73rd World Foundry Congress (WFC 2018)

Creative Foundry

Scientific and Technical

Krakow, Poland
23 - 27 September 2018

Contents

Scientific Materials:

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Solidification characteristics of silicon alloyed ductile cast irons</td>
<td>I. Riposan, POLITEHNICA University of Bucharest, Materials Science and Engineering Faculty, Romania</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>Effect of intensive cooling of alloy AlSi7Mg with alloy additions on the microstructure and mechanical properties</td>
<td>B. Pisarek, Łódź University of Technology, Department of Materials Engineering and Production Systems, Poland</td>
<td>23</td>
</tr>
<tr>
<td>17</td>
<td>The influence of wall thickness on the fatigue limit of V-notch bars made of as-cast or heat treated ductile iron</td>
<td>S. Masaglia, Zanardi Fonderie S.p.A., Italy</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>Development of a squeeze semisolid high pressure die casting process for magnesium structural parts</td>
<td>I. Vicario, Tecnalia Research & Innovation, Spain</td>
<td>27</td>
</tr>
<tr>
<td>21</td>
<td>On quantitative metallography vacuum casted Ni-based superalloy used in aero jet engine construction – turbine blades SEM structure analysis after various working hours</td>
<td>J. Belan, University of Žilina, Department of Material Engineering, Slovakia</td>
<td>29</td>
</tr>
<tr>
<td>22</td>
<td>Quality assessment of sand castings from aluminum cast alloy using image and CT analysis</td>
<td>L. Kucharíková, University of Žilina, Department of Materials Engineering, Slovakia</td>
<td>31</td>
</tr>
<tr>
<td>23</td>
<td>Mechanical and fatigue properties of nodular cast irons</td>
<td>A. Vaško, Department of Materials Engineering, University of Žilina, Faculty of Mechanical Engineering, Slovakia</td>
<td>33</td>
</tr>
<tr>
<td>38</td>
<td>Effects of manganese content and cooling rate on fatigue in limit heavy sectional spherical graphite cast iron</td>
<td>M. Nakagawa, Motorcycle R&D Center, Honda R&D Co., Ltd., Japan</td>
<td>35</td>
</tr>
<tr>
<td>41</td>
<td>Influence of defects on HPDC strength and effectiveness of gas porosity dispersion by atomized flow</td>
<td>M. Selznei, Institute of Materials Engineering, TU Bergakademie Freiberg, Germany</td>
<td>37</td>
</tr>
<tr>
<td>47</td>
<td>Study of AlSi7MgCu alloy with improved properties in as-cast state</td>
<td>Z. Brodarac, University of Zagreb, Faculty of Metallurgy, Croatia</td>
<td>39</td>
</tr>
<tr>
<td>51</td>
<td>Data mining methods for properties prediction with TDA curves of the hypoeutectic Al–Si alloys</td>
<td>D. Wilk-Kołodziejczyk, Foundry Research Institute, Poland</td>
<td>41</td>
</tr>
<tr>
<td>55</td>
<td>Effect of composition and microstructure on the fatigue life of quaternary SnZnAgCu lead–free alloy</td>
<td>K. Pietrzak, Institute of Precision Mechanics, Poland</td>
<td>43</td>
</tr>
<tr>
<td>59</td>
<td>Heteroepitaxial growth of passivating layers on rutile in contact with molten aluminium and molten A356 aluminium alloy</td>
<td>A. Salomon, TU Bergakademie Freiberg, Institute of Materials Science, Germany</td>
<td>45</td>
</tr>
<tr>
<td>60</td>
<td>Non–metallic inclusions and their influence on the mechanical properties of 18 CrNiMo7–6 steel treated in different crucibles</td>
<td>M. Szelznev, Institute of Materials Engineering, TU Bergakademie Freiberg, Germany</td>
<td>47</td>
</tr>
<tr>
<td>61</td>
<td>Profiling the quality of bentonite clay with dilatometry</td>
<td>J. Thiel, Metal Casting Center, University of Northern Iowa, USA</td>
<td>49</td>
</tr>
<tr>
<td>67</td>
<td>Fatigue behavior on heavy section ductile iron casting manufactured in grade EN–GJS–500–14</td>
<td>M. A. Altuno, Grupo WEC, Spain</td>
<td>51</td>
</tr>
<tr>
<td>70</td>
<td>ADI – the material revolution and its applications at CMRDI</td>
<td>A. Nofal, Central Metallurgical R&D Institute CMRDI, Foundry Technology Department, Egypt</td>
<td>53</td>
</tr>
<tr>
<td>72</td>
<td>Interaction of AlSI7Mg with oxidic filter materials</td>
<td>B. Fankhænel, TU Bergakademie Freiberg, Institute for Nonferrous Metallurgy and Purest Materials, Germany</td>
<td>55</td>
</tr>
<tr>
<td>76</td>
<td>The modified low–cycle fatigue test as a quick and economic criterion of the quality of ductile iron after normalizing annealing</td>
<td>M. Maj, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland</td>
<td>57</td>
</tr>
<tr>
<td>83</td>
<td>Influence of investment casting parameters on creep resistance of Ni–based superalloy</td>
<td>L. Rakoczy, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Poland</td>
<td>59</td>
</tr>
<tr>
<td>84</td>
<td>Effect of melt pouring temperature and composition of primary coating of shell mould on tensile deformation behavior of IN713C superalloy</td>
<td>L. Rakoczy, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Poland</td>
<td>61</td>
</tr>
<tr>
<td>90</td>
<td>Prediction of microstructure of grey cast irons by electrical resistivity measurements</td>
<td>M. Petrič, University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Materials and Metallurgy, Slovenia</td>
<td>63</td>
</tr>
<tr>
<td>92</td>
<td>Research and analysis of the foundry coatings influence on the mould filling process</td>
<td>Y. Nikolaichy, Belarusian National Technical University, Foundry Department, Belarus</td>
<td>65</td>
</tr>
<tr>
<td>97</td>
<td>Influence of filter surface chemistry on the filtration of aluminum melt</td>
<td>C. Voigt, TU Bergakademie Freiberg, Institute of Ceramic, Glass and Construction Materials, Germany</td>
<td>67</td>
</tr>
<tr>
<td>100</td>
<td>Effect of trace elements on microstructure and material properties of an aluminium alloy</td>
<td>T. Pabel, Austrian Foundry Research Institute, Austria</td>
<td>69</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Preparation of magnesium borate fibers by electrospinning</td>
<td>E. Storti, TU Bergakademie Freiberg, Institute of Ceramic, Glass and Construction Materials, Germany</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Ceramic filters with coatings based on nano–materials or calcium aluminates with carbon for steel melt filtration</td>
<td>E. Storti, TU Bergakademie Freiberg, Institute of Ceramic, Glass and Construction Materials, Germany</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>The effect of the substitution of silicon by aluminum on the mechanical properties of gray iron</td>
<td>A. Agudo, IKA–AZTERLAN, Spain</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Prediction of chunky graphite on the base of numerical simulation and experimental data</td>
<td>B. Bauer, University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Croatia</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Preliminary mechanical properties and microstructures obtained after casting a modified Al–Zn–Mg wrought alloy</td>
<td>R. Hidalgo, Mondragon University, Spain</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Effect of single and double solution treatment on second phase dissolution of an Al–8.5Si–1.5Cu–0.4Mg alloy with different initial cooling rates</td>
<td>E. Ochoa de Zabalegui, Edertek Technology Center of FAGOR EDERLAN Group, Spain</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Effect of micro–scale gas bubbles on steel filtration: a numerical study</td>
<td>A. Asad, Technische Universität Bergakademie Freiberg, Institute of Mechanic and Fluid Dynamics, Germany</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>3–Dimensional imaging of spheroidal graphite by ultra–high voltage electron microscopy</td>
<td>H. Maeda, Ryukoku University, Faculty of Science & Technology, Japan</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Mechanical behaviour of nodular cast irons after prolonged high temperature exposure</td>
<td>A. Morri, University of Bologna, Department of Industrial Engineering, Italy</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Influence of shrinkage porosity on fracture under tensile stress in ductile cast iron</td>
<td>J. Massone, National University of Mar del Plata, INTEMA–CONICET, Metallurgy Division, Argentina</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Micro/fabrication for cast Al–alloys using FIB–SEM</td>
<td>T. Bončina, University of Maribor, Faculty of Mechanical Engineering, Slovenia</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Strengthening of Al–casting alloys by quasicrystalline precipitates</td>
<td>F. Zupanič, University of Maribor, Faculty of Mechanical Engineering, Slovenia</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Characterization of composite ceramic materials used during investment casting of aircraft engines components</td>
<td>R. Cygan, Rzeszow University of Technology, Poland</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Influence of the selected superalloy and ceramic crucible on the melting and melt–pouring process during the investment casting of the aircraft components</td>
<td>R. Cygan, Rzeszow University of Technology, Poland</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Morphological evolution of semisolid Mg–Al–La–Ca magnesium alloy produced by mechanical stirring process (MSP)</td>
<td>S. Bartex, Federal University of Rio Grande do Sul, Metallurgical Department, Brazil</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Determination of gray cast iron age strengthening by non–destructive methods: effect of alloying elements</td>
<td>A. Vacheret, ECAM Lyon, France</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>The effect of Sr and impurities interaction on the Al–7%Si–0.3%Mg alloys</td>
<td>T. Fukuhara, Shoko. Co., Ltd., Japan</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Development of in situ fabrication process of clad materials by using tandem twin–roll casting</td>
<td>S. Kumai, Tokyo Institute of Technology, Department of Materials Science and Engineering, Japan</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>An investigation on microstructural and mechanical properties of ceramic moulds applied in the investment casting of critical parts of aircraft engines</td>
<td>M. Ksiazek, Foundry Research Institute, Complex of Research Laboratories, Poland</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Effect of temperature on the structure and magnetic properties of zinc ferrite nanoparticles</td>
<td>A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Influence of the heating rate on the thermal decomposition kinetics of the chemical cured binder</td>
<td>A. Kmita, AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Poland</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Revealing of microstructural features in Haynes® 282® superalloy subjected to various heat treatments</td>
<td>A. Polikowska, Foundry Research Institute, Poland</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Microstructure effects of Y2O3 addition to A356 alloy</td>
<td>S. El–Hadad, Central Metallurgical Research and Development Institute, Egypt</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Fabrication of aluminum based functionally graded materials by centrifugal casting and their application of grinding wheels</td>
<td>Y. Watanabe, Department of Physical Science and Engineering, Nagoya Institute of Technology, Japan</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Interfacial phenomena in Ni alloys–oxides systems of interest for investment casting</td>
<td>F. Valenza, Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council, Italy</td>
<td>119</td>
<td></td>
</tr>
</tbody>
</table>
202 – Novel method of thermal conductivity measurement using Stefan–Boltzmann law
P. Wieliczko, Foundry Research Institute, Poland

