Design and Quality for Biomedical Technologies XI

Ramesh Raghavachari
Rongguang Liang
Editors

27–28 January 2018
San Francisco, California, United States

Sponsored and Published by SPIE
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Seven-digit Article CID Number.

ISSN: 1605-7422
ISSN: 1996-756X (electronic)

ISBN: 9781510614574

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org
Copyright © 2018, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/18/$18.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>vi</td>
<td>Conference Committee</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10486 04</td>
<td>Motorized photoacoustic tomography probe for label-free improvement in image quality</td>
<td></td>
</tr>
<tr>
<td>10486 06</td>
<td>Identifying viscoelastic parameters of tissue specimens using Hertz contact mechanics</td>
<td></td>
</tr>
<tr>
<td>10486 08</td>
<td>Comparison of calibration and standardization approaches for fluorescence guided imaging systems to benchtop fluorometers</td>
<td></td>
</tr>
<tr>
<td>10486 09</td>
<td>Evaluation of blood flow in human exercising muscle by diffuse correlation spectroscopy: a phantom model study</td>
<td></td>
</tr>
<tr>
<td>10486 0A</td>
<td>Influence of low temperature aging on optical and mechanical properties of transparent yttria stabilized-zirconia cranial prosthesis</td>
<td></td>
</tr>
<tr>
<td>10486 0E</td>
<td>Getting more early photons with less background: detection rate and signal-to-background improvements in enhanced early photon imaging</td>
<td></td>
</tr>
<tr>
<td>10486 0G</td>
<td>Hyperspectral characterization of tissue simulating phantoms using a supercontinuum laser in a spatial frequency domain imaging instrument</td>
<td></td>
</tr>
<tr>
<td>10486 0K</td>
<td>Design considerations for highly effective fluorescence excitation and detection optical systems for molecular diagnostics</td>
<td></td>
</tr>
<tr>
<td>10486 0N</td>
<td>Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300nm</td>
<td></td>
</tr>
</tbody>
</table>
Image-guided intraocular injection using multimodality optical coherence tomography and fluorescence confocal scanning laser ophthalmoscopy in rodent ophthalmological models [10486-24]

NIRS OXIMETRY PERFORMANCE STANDARDIZATION

Saturation measurement accuracy in clinical near-infrared cerebral oximeters with a 3D-printed channel array phantom [10486-26]

An applicable approach for extracting human heart rate and oxygen saturation during physical movements using a multi-wavelength illumination optoelectronic sensor system [10486-27]

Hemoglobin spectra affect measurement of tissue oxygen saturation (Invited Paper) [10486-28]

SMARTPHONE IMAGING TECHNOLOGIES I

Development of a dual-modality, dual-view smartphone-based imaging system for oral cancer detection [10486-30]

SMARTPHONE IMAGING TECHNOLOGIES II

Ultra low-cost, portable smartphone optosensors for mobile point-of-care diagnostics (Invited Paper) [10486-32]

Optical tests for using smartphones inside medical devices [10486-33]

POSTER SESSION

A dynamic system with digital lock-in-photon-counting for pharmacokinetic diffuse fluorescence tomography [10486-38]

A novel multi-wavelength procedure for systolic blood pressure estimation using optophysiological sensor at peripheral arteries and capillaries [10486-39]

Extracting broadband optical properties from uniform optical phantoms using an integrating sphere and inverse adding-doubling [10486-40]

Charactering baseline shift with 4th polynomial function for portable biomedical near-infrared spectroscopy device [10486-41]

A commercialized photoacoustic microscopy system with switchable optical and acoustic resolutions [10486-42]

Portable measurement system for real-time acquisition and analysis of in-vivo spatially resolved reflectance in the subdiffusive regime [10486-43]