. Martin (1), E. Balmes (1,3), G. Vermot des Roches (1), T. Chancelier (2)
(1) SDTools, France
(2) Chassis Brakes International, France
(3) ENSAM - École Nationale Supérieure d’Arts et Métiers, France

A periodic H2 state feedback controller for a rotor-blade system
J. F. Camino (1), I. F. Santos (2)
(1) Unicamp - University of Campinas, Brazil
(2) Technical University of Denmark, Denmark

Model-based analysis of the dynamic behaviour of the wing drive line of a robotic hummingbird
S. Timmermans (1), D. Vandepitte (1)
(1) KU Leuven, Belgium

Focussing flexural waves for accretion removal from a beam
T. Waters (1), P. Harris (1), H. Mulchandani (1), I. Stothers (2)
(1) University of Southampton, United Kingdom
(2) Cambridge, UK.

Non-stationary random vibration modeling and analysis: kernel versus adaptable Functional Series TAR methods
C. N. Kapsalas (1), S. D. Fassois (1), J. S. Sakellariou (1)
(1) University of Patras, Greece

Numerical and experimental modal analysis of structures under gyroscopic influence in ALE formulation
T. Weidauer (1), K. Willner (1)
(1) FAU Erlangen-Nürnberg, Germany

Electromagnetic vibration analysis of main transformer for railway
K. Fukui (1), T. Noda (1)
(1) Mitsubishi Electric Corporation, Japan

Load and deflection estimation of a fast catamaran towingtank model via reduced order modeling and optimal natural observer
F. Saltari (1,2), D. Dessi (1), E. Faiella (1), F. Mastroddi (2)
(1) CNR - National Research Council, Italy
(2) Sapienza University of Rome, Italy

Characterization of reaction wheel micro-vibrations
W. De Munter (1), T. Delabie (1), D. Vandepitte (1)
(1) KU Leuven, Belgium

Simulation and experimental validation of gas-engine blade dynamics during milling
S. Nikolaev (1), I. Kiselev (2), V. Kuts (2), S. Voronov (2)
(1) Skolkovo Institute of Science and Technology, Russia
(2) Bauman Moscow State Technical University, Russia
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic single hit test rig for analysis of the stress wave profile of non-uniform impacting rods</td>
<td>3535</td>
</tr>
<tr>
<td>J. Burgert (^{(1)}), C. Moilanen (^{(2)}), W. Seemann (^{(1)}), J. Montonen (^{(3)}), J. Miettinen (^{(2)}), P. Saarenrinne (^{(2)})</td>
<td></td>
</tr>
<tr>
<td>(^{(1)}) Karlsruhe Institute of Technology, Germany</td>
<td></td>
</tr>
<tr>
<td>(^{(2)}) TUT - Tampere University of Technology, Finland</td>
<td></td>
</tr>
<tr>
<td>(^{(3)}) Robit Company, Finland</td>
<td></td>
</tr>
<tr>
<td>Simulation and digital twin for mechatronic product design</td>
<td>3547</td>
</tr>
<tr>
<td>H. Van der Auweraer (^{(1,3)}), S. Donders (^{(1)}), D. Hartmann (^{(2)}), W. Desmet (^{(3,4)})</td>
<td></td>
</tr>
<tr>
<td>(^{(1)}) Siemens Industry Software NV, Belgium.</td>
<td></td>
</tr>
<tr>
<td>(^{(2)}) Siemens Corporate Technology, Germany.</td>
<td></td>
</tr>
<tr>
<td>(^{(3)}) KU Leuven, Belgium.</td>
<td></td>
</tr>
<tr>
<td>(^{(4)}) DMMS core lab, Flanders Make.</td>
<td></td>
</tr>
<tr>
<td>On the dynamic stiffness of air springs at medium-high frequencies</td>
<td>3567</td>
</tr>
<tr>
<td>N. Gil-Negrete (^{(1,2)}), A. J. Nieto Quijorna (^{(1,2)}), A. Pradera-Mallabiarrenna (^{(1)}), J. Gonzalez-Prada (^{(1)})</td>
<td></td>
</tr>
<tr>
<td>(^{(1)}) University of Navarra, Spain</td>
<td></td>
</tr>
<tr>
<td>(^{(2)}) CEIT, Spain</td>
<td></td>
</tr>
<tr>
<td>Dynamic optimization of an electro-spindle for robotic machining</td>
<td>3581</td>
</tr>
<tr>
<td>A. Mora (^{(2)}), G. Bianchi (^{(1)}), M. Leonesio (^{(1)})</td>
<td></td>
</tr>
<tr>
<td>(^{(1)}) CNR - National Research Council, Italy</td>
<td></td>
</tr>
<tr>
<td>(^{(2)}) SUPSI University of Applied Sciences and Arts of Southern Switzerland, Switzerland</td>
<td></td>
</tr>
<tr>
<td>Experimental and numerical mode shape tracing from components to whole motorbike chassis</td>
<td>3597</td>
</tr>
<tr>
<td>E. Bonisoli (^{(1)}), D. Lisitano (^{(1)}), L. Dimauro (^{(1)})</td>
<td></td>
</tr>
<tr>
<td>(^{(1)}) Politecnico di Torino, Italy</td>
<td></td>
</tr>
<tr>
<td>Accurate product model development for the simulation of the dynamic behaviour of deep drawn components</td>
<td>3605</td>
</tr>
<tr>
<td>F. Greco (^{(1,2)}), E. Deckers (^{(1,2)}), J. Stroobants (^{(2)}), S. Van Poppel (^{(2)}), F. Maurin (^{(1,2)}), W. Desmet (^{(1,2)})</td>
<td></td>
</tr>
<tr>
<td>(^{(1)}) KU Leuven, Belgium</td>
<td></td>
</tr>
<tr>
<td>(^{(2)}) Flanders Make, Belgium</td>
<td></td>
</tr>
<tr>
<td>Transmission of vibrations between towed and towing agricultural machines</td>
<td>3617</td>
</tr>
<tr>
<td>J. Brunetti (^{(2)}), W. D’Ambrogio (^{(2)}), A. Fregolent (^{(1)}), G. Lacerra (^{(1)})</td>
<td></td>
</tr>
<tr>
<td>(^{(1)}) Sapienza University of Rome, Italy</td>
<td></td>
</tr>
<tr>
<td>(^{(2)}) Università dell’Aquila, Italy</td>
<td></td>
</tr>
<tr>
<td>Modal analysis tools at V2i: improved pre- and post-processing with modified p-LSCF algorithm</td>
<td>3629</td>
</tr>
<tr>
<td>S. Hoffait (^{(1)}), S. Moschini (^{(1)}), J. Ligot (^{(1)}), D. Simon (^{(1)})</td>
<td></td>
</tr>
<tr>
<td>(^{(1)}) V2i, Belgium</td>
<td></td>
</tr>
<tr>
<td>Towards an application of an active tendon in rotorcraft: A numerical and experimental study of coupled bending-torsion vibration of a beam-tendon system</td>
<td>3645</td>
</tr>
<tr>
<td>V. Ondra (^{(1)}), R. P. Dibble (^{(1)}), B. Titurus (^{(1)})</td>
<td></td>
</tr>
<tr>
<td>(^{(1)}) University of Bristol, United Kingdom</td>
<td></td>
</tr>
</tbody>
</table>
Dynamics and control of adaptive airbags for UAV impact protection

