Holography, Diffractive Optics, and Applications IX

Yunlong Sheng
Changhe Zhou
Liangcai Cao
Editors

21–23 October 2019
Hangzhou, China

Sponsored by
SPIE
COS—Chinese Optical Society

Cooperating Organizations
Tsinghua University (China) • Peking University (China) • University of Science and Technology of China (China) • Zhejiang University (China) • Tianjin University (China) • Beijing Institute of Technology (China) • Beijing University of Posts and Telecommunications (China) • Nanjing University (China) • Changchun University of Science and Technology (China) • University of Shanghai for Science and Technology (China) • Capital Normal University (China) • Huazhong University of Science and Technology (China) • Beijing Jiaotong University (China) • China Jiliang University (China) • Shanghai Institute of Optics and Fine Mechanics, CAS (China) • Changchun Institute of Optics, Fine Mechanics and Physics, CAS (China) • Institute of Semiconductors, CAS (China) • Institute of Optics and Electronics, CAS (China) • Institute of Physics, CAS (China) • Shanghai Institute of Technical Physics, CAS (China) • China Instrument and Control Society (China) • Japan Optical Society (Japan) • Korea Optical Society (Korea, Republic of) • Australia Optical Society (Australia) • Singapore Optical Society (Singapore) • European Optical Society

Supporting Organizations
China Association for Science and Technology (CAST) (China)
Department of Information of National Nature Science Foundation, China (NSFC) (China)

Published by
SPIE

Volume 11188
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Seven-digit Article CID Number.

ISSN: 0277-786X
ISSN: 1996-756X (electronic)

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) - Fax +1 360 647 1445
SPIE.org
Copyright © 2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/19/$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-17, 20-22, etc. The CID Number appears on each page of the manuscript.
Contents

<table>
<thead>
<tr>
<th>SESSION 1</th>
<th>ARTIFICIAL INTELLIGENCE IN DIGITAL HOLOGRAPHY I</th>
</tr>
</thead>
<tbody>
<tr>
<td>11188 02</td>
<td>Science and mathematical duality (Invited Paper) [11188-1]</td>
</tr>
<tr>
<td>11188 04</td>
<td>Data-centric approach for miscellaneous optical sensing and imaging (Invited Paper) [11188-3]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 2</th>
<th>ARTIFICIAL INTELLIGENCE IN DIGITAL HOLOGRAPHY II</th>
</tr>
</thead>
<tbody>
<tr>
<td>11188 07</td>
<td>Speckle noise reduction in digital holograms based on Spectral Convolutional Neural Networks (SCNN) (Invited Paper) [11188-6]</td>
</tr>
<tr>
<td>11188 08</td>
<td>Fast and accurate classification and identification of mass spectra using hybrid optical-electronic convolutional neural networks [11188-7]</td>
</tr>
<tr>
<td>11188 09</td>
<td>Phase retrieval algorithm based on the neural network and the GS [11188-8]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 3</th>
<th>3D IMAGING AND DISPLAY I</th>
</tr>
</thead>
<tbody>
<tr>
<td>11188 0B</td>
<td>Continuous-depth head-mounted display for virtual reality (Invited Paper) [11188-10]</td>
</tr>
<tr>
<td>11188 0E</td>
<td>Performance improvement for computer-generated holographic stereogram based on integral imaging [11188-13]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 4</th>
<th>3D IMAGING AND DISPLAY II</th>
</tr>
</thead>
<tbody>
<tr>
<td>11188 0F</td>
<td>Holographic vision system based on non-diffractive optical scanning holography and deep learning (Invited Paper) [11188-54]</td>
</tr>
<tr>
<td>11188 0G</td>
<td>Fast 3D reconstruction method based on 2D gold matrix [11188-15]</td>
</tr>
</tbody>
</table>
Adaptive computational imaging improve architecture methodology

A novel phase retrieval and reconstruction method in optical diffraction tomography

Three-dimensional morphology measurement of microgrooves based on Dammann zone plate

SESSION 5 COMPUTER-GENERATED HOLOGRAPHY I

In-system optimization of hologram for holographic femtosecond laser processing

From holography to picooptics

Novel computer-generated hologram encoding method

Computing and fabrication of high-definition depth-added computer-generated holographic stereogram (Invited Paper)

SESSION 6 COMPUTER-GENERATED HOLOGRAPHY II

Direct laser writing of high-NA computer-generated holograms on metal films of the titanium group and chromium (Invited Paper)

Generalized single-sideband computer-generated holography for high-quality three-dimensional display

SESSION 7 DIFFRACTIVE ELEMENT, GRATING DESIGN, AND FABRICATION

Broadband polarization-independent reflective 1×2 beam splitters under normal incidence based on encapsulated metal-dielectric gratings

Design of a 1×5 transmission grating splitter with triangular structure of MgF₂

The intraocular lens based on Dammann zone plate

Improvements of diffractive optical element uniformity and zero order performance using lithographic process parameter optimization method

Performance improvement of refractive index sensor based on two-dimensional metal-dielectric grating

Highly efficient broadband optimization design of gold-plated reflective grating
Design of guided mode resonant gratings by modal method [11188-36]

SESSION 8 NOVEL APPLICATIONS

Optical vortices generation by digital "blazed" thin holograms [11188-39]
Topography measurement by normal-incidence reflection ptychography [11188-41]
An advanced ray-tracing model for multi-color holographic optical elements [11188-43]

SESSION 9 DIGITAL HOLOGRAPHIC MICROSCOPY I

Microscopic urinalysis by digital holographic microscopy [11188-44]

SESSION 10 HOLOGRAPHIC METROLOGY

Visual and quantitative investigation on heat flow performance from heat sinks using digital holographic interferometer (Invited Paper) [11188-48]
Holographic wavefront sensing and modal decomposition [11188-50]
Holo-shear lens based interferometer for measurement of temperature distribution and fluctuation of temperature in micro flame [11188-51]

SESSION 11 DIGITAL HOLOGRAPHIC MICROSCOPY II

Optical scanning holography: a review of fundamentals with some recent applications (Invited Paper) [11188-53]
A method to achieve color image encryption by using orthogonal compressive sensing and optical scanning holography [11188-55]
Quantitative differential phase microscopy based on structured illumination [11188-56]

POSTER SESSION

Incoherent digital holography with four-step phase-shifting interference [11188-58]
Numerical model of the quantitative stress detection using the polarized digital holography [11188-62]
High-resolution 3D model reconstruction for light field display [11188-64]

Angular coordinate error testing of circular writing laser system using Fizeau interferometer [11188-65]

Holographic optical element based digital holographic interferometer for label-free imaging of staphylococcus aureus bacteria [11188-66]

Imaging characteristic optimization of digital holographic microscopy for onion epidermal cells [11188-68]

Fabrication of high-efficiency, multilayer-dielectric, spectral-beam-combining gratings [11188-69]

A method of calculating full-parallax computer-generated hologram with occlusion and lighting in real time [11188-70]

Research on high efficiency immersed holographic grating [11188-72]

Weighted iterative algorithm for phase hologram generation with high-quality reconstruction [11188-74]

Three-dimensional measurement of rotating combinative Dammann gratings [11188-75]

Optimized holographic imaging with the MIM-based metasurface [11188-76]

A new method for non-destructive measuring of grating parameters [11188-78]

A three-dimensional PIV system based on camera array [11188-79]

Research on slanted trapezoidal surface relief grating [11188-81]

On resizing the reconstructed image in interactive holographic 3D display system [11188-84]

Noise reduction of dual-wavelength digital holography based on a shorter synthetic-wavelength [11188-86]

Design of phase-type soft aperture [11188-88]