Light-Based Diagnosis and Treatment of Infectious Diseases

Tianhong Dai
Editor

29-31 January 2018
San Francisco, California, United States

Sponsored by
SPIE

Cosponsored by
Ondine Biomedical Inc. (Canada)
Ushio America, Inc. (United States)
Gel4Med LLC (United States)

Published by
SPIE

Volume 10479
Contents

vii Authors

ix Conference Committee

xi Introduction

PHOTONIC DIAGNOSIS II

10479 07 Unraveling bacterial networks and their antimicrobial susceptibility on silicon microarchitectures using intrinsic phase-shift spectroscopy (Invited Paper) [10479-6]

10479 09 Elastic light scattering for clinical pathogens identification: application to early screening of Staphylococcus aureus on specific medium (Invited Paper) [10479-8]

PHOTONIC DIAGNOSIS III

10479 0D Noninvasive monitoring local variations of fever and edema on human: potential for point-of-care inflammation assessment [10479-12]

ANTIMICROBIAL BLUE LIGHT I

10479 0J Antimicrobial blue light: a drug-free approach for inactivating pathogenic microbes (Invited Paper) [10479-18]

10479 0K Blue light enhances the antimicrobial activity of honey against Pseudomonas aeruginosa [10479-19]

10479 0L Microbial photoinactivation by 470 nm radiation: an investigation into the underlying photobiological mechanism [10479-20]

10479 0M In vitro results of flexible light-emitting antimicrobial bandage designed for prevention of surgical site infections [10479-21]

10479 0N Antimicrobial blue light inactivation of biofilms formed by clinical isolates of multidrug-resistant microorganisms [10479-22]

10479 0O Antimicrobial blue light inactivation of Neisseria gonorrhoeae [10479-23]
ANTIMICROBIAL BLUE LIGHT II

10479 0R Staphyloxanthin photobleaching sensitizes methicillin-resistant Staphylococcus aureus to reactive oxygen species attack (Translational Best Paper Award Winner) [10479-26]

10479 0S Photodynamic activity of natural anthraquinones on fibroblasts [10479-27]

ANTIMICROBIAL PHOTODYNAMIC INACTIVATION/THERAPY II

10479 0Z A quaternary ammonium modified coumarin derivative for antimicrobial photodynamic therapy [10479-34]

10479 11 Potassium iodide potentiates antimicrobial photodynamic inactivation mediated by Rose Bengal: in vitro and in vivo studies [10479-36]

ANTIMICROBIAL PHOTODYNAMIC INACTIVATION/THERAPY III

10479 12 Progress toward development of photodynamic vaccination against infectious/malignant diseases and photodynamic mosquitocides (Invited Paper) [10479-37]

10479 14 A comparative analysis of aPDI effect of phenothiazinium dyes in presence of inorganic salt as potentiator [10479-39]

ANTIMICROBIAL PHOTODYNAMIC INACTIVATION/THERAPY IV

10479 17 Photodynamic therapy to destroy pneumonia associated microorganisms using external irradiation source [10479-42]

10479 18 Potentiation by potassium iodide using TPPS4 for antimicrobial photodynamic inactivation [10479-43]

ULTRAVIOLET AND INFRARED IRRADIATION TREATMENT

10479 1A Healthcare acquired infection (HAIs): a deadly problem that is preventable: UV can help, what’s holding it back? (Invited Paper) [10479-45]

10479 1B Identification of barriers and research opportunities to improve the effective and efficient application of adjunct UVC surface disinfection in healthcare (Invited Paper) [10479-46]

10479 1C Insights into the working mechanism of water filtered infrared A (wIRA) irradiation on Chlamydia trachomatis serovar E [10479-48]

10479 1D Far-UVC light applications: sterilization of MRSA on a surface and inactivation of aerosolized influenza virus [10479-60]
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10479 1G</td>
<td>Efficacy of antimicrobial 405 nm blue-light for inactivation of airborne bacteria</td>
<td>[10479-51]</td>
</tr>
<tr>
<td>10479 1K</td>
<td>Effectiveness of photobiomodulation therapy and aerobic exercise training on articular cartilage in an experimental model of osteoarthritis in rats</td>
<td>[10479-55]</td>
</tr>
<tr>
<td>10479 1L</td>
<td>Effects of the photodynamic therapy on microbial reduction of diabetic ulcers in humans</td>
<td>[10479-56]</td>
</tr>
</tbody>
</table>
