T01: Design Techniques for WBG Power Converters

TRACK Power Electronics Integration and Manufacturing

SESSION CHAIRS
Yusi Liu, PN Semiconductor
Muhammad Alvi, General Motors

T01.1 Design of a High-Density Integrated Power Electronics Building Block (iPEBB) based on 1.7 kV SiC MOSFETs on a Common Substrate
Narayanan Rajagopal, Christina DiMarino, Rolando Burgos, Igor Cvetkovic, Mina Shawky
Virginia Polytechnic Institute and State University, United States

T01.2 Low-Inductance Asymmetrical Hybrid GaN HEMT Switching Cell Design for the FCML Converter in High Step-Down Applications
Nathan Brooks, Logan Horowitz, Rose Abramson, Robert Pilawa-Podgurski
University of California Berkeley, United States

T01.3 A High-Power-Density Four-Switch Buck-Boost Converter using 3D Multi-PCB Structure
Qi Liu, Dejun Zheng, Min Zheng, Qinsong Qian, Shen Xu, Weifeng Sun
Southeast University, China

T01.4 Evaluation of Low-Pressure-Sintered Multi-Layer Substrates for Medium-Voltage SiC Power Modules
Jacob Gersh¹, Christina DiMarino¹, Douglas DeVoto², Paul Paret³, Joshua Major³, Samuel Gage²
¹Virginia Polytechnic Institute and State University, United States; ²National Renewable Energy Laboratory, United States

T01.5 A 1.2 kV 400A SiC-MOSFET based 3L-TNPC Power Module with Improved Hybrid Packaging Method for High-Density Applications
Zhao Yuan¹, Asif Imran Emon¹, Si Huang¹, Zhongjing Wang¹, Yalin Wang¹, Mustafeez Hassan², Balaji Narayanasamy¹, Amol Deshpande¹, Fang Luo²
¹University of Arkansas, United States; ²Stony Brook University, United States

T01.6 High Power Density Design of Power Electronic Interrupter in Hybrid DC Circuit Breaker
Jian Liu¹, Lakshmi Ravi¹, Dong Dong¹, Rolando Burgos¹, Cyril Buttay², Steven Schmalz³
¹Virginia Polytechnic Institute and State University, United States; ²University Claude-Bernard Lyon 1, INSA-Lyon, CNRS, France; ³Eaton Corporation, United States

T01.7 A Novel 3.6kV/400A SiC Intelligent Power Module (IPM)
Zhicheng Guo, Liqi Zhang, Soumik Sen, Alex Q. Huang
The University of Texas at Austin, United States

T01.8 Simple High-Performance Thermal Management of Chip-Scale GaN FETs
John S. Glaser, Assaad Helou, Muskan Sharma, Robert Strittmatter, Michael de Rooij
Efficient Power Conversion Corp., United States

T01.9 Thermal and Mechanical Design of a High-Voltage Power Electronics Package
Paul Paret¹, J. Emily Cousineau¹, Sreekant Narumanchi¹, Guo-Quan Lu², Khai Ngo²
¹National Renewable Energy Laboratory, United States; ²Virginia Polytechnic Institute and State University, United States
T02: Renewable Energy System Control

TRACK Renewable Energy Systems

SESSION CHAIRS
Pritam Das, NY State University
Haoyu Wang, ShanghaiTech University

T02.1 Adaptive Nonlinear Droop Control with Dynamic State-of-Charge Balancing Capability for Batteries in DC Microgrids
Mehmaz Madadi, Subhashish Bhattacharya
North Carolina State University, United States

T02.2 Adaptive Line Impedance Estimation Algorithm for DC Microgrid Systems
Mohammad Noor Bin Shaheed, Yilmaz Sozer
The University of Akron, United States

T02.3 Flexible Power Control of Distributed Grid-Connected Series-Photovoltaic-Battery Systems
Yiwei Pan¹, Ariya Sangwongwanich¹, Yongheng Yang², Frede Blaabjerg³
¹Aalborg University, Denmark; ²Zhejiang University, China