204 – Physico–chemical, structural and derivatographic studies of bentonite clays from national deposits
J. Kamińska, Foundry Research Institute, Poland

206 – Wettability improvement of woven fabric for aluminium casting reinforcement
S. Cruz, Eurecat, Spain

211 – Research on coatings and infiltration to strengthen ceramic lost cores used in high pressure die casting processes
M. Merchán, Fundación Tecnalia R&I, Spain

214 – Mechanical and structural characterization of cast iron using synchrotron light
L. Elmquist, Swerea SWECAST, Sweden

218 – Thermal stability of a resin binder used in moulding sand technology
A. Rocznik, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland

220 – Deformation behavior of pure copper castings with as–cast surfaces for electrical parts
I. Goto, Akita University, Graduate School of Engineering Science, Japan

225 – Amplitude dependence of internal damping of magnesium alloys before and after plastic deformation
M. Uhržlik, University of Žilina, Department of Materials Engineering, Slovakia

229 – Influence of mischmetal on impact toughness and morphology of G20Mn5 cast steel fractures
J. Kasinska, Kielce University of Technology, Poland

233 – Technology of alloy layers on surface of castings
T. Wróbel, Silesian University of Technology, Department of Foundry Engineering, Poland

234 – Strength properties of ceramic moulds containing waste moulding sand after initial reclamation as a substitute for base sand
M. Angrecki, Foundry Research Institute, Poland

235 – Experimental and simulation studies of cores making process with blowing methods
R. Danko, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland

236 – A study of Mg–Cu interreaction in copper–alloyed ADI
M. Gorny, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland

237 – Environmentally friendly foundry molding and core sands
K. Major–Gabryś, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland

240 – Cast iron “Vari–Morph” (VM) with graphit of several forms – material for castings of special destinations
J. Postula, Fansuld Cast Iron Foundry, Poland

243 – Lead–free casting brasses. Analysis of microstructure and properties combined with the casting technology
J. Kozania, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland

245 – Influence of structural discontinuities on the fatigue life of aluminium alloys of 4XXO series
J. Zych, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland

249 – Effect of aluminum melt treatment by nanosecond electromagnetic pulses on structure and properties of castings
V. Dee, National University of Science and Technology MISIS, Department of Foundry Technology, Russian Federation

251 – Investigations of the influence zone of chills – on the casting of the plate made of AISI7Mg alloy, after the heat treatment T6
M. Pięko, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland

259 – Microalloying of Al–5%Cu aluminium alloy with nickel aluminides and rare–earth metals
E. Ri, Department of Foundry Engineering and Metal Technology, Pacific National University, Russian Federation

264 – Fabrication method of silicon carbide by infiltration of molten Fe–Si alloy through two–step reaction sintering
Y. Hanada, FUJICO Co., Ltd., Japan

265 – Microstructure and tribological properties of Co–Cr alloys used for metal elements in prosthetic technique
J. Augustyn–Nadzieja, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Poland

