The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510634763

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time); Fax +1 360 647 1445
SPIE.org
Copyright © 2020, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/20/$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE DIGITAL LIBRARY
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-digit sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B … 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

vii Authors
ix Conference Committee

MEASURING COMPLEX OPTICAL SYSTEMS AND COMPONENTS

11352 02 Reconfigurable dynamic optical system design, test, and data analysis (Invited Paper) [11352-1]
11352 03 Accurate 3D coordinate measurement using holographic multipoint technique [11352-3]
11352 04 Increasing the accuracy of imaging-based dimensional measurements [11352-4]
11352 05 UV absorption mapping as subsurface damage inspection in transparent optical materials [11352-5]

EXTENDING THE LIMITS OF WHAT CAN BE MEASURED

11352 07 Optical topography measurement of steeply-sloped surfaces beyond the specular numerical aperture limit [11352-7]
11352 09 Robot-assisted BRDF measurement and surface characterization of inhomogeneous freeform shapes [11352-10]

STATE-OF-THE-ART PHOTOGRAMMETRY AND STRUCTURED LIGHT

11352 0A Smart photogrammetry for three-dimensional shape measurement (Invited Paper) [11352-11]
11352 0B Concept of a control system based on 3D geometry measurement for open die forging of large-scale components [11352-12]
11352 0C 3D registration of multiple surface measurements using projected random patterns [11352-13]
11352 0E Affine structured light sensor for measurements through inspection windows: basic concept and direct calibration approach [11352-15]
11352 0F High-speed fringe projection for robot 3D vision system [11352-16]
Adaptive merging of large datasets of a 3D measuring endoscope in an industrial environment

Grazing incidence interferometry for testing rough aspherics: experimental results and data analysis

Method of measurements of extended optical fibers with high precision

Fast fringe analysis method using graphics processing unit acceleration for dynamic fault identification

Surface scattering and the 3D transfer characteristics of optical profilers (Invited Paper)

Three-dimensional imaging confocal profiler without in-plane scanning

Interferometric measurements of mold-plate assemblies designed for high-volume manufacturing of aspheric microlenses

Demonstration of aberration-robust high-frequency modulated differential confocal microscopy with an oscillating pinhole

Model-based dimensional optical metrology

Cascaded machine learning model for reconstruction of surface topography from light scattering

Deep learning based speckle decorrelation denoising for wide-field optical metrology

Model-based calibration routine for a triangulation sensor for inner radius measurements of cylindrical components

Measuring the spatial distribution of liquid crystal alignment and retardation using Stokes polarimetry

Segmented wavefront metrology using multicolor PISTIL interferometry
Resolution and computational strategy in wideband multiphoton microscopy illustrated with muscle imaging [11352-34]

Detailed characterization of a hyperspectral snapshot imager for full-field chromatic confocal microscopy [11352-36]

OPTICAL TOMOGRAPHY

Optical coherence tomography in nondestructive testing (Invited Paper) [11352-37]
Continuous measurement of wrist artery pulse vibration signals measurement using structured-light projection method [11352-39]
One-shot roughness measurements based on dispersion-encoded low coherence interferometry [11352-40]

QUANTITATIVE IMAGING: JOINT SESSION

Scanning wavefront detection coherent Fourier scatterometry (SCFS) [11352-42]

11352 ADDITIONAL PRESENTATIONS

Accurate and low-cost ENEA solar compass for precision metrology of true azimuth: instrumental and smart versions [11352-8]

POSTER SESSION

The multichannel optical spectrometer for combustion processes control [11352-44]
Precision inspection of micro components free form by Moiré interferometry [11352-45]
Design of a compact corneal topographer to characterize the shape of the cornea [11352-46]
White light interference microscopy system design [11352-48]
Modeling the conical corneal null-screen topographer with the Fermat principle [11352-50]
Comprehensive ranging disambiguation for amplitude-modulated continuous-wave laser scanner [11352-51]
3D images processing using acousto-optic Bragg diffraction [11352-52]
Deep reinforcement learning for variability prediction in latent heat flux from low-cost meteorological parameters [11352-54]

Analysis of the systematic and random errors in the conical corneal null-screen topographer [11352-56]

Robustness improvement for the calibration of stereo deflectometry based on a search algorithm [11352-57]

Optical sensor for drone coordinate measurements [11352-58]

Development of a double-diffraction grating interferometer for measurements of displacement and angle [11352-59]

Velocity estimation from fringe contrast using lensless Fourier transform digital holography [11352-60]

Integration of an endoscopic fringe projection system into a milling machine for the regeneration of complex capital goods: a first prototype [11352-61]

Phase calibration of a basic bright-field microscope for 3D metrology of transparent samples at the nanoscale [11352-62]