T02.4 DC-Bus Voltage Control of MPPT-Based Wind Generation System using Hybrid BESS-SMES System for Pulse Loads in Ship Power Applications
Mahmoud Elmorshedy¹, Mahmoud M. Amin²,³, Fayezy F.M. El-Sousy⁴, Osama A. Mohammed⁵
¹Tanta University, Egypt; ²Manhattan College, United States; ³Electronics Research Institute, Egypt; ⁴Prince Sattam bin Abdulaziz University, Saudi Arabia; ⁵Florida International University, United States

T02.5 Parameter Estimator-Based Power Control Strategy of Microgrid Considering Nonlinear Inductor
Wenbin Yuan¹, Yanbo Wang¹, Dong Liu¹, Fujin Deng², Zhe Chen¹
¹Aalborg University, Denmark; ²Southeast University, China

T02.6 A Two-Level MPPT Algorithm in Dynamic Partial Shading Condition using Ripple Correlation Control
Sadab Mahmud¹, Roshan Kini², Ansel Barchowsky², Ahmad Javaid¹, Raghav Khanna¹
¹University of Toledo, United States; ²Pacific Northwest National Laboratory, United States; ³Jet Propulsion Laboratory, California Institute of Technology, United States

T02.7 Z-Source Virtual Synchronous Generator: Operation and Control
Mohammad Khatibi, Sara Ahmed
The University of Texas at San Antonio, United States

T02.8 Unified Virtual Oscillator Control for Synchronization Under Ultra-Weak Grid Conditions
M A Awal, Iqbal Husain
North Carolina State University, United States

T02.9 Grid Stability Enhancement by a High Voltage SiC MOSFET-Based Asynchronous Microgrid Power Conditioning System
Dingrui Li¹, Le Kong¹, Cheng Nie¹, Xingxuan Huang¹, Shiqi Ji¹, Min Lin¹, Fred Wang¹,², Leon M. Tolbert¹
¹The University of Tennessee Knoxville, United States; ²Oak Ridge National Laboratory, United States

T02.10 A Modified Droop Control Algorithm for DC Microgrids to Achieve Accurate Current Sharing and Improved Voltage Regulation
Shrivatsal Sharma¹, Vishnu Mahadeva Iyer², Partha Pratim Das¹, Subhashish Bhattacharya¹
¹North Carolina State University, United States; ²Indian Institute of Science, India
T03: Circuits and Simulations
TRACK Modeling and Simulation

SESSION CHAIRS
Mostak Mohammad, Oak Ridge National Laboratory
Adam Skorek, University of Québec at Trois-Rivières

T03.1 Development of a Converter-Based Data Center Power Emulator .. 126
Jingjing Sun, Shuyao Wang, Jingxin Wang, Leon M. Tolbert
The University of Tennessee, Knoxville, United States

T03.2 Systematic Design and Optimization of Large DC Distribution Architectures using Simulated Annealing .. 134
Kyle J. Goodrick, Emiliano Dall'Anese, Dragan Maksimović
University of Colorado Boulder, United States

T03.3 Plant based Current Sharing Design of Paralleled Converters ... 142
Lei Wang, Wayne Cook
Dell EMC, United States

T03.4 An RED Hybrid Model for SoC Tracking, Runtime Prediction and Transient Response Description .. 147
Zhihong Yan¹, Ying Huang¹, Chenxiao Jiang², Ying Mei¹, Siew-Chong Tan¹, Chuyang Tang¹, S.Y. Hui¹
¹The University of Hong Kong, Hong Kong; ²University of Science and Technology of China, China

T03.5 A Fast and Accurate Simulation Tool for LLC Converters .. 152
Yuqi Wei¹, Zhiqing Wang², Quanming Luo³, Alan Mantooth³
¹University of Arkansas, United States; ²Monolithic Power Systems, China; ³Chongqing University, China

T03.6 Analysis and Evaluation of Air-Core Two-Coil Wireless Power Transfer System Configurations .. 160
Yuankun Zhao, Jaber A. Abu Qahouq
The University of Alabama, United States

T03.7 Common Mode EMI Characterization through Phase Modeling ... 164
Ashik Amin, Tahmid Ibne Mannan, Seungdeog Choi
Mississippi State University, United States

T03.8 Characterization of Common/Differential-Mode Behavior in Power Electronic Systems 170
Timothy J. Donnelly¹, Steven D. Pekarek¹, Drummond Fudge², Nyah Zarate²
¹Purdue University, United States; ²Continuous Solutions, United States