271 – Optimization of mould preheating process to reduce formation of gases during investment casting of Ni–based alloys
M. Grudziarz, Foundry Research Institute, Poland

273 – Characterization of primary microstructure of thin–walled Ni–based superalloy casting
M. Grudziarz, Foundry Research Institute, Poland

274 – Structure and mechanical properties of austempered grey iron (AGI)
K. Jasikowiec, Foundry Research Institute, Poland

275 – Determining the effect of austempering temperature on the morphology of ausferrite in ADI using computer image analysis and X–ray diffractometry
K. Jasikowiec, Foundry Research Institute, Poland

276 – Use of the ATND method to assessment of EN AC–AISI9Mg alloy hardness moulded in metal moulds
J. Pezda, University of Bielsko–Biała, Department of Production Engineering and Automation, Poland

279 – Wear properties of milled carbon fiber–reinforced aluminum alloy composites
K. Asano, Kindai University, Faculty of Science and Engineering, Department of Mechanical Engineering, Japan
281 – The decreasing microstructure degradation of fiber base feeder sleeve with various refractory coatings
H. Kahraman, Cukurova Kimya Endustri A.S., Turkey
177
283 – Effect of molten metal temperature on mold filling in evaporative pattern casting
T. Maruyama, Kansai University, Department of Chemistry and Material Engineering, Japan
179
296 – Influence of heat treatment on the microstructure and corrosion resistance of austempered ductile iron
H. Krawiec, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
181
297 – Mechanical properties of phenolic urethane sand after thermal regeneration at 930°C
T. Nascimento, Federal Institute Education Science Technology of Rio Grande do Sul, Brazil
183
304 – Development of numerical model for core gas generation by the reaction with binder in sand cores and transport in molten metal
S. Kim, AnyCasting Software, Co., Ltd., South Korea
185
305 – Grain boundary wetting in the tungsten–nickel alloys
B.Strauneg, National University of Science and Technology «MISIS», Russian Federation
187
306 – Grain boundary wetting phenomena in the NdFe–based commercial alloys
B. Strauneg, National University of Science and Technology «MISIS», Russian Federation
189
314 – Effect of nickel content on microstructural evolution in austempered solution strengthened ferritic ductile cast iron
T. Tokunaga, Kyoto Institute of Technology, Japan
191
318 – Damage micromechanism in spheroidal cast iron as affected by graphite/matrix interface interactions
M. Warmuzek, Foundry Research Institute, Poland
193
321 – Grain size prediction model in aluminium castings manufactured by low pressure technology
A. Fernández–Calvo, IKA–AZTERLAN, Spain
195
322 – The role of aluminium in the cast iron spheroidizing process
M. Soinski, The Jacob of Paradies University, The Department of Technology, Poland
197
326 – General concept of cast metal matrix composites design
E. Prusov, Vladimir State University named after Alexander and Nikolay Stoletovs, Department of Functional and Constractional Materials Technology, Russian Federation
199
333 – Investigation of the efficiency of grain refiners on the hot tearing in AlSi3Cu
M. Uludag, Metallurgical and Materials, Bursa Technical University, Turkey
201
334 – The effect of Sr modification and Ti grain refinement on the mechanical properties of A356
M. Uluda, Bursa Technical University, Metallurgical and Materials Engineering, Turkey
203
342 – Influence of T6 heat treatment on secondary AlSi9Cu3(Fe) alloy produced by semi–solid seed process
A. Fabrizi, University of Padova, Department of Management and Engineering, Italy
205
345 – Shrinkage porosity formation in cast iron components
A. Diószeigi, Jönköping University, Sweden
207
346 – Influence of carbon on the formation of microstructure and mechanical properties of Co–Cr–Mo and Co–Cr–W–Mo cast alloys
J. Augustyn–Nadzieja, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Poland
209
349 – Influence of the low Ti addition on gray cast iron properties produced with increased steel scrap in the charge
P. Futas, Slovak University of Technology in Bratislava, Slovakia
211
351 – The wear mechanism of mill beaters for coal grinding made–up from high manganese cast steel
J. Krawczyk, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Poland
213
352 – Role of chemical composition on secondary cementite morphology in alloyed cast steels
J. Krawczyk, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Poland
215
354 – Determination of content of phenol in foundry resins by pyrolysis gas chromatography–mass spectrometry method
S. Zymankowska–Kumon, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
217
357 – Influencing crystallization of austenitic manganese steel by modification with complex alloying elements
Š. Eperjedi, Technical University of Kosice, Slovakia
219
359 – Determination of transformation temperatures and solidification sequence of the Mg–Al–La–Ca alloy
V. De Barcellos, Federal University of Rio Grande do Sul, Brazil
221
367 – Preparation, properties and applications of the novel polymer binders BioCo
B. Grabowska, K. Kaczmarska, A. Bobrowski
223
369 – Influence of the master alloy Ti–Fe on the microstructure and selected properties of copper and copper alloys
M. Piękosi, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
225
370 – Investigations of the titanium influence on the structure and selected properties of tin bronzes
J. Kozana, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
227
372 – Comparison of the properties of the alkaline–phenolic binders for the moulding sand for the steel castings
R. Kania, Pioma–Odelewnia Sp. z o.o., Poland
229
373 – Ambient temperature influence on the properties of the moulding sand with the alkaline–phenolic binder
A. Bul, Pioma–Odelewnia Sp. z o.o., Poland
231
377 – Time–resolved and in–situ 2D / 3D imaging of solidification in ductile cast iron
H. Yasuda, Kyoto University, Department of Materials Science and Engineering, Japan
233
378 – Feasibility of us foundry supply chain consumables for three dimensional sand printing
S. Giese, University of Northern Iowa, Metal Casting Center, USA
235
380 – Liquid–phase bonding of carbon/carbon and porous carbon for structural and thermal management applications
R. Asthana, University Of Wisconsin–Stout, Engineering & Technology, USA
237
385 – Use of high intensity X-ray analysis as tool to create new, fundamental models for phase transformations and residual stress in ductile cast iron
N. Tiedje, Technical University of Denmark, Mechanical Engineering, Denmark
239
391 – Increase precision and yield in casting production by simulation of the solidification process based on realistic material data evaluated from thermal analysis (using the ATAS MetStar System)
P–E. Persson, Novacast Systems AB, Sweden
241
394 – Application of differential scanning calorimetry (DSC) for evaluation of aluminium alloys billets homogenization parameters
G. Wloch, AGH University of Science and Technology, Faculty of Non–Ferrous Metals, Poland
243
395 – Analysis of the temperature distribution in the sample during the hot distortion parameter testing
J. Jakubski, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
245
402 – The study on tensile strength of AlSi21CuNiMg silumin in the final stage of solidification and the initial stage of self–cooling
R. Romankiewicz, University of Zielona Góra, Faculty of Mechanical Engineering, Poland
247
407 – Microstructural characterization of Fe/tic composite zones produced in situ using glassy carbon
M. Gajewska, Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Poland
249
410 – Effect of modification on the thermal analysis of grain refining in AlSi–Cu alloys
W. Khalifa, Cairo University, Faculty of Engineering, Egypt
251
413 – Design of competitive light–weight composite materials: SiC/TiSi,
D. Giuranno, Foundry Research Institute, Poland
253
415 – Structure and properties of high nickel austempered ductile iron
A. Kochański, Warsaw University of Technology, Faculty of Production Engineering, Poland
255
420 – Quality index of AlSi7Mg0.3 silumin from the perspective of refining methods
A. Garbacz–Klempka, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
257
426 – Influence of magnesium matrix composition on pressure infiltration of glassy carbon foam
A. Olszówka–Myalska, Silesian University of Technology, Faculty of Materials Science and Engineering, Poland
259
427 – Main directions of recent works on AlZn based alloys for foundry engineering
W. Krajewski, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
261
434 – Effect of solidification factors on cast structure and ‘A’ segregation for an ultra large section strand of a vertical semi–continuous caster of steel
K. Oh, POSCO, South Korea
263
435 – Microstructure quality assessment of isotherm ductile irons through tensile tests
F. Zanard, Zanardi Fonderie S.p.A., Italy
265
438 – Nanomultilayers for joining applications
J. Janczak–Rusch, Empa, Swiss Federal Laboratories for Materials Science and Technology, Switzerland
267
441 – Experimental device for investigation of low vapour pressure liquid metals and their interaction in contact with refractory materials
A. Kudyba, Foundry Research Institute, Poland
269
442 – Enhancing the permeability and properties of ceramic shell in investment casting process using ABS powder and needle coke
D. Karunakar, Shenyang Research Institute of Foundry, Department of Mechanical and Industrial Engineering Department, Shenyang Research Institute of Foundry, India
271
444 – Comparative study of interaction of kaolin substrates with liquide Ni and CSMX4 alloy
R. Nowak, Foundry Research Institute, Poland
273
451– High–temperature interaction of molten conventional grey cast iron and Al2O3–ZrO2 ceramic
L. Drenchey, Institute of Metal Science, Equipment and Technologies with Hydroaerodynamics Centre, Bulgaria
275
452 – Thermal conductivity of selected vermicular cast iron alloys
M. Homa, Foundry Research Institute, Poland
277
453 – Simultaneous TG–DTA thermal analysis of Si–30B alloy
M. Homa, Foundry Research Institute, Poland
279
455 – Wettability of two–dimensional MoS2 layer by liquid tin
G. Bruzda, Foundry Research Institute, Poland
281
456 – The influence of alloying additions on the interaction between re–melted vermicular graphite cast iron and Al2O3 substrate
G. Bruzda, Foundry Research Institute, Poland
283
458 – The effect of boron content on wetting kinetics in Si–B alloy/h–BN SYSTEM
W. Poikowski, Foundry Research Institute, Poland
285
459 – The effect of surface condition on wetting of Hastelloy® x by Brazer Alloy of Ni–Pd–Cr–B–Si system
A. Kudyba, Foundry Research Institute, Poland

