Design-Process-Technology Co-optimization for Manufacturability XIII

Jason P. Cain
Editor

27–28 February 2019
San Jose, California, United States

Sponsored by
SPIE

Cosponsored by
Hitachi High Technologies, America, Inc. (United States)

Published by
SPIE

Volume 10962
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)- Fax +1 360 647 1445
SPIE.org
Copyright © 2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/19/$18.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 3A, 3B, 3C, 3D, 3E, 3F, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 4A, 4B, 4C, 4D, 4E, 4F, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 5A, 5B, 5C, 5D, 5E, 5F, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 6A, 6B, 6C, 6D, 6E, 6F, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 7A, 7B, 7C, 7D, 7E, 7F, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 8A, 8B, 8C, 8D, 8E, 8F, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 9A, 9B, 9C, 9D, 9E, 9F, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, E0, E1, E2, E3, E4, E5, E6, E7, E8, E9, E0, E1, E2, E3, E4, E5, E6, E7, E8, E9, F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F0, F1, F2, F3, F4, F5, F6, F7, F8, F9.
Contents

Authors ix
Conference Committee

DESIGN-TECHNOLOGY CO-OPTIMIZATION

10962 03 Optimization of read and write performance of SRAMs for node 5nm and beyond [10962-2]
10962 05 Backside power delivery as a scaling knob for future systems [10962-4]
10962 06 CFET standard-cell design down to 3Track height for node 3nm and below [10962-5]

LAYOUT ANALYTICS

10962 07 Persistent homology analysis of complex high-dimensional layout configurations for IC physical designs [10962-6]
10962 08 Machine learning based wafer defect detection [10962-7]
10962 0A Fast detection of largest repeating layout pattern [10962-9]
10962 0B Process window-based feature and die failure rate prediction [10962-10]

MACHINE LEARNING

10962 0D Optical proximity correction using bidirectional recurrent neural network (BRNN) [10962-12]
10962 0E Investigation of machine learning for dual OPC and assist feature printing optimization [10962-13]

PROCESS MODELING AND LAYOUT OPTIMIZATION

10962 0G Design for manufacturability for analog, radio frequency, and millimeter wave designs [10962-15]
10962 0H 3D resist reflow compact model for imagers microlens shape optimization [10962-16]
Efficient electrical characteristics estimation techniques for sub 20 nm FDSOI integrated circuits with non-rectangular gate patterning effects [10962-17]

Optimizing DFM scores by using a genetic evolution algorithm [10962-18]

Full-chip layout optimization for photo process window improvement of 3D NAND metal routing level [10962-19]

Critical defect detection, monitoring and fix through process integration engineering by using D2DB pattern monitor solution [10962-20]

SAQP spacer merge and EUV self-aligned block decomposition at 28nm metal pitch on imec 7nm node [10962-22]

Lithography hotspot candidate detection using coherence map (Invited Paper) [10962-25]

CAPP: context analyzer and printability predictor [10962-26]

Hotspot detection using squish-net [10962-27]

Multi-criteria hotspot detection using pattern classification [10962-28]

Multilayer CMP hotspot modeling through deep learning [10962-29]

SALELE process from theory to fabrication [10962-30]

Sample patterns extraction from layout automatically based on hierarchical cluster algorithm for lithography process optimization [10962-32]

Incorporating process variation contours in design rule calculation and SRAM design optimization [10962-33]
Copper interconnect topography simulation in 3D NAND designs [10962-35]

FEOL CMP modeling challenges and solution in 3D NAND [10962-36]

Design rule exploration for width sensitive zone for metal layers in advanced nodes [10962-37]

Experimental study of the strong halation-effect of a fully PGMEA-based under-layer on a highly etched topography in the dual damascene via-first approach [10962-38]

An efficient way of automatic layout decomposition and pattern classification [10962-39]

A smart litho friendly design method to enable fast lithography hotspots detection in design flow [10962-40]

Machine learning to improve accuracy of fast lithographic hotspot detection [10962-41]

Novel pattern-centric solution for high performance 3D NAND VIA dishing metrology [10962-42]