T03.9 Modeling and Analysis of Switched-Capacitor Converters with Finite Terminal Capacitances .. 178
Yicheng Zhu, Zichao Ye, Robert C.N. Pilawa-Podgurski
University of California Berkeley, United States

T04: Inverters
TRACK Motor Drives and Inverters

SESSION CHAIRS
Rakibul Islam, Nexteer Automotive
Lee Woongkul, Michigan State University

T04.1 DC-Ripple-Energy Adaptive-Minimization (DREAM) Modulation Scheme for a High Power Density Inverter ... 186
Lingxiao Xue, Gui-Jia Su, Burak Ozpineci
Oak Ridge National Laboratory, United States
T04.2 A Multi-Phase Segmented Drive Comprising Arrayed Flying Capacitor Multi-Level Modules .. 192
Nathan Pallo, Roderick S. Bayliss III, Robert C.N. Pilawa-Podgurski
University of California Berkeley, United States

T04.3 High-Bandwidth High-CMRR Current Measurement for a 4.8MHz Multi-Level GaN Inverter AC Power Source .. 200
Pascal S. Niklaus, Dominik Bortis, Johann W. Kolar
ETH Zürich, Switzerland

T04.4 Analysis and Implementation of a cm-Scale Switched Capacitor Converter for Low Power, Kilovolt-Range Applications ... 208
Bahlakoana Mabetha, Yanqiao Li, Benjamin L. Dobbins, Jason T. Stauth
Dartmouth College, United States

T04.5 A Six-Level T-Type ANPC Inverter for Medium-Voltage Applications ... 214
Jonathan Pribadi, Dong-Choon Lee
Yeungnam University, Korea

T04.6 GaN-HEMT based Very-High-Frequency AC Power Supply for Electrosurgery 220
Congbo Bao, Sudip K. Mazumder
University of Illinois at Chicago, United States

T04.7 Design of Three Limb Coupled Inductor using Cross-Coupled Windings to Produce Multi-Level Output Voltages and Reduced Magnetics .. 226
Marius Takongmo, John Salmon
University of Alberta, Canada

T04.8 Comparative Analysis based on Thermal Models and Device Losses for the SiC-Based ANPC Topologies ... 233
Satish Belkhode, Anshuman Shukla, Suryanarayana Doolia
Indian Institute of Technology Bombay, India

T05: AC-DC Converters I
TRACK AC-DC Converters
SESSION CHAIRS
Arijit Banerjee, University of Illinois
Majid Pahlevani, Queen's University

T05.1 A Single-Phase GaN Totem-Pole PFC with Active Power Decoupling 239
Mohammad Alhussan, Fahad Alhuwaishel, Prasad Enjeti
Texas A&M University, United States

T05.2 A GaN Totem-Pole PFC Converter with Zero-Voltage-Switching PWM Control 247
Kai Dong1,2, Yuesen Guo2, Shuailin Du2, Tianding Hong2, Jina Zhang2, Dehong Xu1
1Zhejiang University, China; 2Delta Electronics Shanghai Co. Ltd., China

T05.3 Operation Analysis of GaN-Based MHz ZVS Bridgeless Dual SEPIC PFC 252
Yunfeng Liu, Xiaosheng Huang, Yi Dou, Ouyang Ziwei, Michael A.E. Andersen
Technical University of Denmark, Denmark

T05.4 Modeling and Control of Cascaded Bridgeless Multilevel Rectifier under Unbalanced Load Conditions .. 260
Sai Hemanth Kankanala1, Jonathan W. Kimball1, Amirhossein Moeini2
1Bitrode Corporation, United States; 2Missouri University of Science and Technology, United States
T05.5 A Full Bridge Type Series Connected Modular Multilevel Converters for Medium Voltage Drive ... 267
Yifu Liu, Yunpeng Si, Mengzhi Wang, Zhengda Zhang, Chunhui Liu, Qin Lei
Arizona State University, United States

T05.6 An Impedance Control Network based Single-Stage Universal-Input Isolated AC-DC Converter Utilizing Reconfigurable Inverters ... 272
Mausamjeet Khatua, Khurram K. Afridi
Cornell University, United States