460 – Improvement of TiC/Fe in situ composite layer formation on the surface of Fe–based castings
Ł. Szymański, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland

463 – Liquid metal engineering for Creative Foundry: from Lab to Fab
N. Sobczak, Foundry Research Institute, Poland

Technology:

7 – Use of a mathematical treatment for the prediction of structural zones localization in the continuously cast brass ingots
W. Wolczyński, Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Poland

28 – Increasing productive efficiency of casting of ferrous and non–ferrous alloys
M. Sadokha, JSC BELNIIILIT, Republic of Belarus

34 – Electromagnetic method for control the solidification of Al 99.99
M. Pokusová, Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Slovakia

91 – Recycling of dispersed metal wastes in rotary furnaces – a method of creating a new source of raw materials for foundry
S. Rovin, UE “Technolit”, Belarus

95 – Complete master of the complex casting in the technology of high pressure die–casting
P. Mrvar, University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Materials and Metallurgy, Slovenia

99 – Studies of accelerated microwave drying of ceramic moulds
P. Just, Lodz University of Technology, Department of Materials Engineering and Production Systems, Poland

115 – Influence of Mn and Cr on intermetallic sludge formation in Fe containing secondary AlSi9Cu3 alloy with aim of reducing Fe level by filtration
B. Dietrich, TU Bergakademie Freiberg, Foundry–Institute, Germany

125 – Visual inspection of investment castings made of nickel–based superalloy
P. Rokicki, Rzeszow University of Technology, Research and Development Laboratory for Aerospace Materials, Poland

129 – Wettability measurement of AlSi7Mg on Al2O3, MgAl2O4, 3Al2O3, 2SiO2 and TiO2, at 730°C
C. Voigt, TU Bergakademie Freiberg, Institute of Ceramic, Glass and Construction Materials, Germany

137 – Numerical simulation of steel melt filtration
C. Demuth, TU Bergakademie Freiberg, Institute of Thermal Engineering, Germany

141 – Determination of critical cooling rate for minimization of porosity in the large aluminum casting
I. Cho, ICT Manufacturing Group, Korea Institute of Industrial Technology, South Korea

146 – Optimization of the die casting process of thick–wall bush made of compound aluminum bronze
D. Kofakowski, Łódz University of Technology, Department of Materials Engineering and Production Systems, Poland

152 – Influence of printed ceramic filters on temperature field distribution during investment casting of thin–walled Ni–based superalloys
M. Antosz, Rzeszow University of Technology, Poland

154 – Influence of powder additives in two component environmentally friendly inorganic binder systems on strength behavior
M. Conev, Technical University of Košice, Faculty of Materials, Metallurgy and Recycling, , Slovakia

166 – Improvement of the manufacturing technology of cast steel castings to be used in extreme operating condition
J. Jezienski, Silesian University of Technology, Department of Foundry Engineering, Poland

174 – Operational assistance system with direct manipulation of flow rate and falling position of outflow liquid in tilting–ladle–type pouring machine
Y. Sueki, University of Yamashita, Department of Mechanical Engineering, Japan

178 – Influence of thermo–physical properties of moulding sands on the solidification time of ductile cast iron
A. Brusilová, Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Slovakia

179 – Conductive stirring problems of steel in continuous casting process
A. Schrek, Slovak University of Technology in Bratislava, Faculty of Mechanical Engineering, Slovakia

180 – The application of X–ray computed tomography to study the quality of ceramic moulds in precision foundry
A. Tchórza, Foundry Research Institute, Poland

186 – Development and application of cast steel numerical simulation system for heat treatment based on InteCAST
J. Zhou, Huazhong University of Science and Technology, State Key Laboratory of Materials Forming and Mould Technology, China

192 – Effects of green sand particle size distribution on squeeze compacting behavior analyzed by discrete element method
Y. Maeda, Daido University, Department of Mechanical Engineering, Japan