(1) Institute of Fundamental Technological Research Polish Academy of Sciences, Poland.
(2) Adaptronica sp. z o.o., Poland.

Structural intensity on irregular shells

F. Pires (1,2), S. Vanlanduit (1,2), J. Dirckx (1)

(1) University of Antwerp, Belgium
(2) Vrije Universiteit Brussel, Belgium

SHM

Session Structural health monitoring

A multi-level uncertainty integration strategy for forward model-driven SHM

P. Gardner (1), C. Lord (1), R. J. Barthorpe (1)

(1) University of Sheffield, United Kingdom

Railway suspension fault detection under variable operating conditions via random vibration signals and the stochastic Functional Model based method

T.-C. I. Aravanis (1), J. S. Sakellariou (1), S. Fassois (1)

(1) University of Patras, Greece

On the use of pseudo-damage to represent damage to structures in population-based Structural Health Monitoring

S. Walker (1), C. Lord (1), N. Dervilis (1), E. Papatheou (2), K. Worden (1)

(1) University of Sheffield, United Kingdom
(2) University of Exeter, United Kingdom

Connecting nonlinearities: damage precursors detection and control methodology

E. Habtour (1,2,3), T. Dragman (2), T. Masmeije (2), D. Di Maio (2), R. Haynes (2), A. Homborg (1), T. Tinga (1,2)

(1) The Netherlands Defence Academy, The Netherlands
(2) University of Twente, The Netherlands
(3) U.S Army Research Laboratory

Modal strain identification using sub-microstrain fiber-optic Bragg grating data for damage detection of prestressed concrete structures

D. Anastasopoulos (1), G. De Roeck (1), E. Reynders (1)

(1) KU Leuven, Belgium

Relations between the quality of identified modal parameters and measured data obtained by structural monitoring

S. Marwitz (1), V. Zabel (1)

(1) Bauhaus University Weimar, Germany

Robust damage detection using Bayesian virtual sensing with noise reduction and environmental effect elimination capabilities

J. Kullaa (1)

(1) Metropolia University of Applied Sciences, Finland
Application of H-infinity estimation and oblique projections for experimental damage identification by SP2E
M. Vollmering (1), A. Lenzen (1)
(1) Leipzig University of Applied Sciences, Germany

A wave-based optimization strategy of curved joints for improved defect detection in coupled waveguides
V. Denis (1), J.-M. Mencik (1)
(1) INSA Centre Val de Loire, France

Vibration integrity assessment on LNG process pipework using a combined experimental and analytical approach
G. Wally (1), C. McIlwraith (1), M. Hutchinson (1)
(1) Wood PLC, United Kingdom

Virtual Distortion Method based optimal sensor placement for damage identification
B. Blachowski (1), A. Swiercz (1), L. Jankowski (1)
(1) Institute of Fundamental Technological Research Polish Academy of Sciences, Poland