T05.7 Eliminating Input Electrolytic Bulk Capacitors in Flyback-Based Universal Chargers with a Half-Bridge Series-Stacked Buffer ... 278
Zitao Liao, Robert C.N. Pilawa-Podgurski
University of California Berkeley, United States

T05.8 Common-Mode EMI Cancellation in Full-Bridge based Isolated DC-DC Converters 284
Yongbin Chu, Ashish Kumar, Yogesh Ramadass
Texas Instruments, Inc., United States

T06: Resonant DC-DC Converters

TRACK DC-DC Converters

SESSION CHAIRS
Robert Pilawa-Podgurski, University California Berkeley
Jaeil Baek, Princeton University

T06.1 DCM and CCM Operation of Buck-Boost Full-Bridge DC-DC Converter 292
Niraja Swaminathan1, Lakshminarasamma N2, Yue Cao3
1Oregon State University, United States; 2Indian Institute of Technology Madras, India

T06.2 Unit Gain Characteristic based Resonant Frequency Tracking for DC Transformer Operation ... 298
Yuqi Wei, Alan Mantooth
University of Arkansas, United States

T06.3 High Power Density 1 MHz 3 kW 400 V-48 V LLC Converter for Datacenters with Improved Core Loss and Termination Loss ... 304
Ahmed Nabih, Rimon Gadelrab, Pranav Raj Prakash, Qiang Li, Fred C. Lee
Virginia Polytechnic Institute and State University, United States

T06.4 LLC Resonant Converter with 99% Efficiency for Data Center Server 310
Rimon Gadelrab, Ahmed Nabih, Fred C. Lee, Qiang Li
Virginia Polytechnic Institute and State University, United States

T06.5 A Fixed Switching Frequency Dual-Input LLC Converter with PWM Controlled Semi-Active Rectifiers for PV Applications ... 320
Xi Chen, Issa Batarseh
University of Central Florida, United States

T06.6 Elimination of Circulating Current in Wide Range LLC Resonant Converter with a Hybrid Bridge and Simultaneous PWM and PFM Control ... 327
Lingeshwaren Sobrayen1,2,3, Charif Karimi1,2, Patrick Dehem1,2, Tanguy Phulpin1,2, Daniel Sadarnac1,2
1CentraleSupélec, Université Paris-Saclay, France; 2Sorbonne Université, France; 3Enersys S.A.R.L., France
T06.7 Design and Development of a Fractional-Turn Transformer for High Power Density LLC Resonant Converters .. 335
Yu-Chen Liu1, Chen Chen2, Kai-De Chen2, Yong-Long Syu2, Wen-Hao Xue2, Yun-Yan Chen2, Katherine A. Kim3, Huang-Jen Chiu4
1National Ilan University, Taiwan; 2National Taiwan University of Science and Technology, Taiwan; 3National Taiwan University, Taiwan

T06.8 A Constant Frequency Step-Up Resonant Converter with a Re-Structural Feature and a PWM-Controlled Voltage Multiplier ... 343
Mehdi Abbasi1, Reza Emamalipour1, Mohammad Ali Masood Cheema2, John Lam2
1York University, Canada; 2Northern Transformer, Canada

T06.9 Multi-Mode Rectifier-Based LLC Resonant Converter for Wide Input Voltage Range Applications .. 349
Fahad Alalq, Abdullah Alhatlani, Issa Batarseh
University of Central Florida, United States

T06.10 A Novel Three-Level Phase-Shift Modulation for Serial Half Bridge LLC Resonant Converter .. 355
Chi Zhang, Peter Barbosa, Zhiyu Shen, Rudy Wang
Delta Electronics Americas Ltd., United States

T07: GaN, Silicon, and Passive Devices
TRACK Devices and Components
SESSION CHAIRS
Tanya Gachovska, Solantro Semiconductor Corp.
Hengzhao Yang, Shanghai Tech University

T07.1 Robustness of Cascode GaN HEMTs under Repetitive Overvoltage and Surge Energy Stresses .. 363
Qihao Song, Ruizhe Zhang, Joseph P. Kozak, Jingcun Liu, Qiang Li, Yuhao Zhang
Virginia Polytechnic Institute and State University, United States