205 – Improved ultrasonic degassing of AlSi10Mg alloy and its performance evaluation with the reduced pressure test (RPT) method
H. Galarraga, Fundación Tecnalia R&I, Spain

208 – Determination of the charge materials range in a multistage charge burden optimisation for the foundry furnaces
K. Schmalenberg, Odlewnie Polskie S.A., Poland

209 – Evaluation of the effect of ultrasonic degassing on components produced by high pressure die casting
M. da Silva, Eurecat, Centre Tecnologic de Catalunya, Spain
222 – Effect of curing parameters on selected technological properties of the moulding sand with inorganic corind binder used for ablation casting of aluminium alloys
A. Grabarczyk, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland 343

270 – Geometric form of gating system elements and its influence on the initial filling phase
R. Dęjka, Silesian University of Technology, Department of Foundry Engineering, Poland 345

288 – Effect of increased temperature on dimensional and shape accuracy of castings produced from the EN AC–AlSi11 alloy by pressure die casting process
A. Jarco, University of Bielsko–Biała, Department of Production Engineering and Automation, Poland 347

289 – Application of patterns fabricated by the FDM technique (Fused Deposition Modeling) in precision casting
T. Pająk, Lodz University of Technology, Department of Materials Engineering and Production Systems, Poland 349

291 – The inoculation effect of aluminium addition on selected high–chrome cast iron properties
A. Szczepański, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland 351

315 – AZ91 magnesium based nanocomposites obtained using thixomolding technology
L. Rogal, Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Poland 353

324 – Nondestructive evaluation of ductile cast iron matrix via casting surface by electromagnetic method
N. Horikawa, National Institute of Technology, Asahikawa College, Japan 355

327 – Challenges in gravity sand casting of ZE41 Mg alloy
D. Dispinar, Istanbul University, Faculty of Engineering, Turkey 357

329 – Lightweight die casting tools – a promising option for enhancing the high pressure die casting process
S. Müller, Technische Universität Braunschweig, Institute of Joining and Welding, Germany 359

339 – Reconstruction of the casting technology of prehistoric bronze ornaments worked with the lost–wax technique on the bases of metal science analyses, computer modelling and model alloys
Z. Kwak, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland 361

M. Castro–Román, Cinvestav Unidad Saltillo, Department of Metallurgical Engineering, Mexico 363

355 – 20 years of research projects targeted to zero defect manufacturing in diecasting
F. Bonollo, Padova University, Department of Engineering and Management (DTQ), Italy 365

361 – Investigations of the thickness of protective coatings deposited on moulds and cores
Ł. Jamrozowicz, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland 367

363 – Effect of CoSiAl modification on the microstructure and mechanical properties of low–carbon microalloyed cast steel with 0.04% Nb and 0.07% Ti
B. Kalandy, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland 369

365 – Analysis of rapid drying process by set on fire of alcohol–based protective coatings applied on sand cores and moulds
J. Kolczyk–Tułka, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland 371

92 – Pouring process control based on high–speed image analysis of liquid flow
R. Tasaki, Tohohashi University of Technology, Department of Mechanical Engineering, Japan 373

398 – Verification and optimization of investment casting technology for production of cast metal sponges
I. Kropová, VSB – Technical University of Ostrava, Faculty of Metallurgy and Material Engineering, Czech Republic 375

408 – Biography of bronze. Archaeometallurgical study on the casting technology of the lusatian culture communities in greater Poland. Presentation of the project
A. Garbacz–Klepka, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland 377

411 – The use of synthetic slags in Polish foundry Metalodlew in Cracow
M. Balicki, Metalodlew SA, Poland 379

412 – Two inoculation methods for refining as–cast grain structure in austenitic 316L steel
S. Lekakh, Missouri University of Science and Technology, USA 381

414 – Si–Co and Si–Zr alloys/C–material interfaces: wetting versus infiltration
D. Giarrano, Foundry Research Institute, Poland 383

416 – The role of recycled ceramic material obtained from the ceramic layered moulds used in the investment casting
A. Soroczyński, Warsaw University of Technology, Department of Plastic Forming and Foundry Engineering, Poland 385

439 – Prediction of shrinkage porosity in ductile cast iron test castings
J. Hajkowski, Poznan University of Technology, CAD/CAE Material Technology & Foundry Laboratories, Poland 387

454 – Conventional and hybrid gasars: light–weight materials with pressure–temperature managed porosity
J. Sobczak, Foundry Research Institute, Poland 389

Digitalization:
42 – Photography of atomized flow and LES–VOF simulation of die interior flow behavior under high–pressure die–casting
E. Koya, Honda R&D Co., Ltd., Motorcycle R&D Center, Japan 393
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Location/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of explicit and implicit smoothed particle hydrodynamics</td>
<td>T. Suwa, Fujitsu Ltd., Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>simulation to casting processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108 – Modeling and computation of casting process by particle method</td>
<td>M. Kazama, Fujitsu Ltd., Japan</td>
<td>Japan</td>
</tr>
<tr>
<td>153 – Intelligent data analytics for foundry industry 4.0</td>
<td>M. Perzyk, Warsaw University of Technology, Faculty of Production</td>
<td>Poland</td>
</tr>
<tr>
<td>155 – Introducing Industry 4.0 in a die casting foundry</td>
<td>B. Dybowski, NEMAK POLAND Sp. z o.o., Poland</td>
<td>Poland</td>
</tr>
<tr>
<td>303 – Analysis of computer simulation data application for steel</td>
<td>P. Žak, AGH University of Science and Technology, Faculty of Foundry</td>
<td>Poland</td>
</tr>
<tr>
<td>casting desing in order to reduce its weight</td>
<td>Engineering, Poland</td>
<td></td>
</tr>
<tr>
<td>311 – Numerical and experimental studies on the cooling conditions</td>
<td>M. Szuki, AGH University of Science and Technology, Faculty of Foundry</td>
<td>Poland</td>
</tr>
<tr>
<td>of cast aluminium semi–finished product for forging process</td>
<td>Engineering, Poland</td>
<td></td>
</tr>
<tr>
<td>387 – Concept of the Smart Foundry platform integrating Industry 4.0</td>
<td>P. Malinowski, AGH University of Science and Technology, Faculty of</td>
<td>Poland</td>
</tr>
<tr>
<td>technologies.</td>
<td>Foundry Engineering, Poland</td>
<td></td>
</tr>
<tr>
<td>389 – Application of selected artificial intelligence methods in the</td>
<td>B. Mrzygłód, AGH University of Science and Technology, Faculty of Metals</td>
<td>Poland</td>
</tr>
<tr>
<td>system predicting the microstructure of compacted graphite iron</td>
<td>Engineering and Industrial Computer Science, Poland</td>
<td></td>
</tr>
<tr>
<td>417 – Computer simulation of solidification of casting with composite</td>
<td>S. Sobula, AGH University of Science and Technology, Faculty of Foundry</td>
<td>Poland</td>
</tr>
<tr>
<td>zone based on TIC reinforcement</td>
<td>Engineering, Poland</td>
<td></td>
</tr>
<tr>
<td>Ecology:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96 – From waste foundry sand to a new biodegraded raw material, an</td>
<td>P. Caballero, Tecnalia Research & Innovation, Spain</td>
<td>Spain</td>
</tr>
<tr>
<td>ecological solution for foundries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118 – Correlation of thermal analysis to binder emissions</td>
<td>S. Giese, University of Northern California, USA</td>
<td>USA</td>
</tr>
<tr>
<td>350 – Cupola furnace slag – its origin, properties and utilization</td>
<td>A. Pribulova, Technical University in Kosice, Faculty of Materials,</td>
<td>Slovakia</td>
</tr>
<tr>
<td></td>
<td>Metallurgy and Recycling, Slovakia</td>
<td></td>
</tr>
<tr>
<td>423 – Innovation in the production of cast parts in the era of</td>
<td>V. Soporan, Technical University of Cluj–Napoca, Department of</td>
<td>Romania</td>
</tr>
<tr>
<td>digitalization and transition towards circular economy according</td>
<td>Environmental Engineering and Sustainable Development and Training,</td>
<td></td>
</tr>
<tr>
<td>to the “sharing”–type economic models</td>
<td>University of Cluj–Napoca, Romania</td>
<td></td>
</tr>
<tr>
<td>Management:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106 – The application of Resource and Process Consumption Accounting</td>
<td>M. Latalło–Anulewicz, Foundry Research Institute, Poland</td>
<td>Poland</td>
</tr>
<tr>
<td>(RPCA/RCA) in a foundry entity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>422 – Considerations on the correlation of engineering training with</td>
<td>V. Soporan, Technical University of Cluj–Napoca, Department of</td>
<td>Romania</td>
</tr>
<tr>
<td>the developments in the field of the creative production of cast parts</td>
<td>Environmental Engineering and Sustainable Development and Training,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of Cluj–Napoca, Romania</td>
<td></td>
</tr>
</tbody>
</table>