Pseudo-faults (or damage metaphors) for SHM: a discussion on their practical use
E. Papatheou (1), G. Manson (2), K. Worden (2)
(1) University of Exeter, United Kingdom
(2) University of Sheffield, United Kingdom

A methodology using health and usage monitoring system data for payload life prediction
P. Nalliah (1), A. Lewis (1), C. Lomax (3), C. Hawkins (2)
(1) University of Hertfordshire, United Kingdom
(2) DSTL - Defence Science and Technology Laboratory, United Kingdom
(3) MBDA UK Limited, United Kingdom

Multi-level damage identification in operational condition
S. Milana (1), G. Acunzo (2), S. Gabriele (2), A. Culla (1), G. R. Argento (2)
(1) Sapienza University of Rome, Italy
(2) University Roma Tre, Italy

Transmissibility based structural assessment using deep convolutional neural network
S. Cofrè (1), P. Kobrich (1), E. López Droguett (1), V. Meruane (1)
(1) Universidad de Chile, Chile

Embedded optical sensors for vibration monitoring of large structures
M. Pinto (1), N. Roveri (1), G. Pepe (1), A. Nicoletti (2), G. Balconi (3), A. Carcaterra (1)
(1) Sapienza University of Rome, Italy
(2) BASF, Italy
(3) SIREG GEOTECH

Vibration-based structural damage identification using sparsity constrained Extended Kalman Filter concept
C.-P. Fritzen (1), D. Ginsberg (1), O. Loffeld (1)
(1) University of Siegen, Germany

Transmissibility versus damage detection
N. Maia (1), M. M. Neves (1), T. A. N. Silva (2)
(1) IDMEC - Instituto Superior Técnico, Portugal
(2) NOVA UNIDEMI - Universidade NOVA de Lisboa, Portugal
On the quality of identified parameters of prestressed concrete catenary poles in existence of uncertainty using experimental measurements and different optimization methods
F. Alkam (1), T. Lahmer (1)
(1) Bauhaus University Weimar, Germany

Continuous wavelet transform for structural health monitoring of a pipe
S. Milana (1), N. Roveri (1), A. Carcaterra (1), A. Culla (1)
(1) Sapienza University of Rome, Italy

Damage phenomena characterization in RCF tests using image analysis and vibration-based machine learning
M. Lancini (1), I. Bodini (1), C. Petrogalli (1), L. Provezza (1), M. Faccoli (1), G. Sansoni (1), L. Solazzi (1), A. Mazzù (1)
(1) University of Brescia, Italy

Model-based optimization of axisymmetric wave motion in buried plastic water distribution pipes
O. Scussel (1), M. J. Brennan (1), J. M. Muggleton (3), F. C. L. de Almeida (2), A. T. Paschoalini (1)
(1) UNESP - São Paulo State University, Ilha Solteira, Brazil
(2) UNESP - São Paulo State University, Bauru, Brazil
(3) University of Southampton, United Kingdom

SC
Session Substructuring and coupling

Substructuring approach and blocked forces method: application for structure-borne vibration prediction in heavy weight assemblies
D. Miguez (1,2), O. Farrell (1), M. O. Bannister (1), R. Arbabi (1), A. T. Moorhouse (2), A. S. Elliott (2)
(1) Farrat Isolevel, United Kingdom
(2) University of Salford, United Kingdom

Characterization of dynamic forces generated by an active component: experimental validation of the Block Sensor Method
X. Carniel (1), J. Champain (1), T. Gardin (1), G. Pavic (2)
(1) CETIM - Centre Technique des Industries Mécaniques, France
(2) INSA Lyon, France

Contact problems in the framework of dynamic substructuring
J. Brunetti (1), W. D’Ambrogio (1), A. Fregolent (2)
(1) Università dell’Aquila, Italy
(2) Sapienza University of Rome, Italy

Comparison of substructuring techniques for experimental identification of rubber isolators dynamic properties
M. Haussler (1), S. Klaassen (1), D. J. Rixen (1)
(1) Technical University of Munich, Germany

Vibration response of a solid volume of arbitrary shape using the Boundary Forming Approach
G. Pavic (1)
(1) INSA, France
Experimental-analytical state-space synthesis of passenger car components
A. Bylin (1,2), M. Gibanica (1,2), T. J. S. Abrahamsson (1)
(1) Chalmers University of Technology, Sweden
(2) Volvo Car Corporation, Sweden

Application of System Equivalent Model Mixing (SEMM) to model the structural dynamic properties of a complex vehicle component using numerical and experimental data
E. Pasma (1), S. Klaassen (2), L. Nieuwenhuijse (1,3), M. van der Seijs (1,3), D. Lennström (4)
(1) VIBES.technology, The Netherlands
(2) Technical University of Munich, Germany
(3) Technical University of Delft, The Netherlands
(4) AB Volvo, Germany

Design of particle dampers for lightweight structures using frequency based substructuring
J. Oltmann (1), T. Hartwich (1), D. Krause (1)
(1) Hamburg University of Technology, Germany

Reduced order modeling for forced response prediction of structures with large contact interfaces
G. Battiat (1), C. M. Firrone (1)
(1) Politecnico di Torino, Italy