T07.2 Short-Circuit Capability Demonstrated for GaN Power Switches .. 370
Davide Bisi1, John Gritters1, Tsutomu Hosoda2, Masamichi Kumiya2, Bill Cruse3, YuLu Huang4, Jim McKay1, Geetak Gupta1, Rakesh Lai1, Carl Neufeld1, Philip Zuk1, YiFeng Wu1, Prinit Parikh1, Umesh Mishra1
1Transphorm Inc., United States; 2Transphorm Japan Inc., Japan

T07.3 Overcurrent Capability Evaluation of 600 V GaN GITs under Various Time Durations .. 376
Zhe Yang1, Paige Williford1, Fred Wang1,2, Utkarsh Raheja3, Jing Xu3, Xiaqing Song3, Pietro Cairoli3, 1The University of Tennessee Knoxville, United States; 2Oak Ridge National Laboratory, United States; 3ABB Inc., United States

T07.4 Overcurrent and Short-Circuit Capability Experimental Investigation for GaN HEMT at Cryogenic Temperature .. 382
Ruirui Chen1, Zhe Yang1, Fred Wang1,2
1The University of Tennessee Knoxville, United States; 2Oak Ridge National Laboratory, United States

T07.5 A Surge Voltage Free Solid-State Circuit Breaker with Current Limiting Capability .. 389
Tiancan Pang, Madhav D. Manjrekar
University of North Carolina at Charlotte, United States

T07.6 Surge Current Capability of IGBT based Power Electronic Interrupter Modules for Hybrid DC Circuit Breaker Applications .. 395
Lakshmi Ravi1, Jian Liu1, Dong Dong1, Rolando Burgos1, Cyril Buttay2, Steven Schmalz2
1Virginia Polytechnic Institute and State University, United States; 2University Claude-Bernard Lyon 1, INSA-Lyon, France; 3Eaton Corporation, United States
T07.7 Survey and Experimental Evaluation of Voltage Clamping Components for Solid State Circuit Breakers
Xiaoqing Song, Yu Du, Pietro Cairoli
ABB Inc., United States

T07.8 Lifetime Prediction of the Film Capacitor based on Early Degradation Information
Yi Zhang¹, Zhongxu Wang², Shuai Zhao¹, Frede Blaabjerg¹, Huai Wang¹
¹Aalborg University, Denmark; ²Dynex Semiconductor Ltd, United Kingdom

T08: Topological Advancements in Wireless Power Transfer Systems
TRACK Wireless Power Transfer
SESSION CHAIRS
Raghav Khanna, The University of Toledo
Rong Zeng, Oak Ridge National Laboratory

T08.1 High Frequency Three-Level Inverter-Based Inductive Wireless Power Transfer (IWPT) System with Double LCC Resonance
Tian Luo¹, Tomokazu Mishima¹, Ching-Ming Lai²
¹Kobe University, Japan; ²National Chung Hsing University, Taiwan

T08.2 A Double-Sided Z-Impedance Compensated Inductive Power Transfer System
Yao Wang, Amr Mostafa, Zhonghao Dongye, Hua Zhang, Fei Lu
Drexel University, United States

T08.3 Thermal Analysis and Design of a 30kW EV Wireless Charger with Liquid-Cooled Shell for Magnetic Coupler and Integrated Power Converter
Baokun Zhang¹, Junjun Deng¹, Liantian Li³, Zhenpo Wang¹, Shuo Wang¹, Giuseppe Guidi²
¹Beijing Institute of Technology, China; ²SINTEF Energy Research, Norway

T08.4 A Load-Independent Domino IPT System with π-Type Compensation Network
Zhonghao Dongye, Yao Wang, Hua Zhang, Fei Lu
Drexel University, United States

T08.5 A Novel Three-Phase Oak Ridge AC / DC Converter for Wireless EV Charger Applications
Erdem Asa, Omer C. Onar, Veda P. Galigekere, Gui-Jia Su, Burak Ozpineci
Oak Ridge National Laboratory, United States

T08.6 A Large Air-Gap Multi-MHz Capacitive Wireless Power Transfer System using Compact Charging Pads
Sounak Maji, Sreyam Sinha, Brandon Regensburger, Khurrum K. Afridi
Cornell University, United States