Technical

Materials:

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Location/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 – The freedom of creativity: Coatings and additives concepts</td>
<td>R. Stötzel, ASK Chemicals GmbH, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>enabling enhanced construction and casting properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 – New Technology Platform ECOCURE BLUE: Reduction of emissions</td>
<td>F. Lenzen, ASK Chemicals GmbH, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>in foundry processes – First practical experiences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 – Effect of magnesium inoculation on the microstructure and</td>
<td>S. Mavhungu, University of Johannesburg, Metal Casting Technology</td>
<td>South Africa</td>
</tr>
<tr>
<td>mechanical properties of a spheroidal cast iron knuckle: a focus on</td>
<td>Station South Africa</td>
<td></td>
</tr>
<tr>
<td>the steering arm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46 – Study on properties of Hyper Duplex Stainless Steel 7A of</td>
<td>B. Raha, Peekay Steel Castings Private Limited, India</td>
<td>India</td>
</tr>
<tr>
<td>ASTM A–890 (CD3MWN)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105 – Additive manufactured hybrid segments for die casting dies</td>
<td>W. Sokolowski, Oskar Frech GmbH Co. KG, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>equipped with conformal cooling channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109 – Microstructure characterization of graded alloy cast iron for</td>
<td>P. Bhamawat, Mangalam Steelcast Pvt Ltd., India</td>
<td>India</td>
</tr>
<tr>
<td>flashing/grinding plates used in grinding of ball bearings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117 – Adsorptive nature of gases present on high temperature treated</td>
<td>R. Nelson, Superior Graphite, USA</td>
<td>USA</td>
</tr>
<tr>
<td>carbonaceous materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>119</td>
<td>Problems and improvements on the production of large casting with Hi–Si ductile iron</td>
<td>T. Kanno, Kimura Foundry Co., Ltd., R&D, Japan</td>
</tr>
<tr>
<td>148</td>
<td>Use of dilatometry to evaluate the high temperature characteristics of silica in chromite sand</td>
<td>J. Thiel, University of Northern Iowa, Metal Casting Center, University of Northern Iowa, United States</td>
</tr>
<tr>
<td>156</td>
<td>Effect of Nd content on structures and mechanical properties of Mg–Gd alloys cast into sand molds</td>
<td>N. Sunayama, TANIDA Ltd., Japan</td>
</tr>
<tr>
<td>195</td>
<td>Manufacturing of corrosive–resistant Cr–Ni steels and Ni–based alloys in vacuum furnaces</td>
<td>A. Zadera, Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic</td>
</tr>
<tr>
<td>213</td>
<td>Effect of austenitizing temperature on microstructure and mechanical properties of low–alloyed ausferritic ductile cast iron</td>
<td>M. Sokolnicki, Odlewnie Polskie S.A., Poland</td>
</tr>
<tr>
<td>221</td>
<td>Prediction of shrinkage cavities of using casting simulation</td>
<td>H. Mitsuya, Muroran Institute of Technology, Japan</td>
</tr>
<tr>
<td>223</td>
<td>Thermal stress analysis of TiC cast–in insertion multi–component white cast iron</td>
<td>S. Murase, Muroran Institute of Technology, Japan</td>
</tr>
<tr>
<td>227</td>
<td>Effect of alloying element on the mechanical properties of high silicon ferritic ductile cast iron</td>
<td>K. Park, Namyang Metals Co., Korea</td>
</tr>
<tr>
<td>244</td>
<td>Technological aspects of producing Certified Reference Material (CRM) for zinc alloys</td>
<td>L. Wierzbicki, Institute of Non–Ferrous Metals, Metal Processing Department, Poland</td>
</tr>
<tr>
<td>246</td>
<td>Development of Mg–Al–Sr–Ca system heat resistant alloy for die–casting excellent in castability and recyclability</td>
<td>S. Saiwawa, University of Toyama, Japan</td>
</tr>
<tr>
<td>247</td>
<td>Oxide ceramic and refractory materials for metallurgical processes and industries</td>
<td>P. Pantsialeynka, The John Paul II Catholic University of Lublin, Faculty of Law and Social Sciences, Institute of Environmental Engineering, Poland</td>
</tr>
<tr>
<td>258</td>
<td>Cast components in super duplex alloys intercomparison between bench molding and three dimensional printing</td>
<td>Y. Tomita, Kimura Foundry Co., Ltd., Japan</td>
</tr>
<tr>
<td>262</td>
<td>Influence of nickel content on erosive wear and heat treatment conditions behaviour of multi component white cast iron</td>
<td>K. Kusumoto, Muroran Institute of Technology, College of Design and Manufacturing Technology, Japan</td>
</tr>
<tr>
<td>277</td>
<td>Abrasive wear characteristics of multi component white cast iron</td>
<td>K. Shimizu, Muroran Institute of Technology, College of Design and Manufacturing Technology, Japan</td>
</tr>
<tr>
<td>316</td>
<td>Nanokarb: engineered carbon additive for green sand ferrous foundries</td>
<td>V. Gurunath, Institute of Indian Foundrymen, India</td>
</tr>
<tr>
<td>341</td>
<td>Microstruktur and hardness of high vanadium martensitic cast steel for wear resistant applications</td>
<td>J. Glownia, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland</td>
</tr>
<tr>
<td>364</td>
<td>Acticote CG range of coatings to reduce graphite degeneration at the surface zone of compacted graphite iron castings</td>
<td>U. Nwa – gu, Foseco Nederland BV, The Netherlands</td>
</tr>
<tr>
<td>371</td>
<td>The optimisation of the flowability of sand mixtures to produce high density and defect–free inorganically bonded sand cores</td>
<td>V. Haanappel, Foseco Europe, The Netherlands</td>
</tr>
<tr>
<td>374</td>
<td>Feeding technology</td>
<td>J. Kmettsch, Foseco Europe, Germany</td>
</tr>
<tr>
<td>388</td>
<td>Automated intelligent coating concept for ferrous foundries</td>
<td>Ch. Ganzler, Foseco Europe, The Netherlands</td>
</tr>
<tr>
<td>397</td>
<td>Investigation and characterization of inclusions in aluminium cast alloys for automotive industry</td>
<td>O. Ozaydin, Cevher Wheels, Research & Development Department, Turkey</td>
</tr>
<tr>
<td>433</td>
<td>Local composite reinforcement type TiC/FeCr fabricated in situ in blade casting</td>
<td>L. Szymański, Innerco Ltd., Poland</td>
</tr>
<tr>
<td>436</td>
<td>New materials in mould making are required to meet the new challenges in die casting</td>
<td>T. Hoehn, Weldstone GmbH, Germany</td>
</tr>
<tr>
<td>437</td>
<td>The shipbuilding industry in the Polish economy as an important element of the development of a modern machinery industry, including foundry</td>
<td>M. Bączkowski, Stocznia Szczecińska Sp. z o.o., Poland</td>
</tr>
</tbody>
</table>