TPA

Session Transfer path analysis

Use cases for vehicle TPA: from shock absorbers to electric drive
J. Freund (1), T. Vöhringer (1)
(1) ZF Friedrichshafen AG, Germany

Empirical formula for the vibration reduction index of junctions with different coplanar walls
C. Crispin (1), C. Mertens (1), A. Dijckmans (1)
(1) BBRI - Belgian Building Research Institute, Belgium

A hybrid numerical and experimental approach for structural intensity analysis of stiffened lightweight structures
J. Biedermann (1), R. Winter (1), M. Norambuena (1), M. Böswald (1)
(1) DLR - German Aerospace Center, Germany

Application of operational test data and transfer path analysis to a test bench for optical systems
C. Schedlinski (1), C. Marzok (2), U. Wiesendahl (2)
(1) ICS Engineering GmbH, Germany
(2) Carl Zeiss SMT GmbH, Germany

Predicting vibration levels on an experimental test case by using invariant loads (e.g. blocked forces) as source characterization
J. Ortega Almirón (1,2), F. Bianciardi (1), P. Corbeels (1), W. Desmet (2,3)
(1) Siemens Industry Software NV
(2) KU Leuven, Belgium
(3) Flanders Make, Belgium
TVD

Session Tuned vibration absorbers and dampers

Passive multi-mode piezoelectric shunt damping: an approach based on matrix inequalities
M. Berardengo (1), S. Manzoni (2), M. Vanali (1), A. M. Conti (2)
(1) Università degli Studi di Parma, Italy
(2) Politecnico di Milano, Italy

Optimization of tuned mass damper parameters based on numerical optimization and model reduction
M. Soubeyroux (2), C. Dumoulin (1), A. Deremaeker (1)
(1) Université Libre de Bruxelles, Belgium
(2) ENSTA ParisTech, France

Dynamics of torsional vibration damper (TVD) pulley: implementation of elastomeric constitutive law
(1) Université de Lyon, France
(2) AB Volvo, France

Effect of temperature on the tuning of a piezoelectric resonant shunt composed of variable inductance or variable capacitance
R. Darleux (1), B. Lossoeur (1), J.-F. Deü (1)
(1) CNAM - Conservatoire National des Arts et Métiers

Optimization of multi-modal targeted energy transfer performance of nonlinear passive vibration absorbers
K. Dekemele (1), P. Van Torre (1), M. Loccuferi (1)
(1) Ghent University, Belgium

Modeling the amplitude and magnetic dependency to the vibration isolation effect for magneto-sensitive rubber isolation system by assessing the energy flow
B. Wang (1), L. Kari (1)
(1) KTH Royal Institute of Technology, Sweden

Suppression of the wind-induced vibration of high-rise buildings with inerter systems
Y. Xia (1), R. Zhang (2), M. I. Friswell (1), Y. Cao (2)
(1) Swansea University, United Kingdom
(2) Tongji University, People’s Republic of China

NVH

Session Vehicle noise and vibration (NVH)

Uneven vane spacing design for reducing noise emission in a variable displacement vane oil pump
L. Benzoni (1), F. Braghin (1), L. Marchetti (2), F. Tramaglia (2)
(1) Politecnico di Milano, Italy
(2) Bosch VHIT SpA, Italy
Estimation of steering gear running noise using simulated excitations and measured noise transfer functions
A. Scholz (1), P. Marinova (1), N. Schmidt (1), D. Vieker (1), S. Orlando (2), B. Van Genechten (2)
(1) ZF Friedrichshafen AG, Germany
(2) Siemens PLM Software, Belgium

Towards a high-fidelity simulation approach for predicting coarse road dynamic tire/road contact forces using an ALE-formulation and a-priori nonlinear hyper-reduction
D. De Gregoriis (1,2), F. Naets (2,3), P. Kindt (1), W. Desmet (2,3)
(1) Goodyear Innovation Center* Luxembourg, Luxembourg
(2) KU Leuven, Belgium
(3) Flanders Make, Belgium

Analysis of experimental MT clunk with STFT and CWT to observe mode participation and reduction
J. E. Furlich (1), J. Blough (1), D. L. Robinette (1)
(1) Michigan Technological University, United States of America

Optimising geometry and asymmetrical damping ratio to reduce vehicle vertical acceleration under stochastic road profile
J. C. M. Fernandes (1), M. Silveira (1)
(1) UNESP - São Paulo State University, Brazil

Validation experiment for structural power
R. Ullmann (1,2), S. Sicklinger (1), G. Müller (2)
(1) BMW Research, Innovations, New Technologies, Germany
(2) Technical University of Munich, Germany

Multiple-order excitation and response of centrifugal pendulum vibration absorbers
E. R. Gomez (1,2), I. L. Arteaga (2,3), L. Kari (2)
(1) Scania CV AB, The Royal Institute of Technology, Sweden.
(2) KTH Royal Institute of Technology, Sweden.
(3) Eindhoven University of Technology, The Netherlands.