T08.7 A Highly-Efficient and Cost-Effective Reconfigurable IPT Topology for Constant-Current and Constant-Voltage Battery Charging
Yihao Wu¹, Lingyun Zou², Shunpan Liu², Ruikun Mai³, Ji Hao Tian², Stefan Goetz³
¹Imperial College London, United Kingdom; ²Southwest Jiaotong University, China; ³University of Cambridge, United Kingdom

T08.8 Three-Phase LCC-LCC Compensated 50-kW Wireless Charging System with Non-Zero Interphase Coupling
Mostak Mohammad, Jason L. Pries, Omer C. Onar, Veda P. Galigekere, Gui-Jia Su, Jonathan Wilkins
Oak Ridge National Laboratory, United States

T08.9 Detailed Circuit Modelling of Phone Charging Wireless Power Transfer
Ruben Specogna², Stefano Saggini², Liyu Yang³, Mario Ursino², Liang Jia¹, Federico Iob², Li Wang¹, Qi Tian¹, Srikanth Lakshmikant
¹Google LLC, United States; ²University of Udine, Italy
T09: Control of DC-DC Converters I

SESSION CHAIR
Martin Ordonez, The University of British Columbia

T09.1 A Fast Response DC-DC Converter with Programmable Ripple for Combined Distributed Computation and Communication
Xiaofan Cui, Chenmin Deng, Al-Thaddeus Avestruz
University of Michigan, United States

T09.2 Digital Hysteretic Average Current Control for Fast Recovery in a Non-Inverting Buck-Boost Converter
V Inder Kumar¹, Santanu Kapat²
¹University of Colorado Boulder, United States; ²Indian Institute of Technology Kharagpur, India

T09.3 Sliding Mode Control with Minimum-Deviation Transient Response for Non-Inverting Buck-Boost DC-DC Converters
Janko Celikovic¹, Angel Arguello², Wisam Alhoor³, Siamak Abedinpour³, Dragan Maksimovic¹
¹University of Colorado Boulder, United States; ²Dialog Semiconductor, United States

T09.4 A Novel Decentralized PWM Interleaving Technique for Ripple Minimization in Series-Stacked DC-DC Converters
Soham Dutta¹, Branko Majmunovic², Satyaki Mukherjee², Rahul Mallik¹, Gab-Su Seo³, Dragan Maksimovic², Brian Johnson¹
¹University of Washington, United States; ²University of Colorado Boulder, United States; ³National Renewable Energy Laboratory, United States

T09.5 Phase-Shedding Control Scheme for Wide Voltage Range Operation of Extended-Duty-Ratio Boost Converter
Ankul Gupta¹, Raja Ayyanar¹, Sombuddha Chakraborty²
¹Arizona State University, United States; ²Texas Instruments, Inc., United States

T10: Low Voltage DC-DC Converters

SESSION CHAIRS
Xin Zhang, IBM
Cahit Gezgin, Infineon

T10.1 Efficiency-Optimized Current-Source Resonant Converter for USB-C Power Delivery
Satyaki Mukherjee¹, Ashish Kumar², Dragan Maksimovic¹
¹University of Colorado Boulder, United States; ²Texas Instruments, Inc., United States

T10.2 A More Accurate Power MOSFET Current Mirror Sensing Scheme in Synchronous Buck Converters
Wenkang Huang, Danny Clavette, Mudassar Khatib
Infineon Technologies, United States

T10.3 An Automotive-Use 5MHz, 40V to 1.2V, Single-Stage AOT GaN DC-DC Converter with One-Cycle Transient Response and Load-Adaptive Dead Time Control
Xugang Ke¹,², D. Brian Ma¹
¹The University of Texas at Dallas, United States; ²Analog Devices, Inc., United States
T10.4 A Digitally Controlled DC-DC Buck Converter with Automatic Digital PFM to PWM Transition Scheme
Navankur Beohar¹, Debashis Mandal², Vivek Parasuram³, Abhiram Mumma Reddy⁴, Amit Kumar⁵, Venkata N. K. Malladi⁶, Karthik Pappu⁷, Chao Fu⁸, Philippe C. Adell⁹, Bertan Bakkaloglu¹
¹Arizona State University, United States; ²Indian Institute of Technology Kharagpur, India; ³Dialog Semiconductors, United States; ⁴Texas Instruments, Inc., United States; ⁵Analog Bits, United States; ⁶NXP Semiconductors, United States; ⁷Analog Devices, Inc., United States; ⁸Jet Propulsion Laboratory, California Institute of Technology, United States