Technology:

2 – New induction wireless manufacturing efficient process for energy intensive industries (NIWE)
A. Meléndez, Tecnalia Research & Innovation, Spain

3 – Optimization and control of modern ladle pouring process
T. Voss, Otto Junker GmbH, Germany

8 – The green sand foundry of tomorrow
P. Larsen, DISA Industries, Denmark
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Ten years of industrial experience with low–emission additives for molding sand</td>
<td>T. Engelhardt, Clariant Produkte GmbH, Germany</td>
</tr>
<tr>
<td>29</td>
<td>Development of molten metal transport support system with an overhead crane</td>
<td>A. Kaneshige, National Institute of Technology, Mechanical Engineering Department, Toyota College</td>
</tr>
<tr>
<td>36</td>
<td>Modern green sand moulding for everyone</td>
<td>P. Larsen, DISA Industries, Denmark</td>
</tr>
<tr>
<td>49</td>
<td>Focus on development of quality high pressure die casting process</td>
<td>M. Rosso, Politecnico Di Torino, Department of Applied Science And Technology, Italy</td>
</tr>
<tr>
<td>82</td>
<td>Benefits of using ProCast simulation software to solve casting defects in Odlewnie Polskie S.A.</td>
<td>V. Kolda, Mecas ESI, Czech Republic</td>
</tr>
<tr>
<td>85</td>
<td>Intelligent manual and automated MicroParticle dry ice cleaning systems for the Foundry–Die Casting Industry</td>
<td>D. Juchmes, Cold Jet BVBA, Belgium</td>
</tr>
<tr>
<td>124</td>
<td>New investigation of material–dependent–control of flowability in green sand molding process</td>
<td>J. Bast, TU Bergakademie Freiberg, Faculty of Mechanical Engineering, Germany</td>
</tr>
<tr>
<td>128</td>
<td>“Towards vision zero” in the automotive industry – foundry challenges and opportunities</td>
<td>M. Ata, Continental Teves AG & Co. oHG, Germany</td>
</tr>
<tr>
<td>135</td>
<td>Flexible manufacturing through in–house conversion of shell core making machine to cold box process making machine with easy reversibility</td>
<td>D. A Pratap Singh, Maruti Suzuki India Ltd, India</td>
</tr>
<tr>
<td>140</td>
<td>Seeing through the Cloud of Industry 4.0</td>
<td>M. Lewis, Omega Sinto Foundry Machinery Ltd., United Kingdom</td>
</tr>
<tr>
<td>142</td>
<td>Wireless measurement of mold temperature during centrifugal casting and heat transfer analysis</td>
<td>N. Iwata, JFE Steel Corporation, Japan</td>
</tr>
<tr>
<td>149</td>
<td>Rapid determination of nodularity index in ductile cast iron production</td>
<td>P. Larrañaga, IK4 AZTERLAN, Spain</td>
</tr>
<tr>
<td>158</td>
<td>PUR Cold–Box Systems – Past–Present–Future</td>
<td>P. Grüning, Hüttenes–Albertus Chemische Werke GmbH, Germany</td>
</tr>
<tr>
<td>159</td>
<td>Optimization and automation of chemical control of alloys in Smart Foundry 4.0</td>
<td>A. Montenegro, Amsol Solutiones, R&D&I, Spain</td>
</tr>
<tr>
<td>162</td>
<td>Cordis® Process – the next generation</td>
<td>K. Löechte, Hüttenes–Albertus Chemische Werke GmbH, Spain</td>
</tr>
<tr>
<td>167</td>
<td>The role of recycled ceramic material obtained from the ceramic layered moulds used in the investment casting</td>
<td>A. Soroczynski, Warsaw University of Technology, Department of Plastic Forming and Foundry Industry, Poland</td>
</tr>
<tr>
<td>182</td>
<td>Environmental and application method improvements – an R&D approach</td>
<td>A. Burrows, Hüttenes–Albertus UK Ltd, United Kingdom</td>
</tr>
<tr>
<td>191</td>
<td>Refractory coatings in centrifugal process: the change from release agent to moulding material</td>
<td>K. Seeger, Hüttenes–Albertus Chemische Werke GmbH, Germany</td>
</tr>
<tr>
<td>194</td>
<td>Using of 3D printed permanent patterns for mass production of castings on “green sand” molding lines</td>
<td>M. Horacek, Brno University of Technology, Faculty of Mechanical Engineering, Czech Republic</td>
</tr>
<tr>
<td>203</td>
<td>Perspective on use of green sand additives as essential contaminants</td>
<td>D. Chowdhary, MPM Private Limited, India</td>
</tr>
<tr>
<td>210</td>
<td>Combining mold milling and 3D sand printing to optimize casting design</td>
<td>L. Dunlay, University of Northern Iowa, Metal Casting Center, United States</td>
</tr>
<tr>
<td>226</td>
<td>Casting simulation: an aid to green manufacturing</td>
<td>A. Bhat, SoftCAST Technologies Pvt Ltd, India</td>
</tr>
<tr>
<td>228</td>
<td>Optimization of heavy steel casting manufacturing technology</td>
<td>R. Dójka, Odelwia Staliwa Łąbędy, Poland</td>
</tr>
<tr>
<td>232</td>
<td>Directional solidification casting technology of heavy–duty gas turbine blade with LMC process</td>
<td>L. Xiaofu, Shenyang Research Institute of Foundry, New Technology R&D Center, China</td>
</tr>
<tr>
<td>241</td>
<td>Influence of quality of charge materials on chemical composition, structure and properties of copper products for electrical application</td>
<td>B. Juśczysz, Institute of Non–Ferrous Metals, Metal Processing Department, Poland</td>
</tr>
<tr>
<td>242</td>
<td>The use of Multivariate Control Charts to assess the quality of aluminum alloys melted in crucible furnaces</td>
<td>M. Brzeziński, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland</td>
</tr>
<tr>
<td>257</td>
<td>Hybrid patternless forming method and equipment of multi–material sand mold</td>
<td>Z. Shan, China Academy of Machinery Science & Technology Group Co., Ltd., China</td>
</tr>
</tbody>
</table>
261 – Optimum design of foam residue traps to manufacture large-sized castings for full mold casting
Y. Takagi, Mie University, Department of Mechanical Engineering, Graduate School of Engineering, Japan