Structural power as an acoustic design criteria for the early phase of product design
S. Sicklinger (1), R. Ullmann (1)
(1) BMW Research, New Technologies, Innovations, Germany

A robust design approach to optimize the vibrational comfort of automotive seats
R. Barbeau (1,2), T. Weissur (1), R. Dupuis (1), E. Aubry (1), S. Baudu (2)
(1) Université de Haute-Alsace, France
(2) Faurecia Automotive Seating, France

Assessment of the potential of trim parts to reduce structure-borne noise in the interior of vehicles
R. Stelzer (1), T. Delpero (1), R. D’Amico (1)
(1) Autoneum Management AG, Switzerland

Active damping of automotive driveline oscillations and its interactions with engine suspension
A. Gaudin (1)
(1) Groupe PSA, France
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigation of the influence of DC-bus voltage on switched reluctance machines regarding noise and vibrations</td>
<td>Y. Mollet (1,2), F. Chauvicourt (1,2,3), J. Pelletier (2), M. Sarrazin (1), C. T. Faria (1), H. Van der Auweraer (1), J. C. Gyselinck (2)</td>
<td>(1) Siemens Industry Software NV, Belgium (2) Université Libre de Bruxelles, Belgium (3) KU Leuven, Belgium</td>
</tr>
<tr>
<td>Experimental applications of Bayesian Focusing in an industrial context</td>
<td>T. Le Magueresse (1), O. Minck (1), J. Antoni (2)</td>
<td>(1) MicrodB, France (2) Université de Lyon, INSA Lyon, France</td>
</tr>
<tr>
<td>MOR for friction induced self-excitation in jointed structures based on substructuring for nonlinear interfaces – a review of methods with application to brake squeal</td>
<td>M. Zacharczuk (1,2), O. Stump (1), H. Hetzler (2)</td>
<td>(1) Daimler AG, Germany (2) University of Kassel, Germany</td>
</tr>
<tr>
<td>Real-time assignment method of resonance frequency by change of coupling stiffness for improving road induced noise</td>
<td>M. Komada (1,2), Y. Matsumura (2), I. Kido (2), E. Nakatsugawa (1), H. Ozaki (2)</td>
<td>(1) Toyota Motor Corporation, Japan (2) Gifu University, Japan</td>
</tr>
<tr>
<td>Nonlinear modelling and simulation of impact events and validation with physical data</td>
<td>M. Bayani (1,2), A. P. Székely (3), N. Al Hanna (3), H. Viktorsson (1), C. Wickman (1,2), R. Söderberg (2)</td>
<td>(1) Volvo Car Corporation, Sweden (2) Chalmers University of Technology, Sweden (3) KTH Royal Institute of Technology, Sweden</td>
</tr>
<tr>
<td>Alternative lamination stacking technique of stator cores for improved structural damping of electric machines</td>
<td>F. Chauvicourt (1,2,3), C. T. Faria (1), J. C. Gyselinck (3), H. van der Auweraer (1,2), W. Desmet (3)</td>
<td>(1) Siemens Industry Software NV, Belgium (2) KU Leuven (3) Université Libre de Bruxelles</td>
</tr>
<tr>
<td>Composite phononic crystals modelling and its application in vehicle noise control</td>
<td>C. Jin (1), T. Zhang (1)</td>
<td>(1) Tongji University, People’s Republic of China</td>
</tr>
<tr>
<td>Test and improvement of drive axle whine for a light bus</td>
<td>W. Shi (1), G. Liu (1), C. Gao (1), H. Shi (1), Z. Chen (1)</td>
<td>(1) Jilin University, People’s Republic of China</td>
</tr>
<tr>
<td>Mechatronic suspension design for vehicle dynamic performance enhancement</td>
<td>H. Yuan (1), Y. Li (1), J. Z. Jiang (1), P. H. Mellor (1)</td>
<td>(1) University of Bristol, United Kingdom</td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
<td>Institution(s)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Session Vibro-acoustic modelling and prediction</td>
<td>A parametric study and modal analysis of an acoustic black hole on a beam</td>
<td>K. Hook (1), J. Cheer (1), S. Daley (1)</td>
</tr>
<tr>
<td></td>
<td>(1) University of Southampton, United Kingdom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Robust sound transmission modelling of finite-sized layered walls and floors</td>
<td>C. Decraene (1), A. Dijckmans (2), E. Reynders (1)</td>
</tr>
<tr>
<td></td>
<td>(1) KU Leuven, Belgium</td>
<td>(2) BBRI - Belgian Building Research Institute, Belgium</td>
</tr>
<tr>
<td></td>
<td>Validity of the transfer matrix method for modeling trim components in vibro-acoustic applications</td>
<td>B. Van Antwerpen (1), S. Corveleyn (1), G. Lielens (1), B. Van den Nieuwenhof (1)</td>
</tr>
<tr>
<td></td>
<td>(1) Free Field Technologies, MSC Software Company, Belgium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determination and optimisation of the sound reduction index of ship bulkheads through the wave propagation approach</td>
<td>E. A. Piana (1), U. Carlsson (2), L. Feng (2)</td>
</tr>
<tr>
<td></td>
<td>(1) University of Brescia, Italy</td>
<td>(2) KTH Royal Institute of Technology, Sweden</td>
</tr>
<tr>
<td></td>
<td>Assessment of the vibro-acoustic performance of an all-electric light aircraft based on ground and in-flight measurements</td>
<td>R. Hallez (1), C. Colangeli (1), J. Cuenca (1), E. Di Lorenzo (1), U. Musella (1), J. Debielle (1)</td>
</tr>
<tr>
<td></td>
<td>(1) Siemens Industry Software NV, Belgium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Damping enhancement of sheet-metal components through shot peening process to improve vibro-acoustic performance</td>
<td>V. K. Balla (1,2), F. Greco (1,3), E. Deckers (1,3), B. Pluymers (1,3), W. Desmet (1,3), G. Vadakkel (1,2)</td>
</tr>
<tr>
<td></td>
<td>(1) KU Leuven, Belgium (2) TVS Motor Company (3) Flanders Make, Belgium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reflections from elastic wedges of different thickness profiles</td>
<td>A. Karlos (1), S. J. Elliott (1), J. Cheer (1)</td>
</tr>
<tr>
<td></td>
<td>(1) University of Southampton, United Kingdom</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimization of perforated plates in interaction with acoustic waves</td>
<td>V. Lukeš (1), E. Rohan (1)</td>
</tr>
<tr>
<td></td>
<td>(1) University of West Bohemia, Czech Republic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Investigation of the effect of stamping process on dimpled beams</td>
<td>V. Pendse (1), M. Ghazwani (1,2), K. Naghshineh (1)</td>
</tr>
<tr>
<td></td>
<td>(1) Western Michigan University, United States of America</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) Jazan University, Kingdom of Saudi Arabia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimization of acoustic doors using laser-spectro-vibrometry and finite element methods</td>
<td>C. C. van Dijk (1)</td>
</tr>
<tr>
<td></td>
<td>(1) Alara-Lukagro, The Netherlands</td>
<td></td>
</tr>
</tbody>
</table>
VIPER