T10.5 Sampling Delay Effect on Stability in a Multi-Phase Buck Converter using Digital Current Mode Control
Santanu Kapat
Indian Institute of Technology Kharagpur, India

T11: Control of DC-AC Inverters
TRACK Control
SESSION CHAIR
Seungdeog Choi, Mississippi State University

T11.1 Simple Carrier based Capacitor Voltage Balancing Technique for Three-Level Voltage Source Inverters
Dereje Woldegiorgis, Yuqi Wei, Alan Mantooth
University of Arkansas, United States

T11.2 Analysis and Implementation of Current Controller with Reduced Delay for LCL-Based Inverters
Ali Elrayyah
Hamad Bin Khalifa University, Qatar

T11.3 Eliminating Dead-Time Effects with Zero-Current Clamping Control for WBG Multilevel Inverters
Dongwoo Han¹, Fang Z. Peng¹, Suman Dwari²
¹Florida State University, United States; ²Raytheon Technologies Research Center, United States

T11.4 Light Load Efficiency Improvement for CRM-Based Soft-Switching Three-Phase Inverter
Gibong Son, Zhengrong Huang, Qiang Li, Fred C. Lee
Virginia Polytechnic Institute and State University, United States

T12: Transportation: On-Board Electric Vehicle Charging
TRACK Transportation Power Electronics
SESSION CHAIRS
Kartik Iyer, Tesla
Parthasaraty Nayak, Eaton

T12.1 A New PFC CCM Boost Rectifier with Extended Gain and Reduced Voltage Switching for 1-ph/3-pH Universal Input On-Board Charger for Electric Vehicles
Tomas Sadilek¹, Yungtaek Jang¹, Sun Hao², Minli Jia², Peter Barbosa¹, Iqbal Husain³
¹Delta Electronics Americas Ltd., United States; ²Delta Electronics Shanghai Co. Ltd., China; ³North Carolina State University, United States

T12.2 Differential-Power-Processing On-Board-Charger for 400/800-V Battery Architectures using 650-V Super Junction MOSFETs
Héctor Sarnago, Óscar Lucía, Rafael Jiménez, Pablo Gaona
¹Universidad de Zaragoza, Spain; ²Lear Corporation Engineering Spain S.L.U, Spain
T12.3 Comparison of Unidirectional Three- and Four-Wire-Based Boost PFC-Rectifier Topologies for Non-Isolated Three-Phase EV On-Board Chargers Under Common-Mode Aspects ... 569
Marc Hagemeyer1, Peter Wallmeier2, Frank Schafmeister1, Joachim Böcker1
1Paderborn University, Germany; 2Delta Energy Systems, Germany

T12.4 A Current-Fed Three-Port DC/DC Converter for Integration of On-Board Charger and Auxiliary Power Module in Electric Vehicles ... 577
Liyan Zhu1, Hua Bai1, Alan Brown2, Lukas Keuck3
1The University of Tennessee Knoxville, United States; 2HELLA Electronics Corporation, United States; 3HELLA GmbH & Co. KGaA, Germany

T12.5 Single-Stage EV On-Board Charger with Single- and Three-Phase Grid Compatibility 583
Hyungjin Kim, Junyeong Park, Sunju Kim, Ramadhan Muhammad Hakim, Huu Phuc Kieu, Sewan Choi
Seoul National University of Science and Technology, Korea

T13: Three-Phase AC-DC Converters

T13.1 3-Φ Bidirectional Buck-Boost Sinusoidal Input Current Three-Level SiC Y-Rectifier 590
D. Menzi1, M. Zhang1, J.W. Kolar1, J. Everts2
1ETH Zürich, Switzerland; 2Prodrive Technologies B.V., The Netherlands

T13.2 Single-Phase Full-Power Operable Three-Phase Buck-Boost Y-Rectifier Concepts 599
D. Menzi1, J.W. Kolar1, J. Everts2
1ETH Zürich, Switzerland; 2Prodrive Technologies B.V., The Netherlands