272 – Trial – a modern technology of non-cement concrete in cast iron foundry
B. Cygan, Silesian University of Technology, Department of Foundry Engineering, Poland

284 – Evaluation of Green Sand Premixes for Emission Characteristics
V. LaFay, S&T, IMERYS Metalcastings, USA

287 – Control volume simulation of the tilt casting process
D. Molnar, University of Miskolc, Hungary

292 – Shrinkage defect elimination supported by thermal analysis application for ductile iron knuckle production
P. Rodriguez, EDERTEK Technology Center of Fagor Ederlan Group, Spain

309 – Use of supplier quality index for assessing providers quality in aluminium castings
D. Dispinar, Istanbul University, Faculty of Engineering, Metallurgical and Materials Department Turkey

353 – Evaluating a ceramic resin coated sand for aluminum and iron castings
S. Ramrattan, Western Michigan University, USA

366 – Easy–knock out moulding and core sand – the future for metal casting
A. Bobrowski, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland

375 – New & reclaimed chromite vs alumina–silicate refractory sand advantages and drawbacks
P. Diaz, Imerys Aluminites, France

382 – Hybrid resins: a great advantage for quality, ecology and costs
A. Mazzen, Fili Mazzen S.p.A., Italy

396 – Heat recovery from compressed air station – foundry Volkswagen Poznań
T. Kamiński, Volkswagen Poznań Sp. z o.o., Poland

399 – Ductile iron and compacted graphite iron treatment with hybrid magnesium cored wire process
O. Bahun, Foundry products, Affival sas, France

405 – Development of additive manufacturing sand molding system aimed for mass production application
T. Okane, National Institute of Advanced Industrial Science and Technology (AIST), Japan

421 – Modern permanent lining concepts for CC tundishes – theory and practice
P. Mirecki, Pasek Europe, Poland

425 – Automatic bottom pouring of iron alloys
O. Schmitz, Pour–Tech AB, Sweden

429 – LAC, S.R.O. – Producer of furnaces and dryers
P. Szekieda, LAC, s.r.o., Czech Republic

440 – Industry 4.0 process control and traceability for the foundry industry
D. Gilson, SinterCast AB, Sweden

445 – The technology of continuous casting of aluminium alloy ingots
B. Augustyn, Institute of Non–Ferrous Metals, Light Metals Division, Poland

461 – VOX PATRIS – the biggest swinging bell in the world
P. Olszewski, Pracownia Budowy Ciężkiej, Poland

462 – Development of the electric vehicles market by 2030 in Germany, Europe, US and China
C. Kuhlga, Hüttenes–Albertus Chemische Werke GmbH, Germany

Digitalization:

133 – Experiences with helix type line computer tomography(CT) and VGinLine at Volkswagen Foundry Hanover
F. Hansen, Volkswagen Foundry Hanover, Germany

161 – Data analytics: the next dimension in molding sand control
D. Chowdhary, MPM Infosoft Private Ltd., India

347 – Digital transformation to Foundry 4.0
N. Grammena, EnginSoft S.p.A., Manufacturing Business Unit, Italy

356 – SIFONET: Smart & Innovative Foundry Network
F. Bonillo, Padova University, Department of Engineering and Management (DTG), Italy

401 – Simulation driven design for castings with effective control of manufacturing constraints
K. Asfardis, Altair, Greece

Ecology:

9 – Pro-ecological die–casting foundry
K. Wrzala, Odlewnia SILUM Sp. z o.o., Poland

13 – Spent foundry sand valorization in construction sector through the validation of high–performance applications
E. Garitaonandia, IK4–AZTERLAN, Environment and Sustainability, Spain
31 – Database of materials for the evaluation of the impact of harmful substances in metallurgical processes
A. Bydałek, University of Zielona Góra, Faculty of Mechanical Engineering, Poland

40 – Process performance and environmental impact of the CaO–Al₂O₃ slag system as alternative to calcium carbide for desulfurization of nodular cast iron
R. Lencina, Kerneos Aluminate Technologies, France

123 – Absorption–Biochemical Units (ABCHU) for ventilating air purification in foundry
Y. Shapovalau, Gazoochistka Engineering LLC, Republic of Belarus

177 – Fata Aluminium inorganic sand regeneration process
P. Bocca, Fata Aluminium, Italy

230 – Economic solutions for avoiding emissions in foundries
A. Cavotta, Xpuris GmbH, Germany

231 – Increase of output – retrofits – modifications
F. Schaefer, Heinrich Wagner Sinto Maschinenfabrik GmbH, Germany

368 – Automation of sand cores production – Foundry Volkswagen Poznań
T. Kamiński, Volkswagen Poznań Sp. z o. o., Poland

Management:

73 – Innovation in knowledge transfer from academia to the foundry industry – an advanced case
J. T. Svidró, Jönköping University School of Engineering, Department of Materials and Manufacturing Sweden

122 – A strategy road map towards world class safety through innovative proactive and unique daily routine activities to achieve zero injury in Indian Foundry Industry
D. A. Pratap Singh, Maruti Suzuki India Ltd, India

238 – Life long education of foundry employees – a step forward
C. Gustavsson, Swerea SWECAST, Sweden

393 – Partnership of industry and knowledge center for a sustainable foundry industry
L. Sechi, Clarant SE, France

403 – Polish engineer with regard to changes caused by Industry 4.0
K. Liszka, AGH University of Science and Technology, Faculty of Foundry Engineering, Poland