Session Vibro-acoustic of periodic media

Wave propagation in an auxetic core embedding resonators
M.-A. Campana (1), F. Scarpa (1), M. Ouisse (2), E. Sadoulet-Reboul (2)
(1) University of Bristol, United Kingdom
(2) FEMTO-ST Institute, France

Wavenumber identification technique for axial-symmetric structures
G. Tufano (1,2), C. Droz (1,2), O. Bareille (1), A.-M. Zine (1), B. Pluymers (2,3), W. Desmet (2,3), M. Ichchou (1)
(1) Ecole Centrale de Lyon, France
(2) KU Leuven, Belgium
(3) Flanders Make, Belgium

Diffusion based homogenization method for one dimensional locally resonant system
S. Ahsani (1,2), R. F. Boukadia (1,2), C. Droz (3), C. Claeys (1,2), E. Deckers (1,2)
(1) KU Leuven, Belgium
(2) Flanders Make, Belgium
(3) Ecole Centrale de Lyon, France

Modeling and experimental measurements of the sound transmission loss for multi-layer core topology systems
N. Guenfoud (1,2), C. Droz (1), M. Ichchou (1), O. Bareille (1), B. Pluymers (2,3), E. Deckers (2,3)
(1) Ecole Centrale de Lyon, France
(2) KU Leuven, Belgium
(3) Flanders Make, Belgium

Model order reduction in unit cell modeling and its application to complex structures
R. F. Boukadia (1,2,3), C. Claeys (1,2), C. Droz (3), M. Ichchou (3), E. Deckers (1,2)
(1) KU Leuven, Belgium
(2) Flanders Make, Belgium
(3) Ecole Centrale de Lyon, France

Investigation for the analysis of the vibrations of quasi-periodic structures
S. Timorian (1,2), F. Franco (1), M. Ouisse (2), S. De Rosa (1), N. Bouhaddi (2)
(1) University of Naples Federico II, Italy
(2) Université Bourgogne Franche-Comté, France

Inverse characterization method of viscoelastic materials using dispersion analysis
T. Bourgana (1,2,4), R. F. Boukadia (1,3,4), S. Jonckheere (1,4), C. Claeys (1,4), G. Chevallier (2), M. Ouisse (2), E. Deckers (1,4)
(1) KU Leuven, Belgium
(2) FEMTO-ST Institute, France
(3) Ecole Centrale de Lyon, France
(4) Flanders Make, Belgium

Design of a multi-scale reinforced sandwich panel with enhanced vibroacoustics performances
R. Palumbo (1,2), D. Ivanov (1), C. Droz (2), O. Bareille (2), M. Ichchou (2), F. Scarpa (1)
(1) University of Bristol, United Kingdom
(2) Ecole Centrale de Lyon, France
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A load approximation for the vibroacoustic analysis of periodic structures to fluid excitation</td>
<td>4721</td>
</tr>
<tr>
<td>F. Errico (1,2), M. Ichchou (1), S. De Rosa (2), O. Bareille (1), F. Franco (2)</td>
<td></td>
</tr>
<tr>
<td>(1) Ecole Centrale Lyon, France</td>
<td></td>
</tr>
<tr>
<td>(2) University of Naples Federico II, Italy</td>
<td></td>
</tr>
<tr>
<td>A study of structured uncertainties in wave characteristic of one-dimensional periodic structures</td>
<td>4731</td>
</tr>
<tr>
<td>R. P. Singh (1,2), C. Droz (2), S. De Rosa (1), F. Franco (1), O. Bareille (2), M. Ichchou (2)</td>
<td></td>
</tr>
<tr>
<td>(1) University of Naples Federico II, Italy</td>
<td></td>
</tr>
<tr>
<td>(2) Ecole Centrale de Lyon, France</td>
<td></td>
</tr>
<tr>
<td>Computation of wave dispersion characteristics in periodic porous materials modeled as equivalent fluids</td>
<td>4741</td>
</tr>
<tr>
<td>D. Magliacano (1,2), M. Ouisse (1), A. Khelif (1), S. De Rosa (2), F. Franco (2), N. Atalla (3)</td>
<td></td>
</tr>
<tr>
<td>(1) Université Bourgogne Franche-Comté, France</td>
<td></td>
</tr>
<tr>
<td>(2) University of Naples Federico II, Italy</td>
<td></td>
</tr>
<tr>
<td>(3) Université de Sherbrooke, Canada</td>
<td></td>
</tr>
<tr>
<td>Interlocked hybrid-cell Kirigami inspired cellular structures and their vibroacoustic performance</td>
<td>4753</td>
</tr>
<tr>
<td>S. Del Broccolo (1), M. Ouisse (1), E. Foltete (1), F. Scarpa (2)</td>
<td></td>
</tr>
<tr>
<td>(1) FEMTO-ST Institute, France</td>
<td></td>
</tr>
<tr>
<td>(2) University of Bristol, United Kingdom</td>
<td></td>
</tr>
</tbody>
</table>

WIND

Session Wind turbine dynamics

Integrated dynamic testing and analysis approach for model validation of an innovative wind turbine blade design | 4767 |
(1) Technical University of Denmark, Denmark	
(2) Siemens Industry Software NV, Belgium	
(3) CEKO Sensors ApS, Denmark	
(4) University of Bristol, United Kingdom	
(5) Vrije Universiteit Brussel, Belgium	
Virtual prototyping of an actuator-based structural health monitoring system of wind turbine blades	4783
D. Garcia (1), D. Tcherniak (2), K. Branner (3)	
(1) University of Strathclyde, United Kingdom	
(2) Bruel & Kjaer Sound & Vibration Measurement A/S, Denmark	
(3) Technical University of Denmark, Denmark	
Experimental damage detection on small wind turbines through vibration and acoustic analysis	4793
F. Castellani (1), D. Astolfi (1), M. Becchetti (1), F. Berno (1)	
(1) University of Perugia, Italy	
Gear tooth crack detection in a wind turbine drive train	4809
C. V. H. Gayatri (1), A. S. Sekhar (1)	
(1) Indian Institute of Technology, India	
Passive vibration control of offshore wind turbines using structure-immittance approach
Y.-Y. Li (1), S. Y. Zhang (1), J. Z. Jiang (1), S. Neild (1), I. Ward (2)
(1) University of Bristol, United Kingdom
(2) SNC-Lavalin Atkins, United Kingdom
4821

Novel phase-bound magnetic vibration absorber for improved NVH performance of a wind turbine gearbox
B. Mrak (1,2), R. Adduci (1,2), S. Weckx (1), W. Driesen (2), W. Desmet (1,2)
(1) KU Leuven, Belgium
(2) Flanders Make, Belgium
4833

Fatigue stress estimation of offshore wind turbine using a Kalman filter in combination with accelerometers
N. Noppe (1), K. Tatsis (2), E. N. Chatzi (2), C. Devriendt (1), W. Weijtjens (1)
(1) Vrije Universiteit Brussel, Belgium
(2) ETH Zürich, Switzerland
4847
Experimental measurement of value and associated uncertainty of wave speed in Hopkinson bars with an accurate and robust method
D. Brizard (1)
(1) Université de Lyon – IFSTTAR, France

Experimental study of vibration uncertainty of multilayered timber beams assembled through wood dowels
T. A. Bui (1), P. Lardeur (2), M. Oudjene (1)
(1) Université de Lorraine, France
(2) Université de Technologie de Compiègne, France

Fatigue analysis of wind excited structures with structural parameters affected by uncertainties described by interval variables
F. Giunta (1), G. Muscolino (1), A. Sofi (2)
(1) University of Messina, Italy
(2) University “Mediterranea” of Reggio Calabria, Italy

Efficient bolted joint modeling for industrial applications - empirical and analytical approaches
K.-A. H. Hoppe (1), P. Langer (1), S. Marburg (1)
(1) Technical University of Munich, Germany

Experimental application of random matrix theory to quantify modal uncertainty in aircraft t-tails
A. Vishwanathan (1), G. A. Vio (1)
(1) University of Sydney, Australia

Catastrophic event prediction associated with road vehicle dynamic responses and randomly uncertain suspension parameters
J. A. Gonzalez Anaya (1), J. F. Dunne (1)
(1) University of Sussex, United Kingdom

The influence of the uncertainty on dynamic soil properties on the prediction of railway induced vibration
M. Germonpré (1), M. Papadopoulos (1), G. Degrande (1), G. Lombaert (1)
(1) KU Leuven, Belgium

Spectral and statistical evaluation of the properties of the vibration measured at the base of an automotive seat for non-Gaussian random noise synthesis
D. González (1), R. López-Valcarce (2)
(1) CTAG - Automotive Technology Centre of Galicia, Spain
(2) University of Vigo, Spain
Session USD – methods

Uncertain quantification in nonlinear dynamics with an high-dimensional computational model
E. Capiez-Lernout (1), C. Soize (1)
(1) Université Paris-Est, France

Vibration analysis of a structure with an attachment at an uncertain location using parametric model order reduction with Krylov subspaces
S. Li (1), B. R. Mace (1), J. S. Dhupia (1)
(1) The University of Auckland, New Zealand

Outlier analysis under uncertainty: applications to structural health monitoring
R. Fuentes (1), N. Dervilis (1), D. Tcherniak (2), K. Worden (1), E. J. Cross (1)
(1) University of Sheffield, United Kingdom
(2) Brüel & Kjær Sound & Vibration Measurement A/S, Denmark

A stochastic multidomain approach for mid-frequency vibration problems
S. Adhikari (1), M. I. Friswell (1)
(1) Swansea University, United Kingdom

Efficient random vibration analysis of nonlinear systems with long short-term memory networks for uncertainty quantification
D. A. Najera-Flores (1), A. R. Brink (2)
(1) ATA Engineering
(2) Sandia National Laboratories, United States of America

Multilevel Monte Carlo applied to a structural engineering model with random material parameters
P. Blondeel (1), P. Robbe (1), C. Van hoorickx (1), G. Lombaert (1), S. Vandewalle (1)
(1) KU Leuven, Belgium

On the non-parametric modelling of uncertain elastic joints in periodic structures
A. Fabro (1), J.-M. Mencik (2)
(1) University of Brasilia, Brazil
(2) INSA Centre Val de Loire, France

Vehicle model likelihood computation using a probabilistic complex FRF matrix statistical reduction
J. Reyes (1,2), C. Soize (1), L. Gagliardini (2), G. Brogna (2,3)
(1) Université Paris-Est Marne-La-Vallée, France
(2) Groupe PSA, France
(3) Université de Lyon, France

High dimensional dependence via pair constructions for interval finite models
M. Faes (1), D. Moens (1)
(1) KU Leuven, Belgium

A multi-fidelity approach for possibilistic uncertainty analysis
M. Mäck (1), M. Hanss (1)
(1) University of Stuttgart, Germany
A sensitivity-based approach for the dynamic analysis of structures with uncertain-but-bounded parameters
F. Giunta (1), G. Muscolino (1), A. Sofi (2)
(1) University of Messina, Italy
(2) University "Mediterranea" of Reggio Calabria, Italy

A twin-mesh approach for random field analysis in high-dimensional dynamic models
S. Ghosh Dastidar (1), M. Faes (1), D. Moens (1)
(1) KU Leuven, Belgium

Unstructured uncertainty modeling for coupled vibration systems
B. Dogančić (1), N. Alujević (1), M. Jokić (1), H. Wolf (1)
(1) University of Zagreb, Croatia

An efficient strategy to describe the propagation of variation through multi-stage metal forming processes
B. M. de Gooijer (1), J. Hazrati-Marangalou (1), H. J. M. Geijselaers (1), A. H. van den Boogaard (1)
(1) University of Twente, The Netherlands

USDUIQ

Session USD – uncertainty identification and quantification

On inverse fuzzy arithmetical problems in uncertainty analysis
D. Hose (1), M. Hanss (1)
(1) University of Stuttgart, Germany

Bayesian model updating using stochastic distances as uncertainty quantification metrics
S. Bi (1), M. Broggi (1), M. Beer (1), Y. Zhang (2)
(1) Leibniz University Hannover, Germany
(2) Beijing Institute of Technology, People's Republic of China

Identification of a stochastic model for bolted joints
H. Jalali (1), H. Haddad Khodaparast (1), M. I. Friswell (1)
(1) Swansea University

A Bayesian filtering approach to operational modal analysis with recovery of forcing signals
T. J. Rogers (1), K. Worden (1), G. Manson (1), U. T. Tygesen (2), E. J. Cross (1)
(1) University of Sheffield, United Kingdom
(2) Ramboll Energy, Denmark

Fuzzy Model Updating: covariance updating to estimate the interval radii of the updated parameters
D. Ricardo (1), T. A. N. Silva (1)
(1) NOVA UNIDEMI - Universidade NOVA de Lisboa, Portugal

Bayesian estimation of interval bounds based on limited data
M. Imholz (1), D. Vandepitte (1), D. Moens (1)
(1) KU Leuven, Belgium
Stochastic analysis of the natural frequencies of rectangular plates under random temperature distributions
R. A. Borges (1), L. F. F. Rodovalho (2), D. A. Rade (3)
(1) Federal University of Goiás, Brazil
(2) Federal University of Uberlandia, Brazil
(3) Aeronautics Institute of Technology, Brazil

Robust identification of parameters uncertainty in stochastic finite element model updating
N. Sharma (1), S. V. Modak (1)
(1) IIT Delhi, India

On the efficacy of random matrix theory to quantify uncertainty in topology optimisation
A. Vishwanathan (1), G. A. Vio (1)
(1) University of Sydney, Australia