T13.3 Modelling and Control of a Reduced-Stage Isolated AC-DC Converter for More Electric Aircrafts ... 607
Ashwin Chandwani, Saikat Dey, Ayan Mallik
Arizona State University, United States

T13.4 Design and Control of a High Power Density Three-Phase Flying Capacitor Multilevel Power Factor Correction Rectifier ... 613
Yong-Long Syu1, Zitao Liao2, Ni-Ting Fu1, Yu-Chen Liu1, Huang-Jen Chiu1, Robert C.N. Pilawa-Podgurski2
1National Taiwan University of Science and Technology, Taiwan;
2University of California Berkeley, United States

T13.5 AC Voltage Sensorless Predictive Duty Cycle Control of a Five-Level Unidirectional Rectifier ... 619
Debranjan Mukherjee1, Debaprasad Kastha2
1University of Illinois at Urbana-Champaign, United States; 2Indian Institute of Technology Kharagpur, India

T14: Bi-Directional DC-DC Converters

T14.1 Built-In Circuit Redundancy and Fault-Tolerant Operation of a New Multi-Mode Hybrid String Inverter/Rectifier Leg ... 626
Reza Emamalipour, John Lam
York University, Canada
<table>
<thead>
<tr>
<th>T14.2</th>
<th>A Three-Port Bidirectional LLC Resonant Converter for PV/Battery Applications 632</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xi Chen, Issa Batarseh</td>
</tr>
<tr>
<td></td>
<td>University of Central Florida, United States</td>
</tr>
<tr>
<td>T14.3</td>
<td>Design and Implementation of High-Density Isolated Bi-Directional Soft-Switching</td>
</tr>
<tr>
<td></td>
<td>Resonant DC-DC Converter with Partial Power Processing .. 640</td>
</tr>
<tr>
<td></td>
<td>Yuliang Cao¹, Minh Ngo¹, Ning Yan¹, Yijie Bai¹, Dong Dong¹, Rolando Burgos¹, Ismail Agirman²</td>
</tr>
<tr>
<td></td>
<td>¹Virginia Polytechnic Institute and State University, United States; ²Carrier Corporation, United States</td>
</tr>
<tr>
<td>T14.4</td>
<td>Efficiency Optimization of Dual Active Bridge Converter based on dV/dt Snubber Capacitors .. 647</td>
</tr>
<tr>
<td></td>
<td>Wei Xu, Adithyan Vetrivelan, Zhicheng Guo, Ruiyang Yu, Alex Q. Huang</td>
</tr>
<tr>
<td></td>
<td>The University of Texas at Austin, United States</td>
</tr>
<tr>
<td>T14.5</td>
<td>Inductor and Transformer-Coupled Magnetic Structure for Zero-Ripple DC-DC Cuk Converter .. 654</td>
</tr>
<tr>
<td></td>
<td>David Porras Fernandez¹, Roberto A. Fantino¹, Juan C. Balda¹, Sudip K. Mazumder²</td>
</tr>
<tr>
<td></td>
<td>¹University of Arkansas, United States; ²University of Illinois at Chicago, United States</td>
</tr>
</tbody>
</table>

T15: Power Converter System-Level Control

TRACK Power Electronics for Utility Interface

SESSION CHAIRS

Mithat Kisacikoglu, University of Alabama

Yilmaz Sozer, University of Akron

<table>
<thead>
<tr>
<th>T15.1</th>
<th>Droop-Based Current Control Method in Autonomous Distributed Modular Power Conversion System .. 660</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Koki Yamanokuchi, Hiroki Watanabe, Jun-Ichi Itoh</td>
</tr>
<tr>
<td></td>
<td>Nagaoka University of Technology, Japan</td>
</tr>
<tr>
<td>T15.2</td>
<td>Control and Management of Multiple Converters in a Residential Smart Grid ... 668</td>
</tr>
<tr>
<td></td>
<td>Michael Starke, Bailu Xiao, Anup Thapa, Pankaj Bhowmik, Steven Campbell, Radha K. Moorthy, Madhu Chinthavali</td>
</tr>
<tr>
<td></td>
<td>Oak Ridge National Laboratory, United States</td>
</tr>
<tr>
<td>T15.3</td>
<td>Blockchain-Based Firmware Security Check and Recovery for Smart Inverters .. 675</td>
</tr>
<tr>
<td></td>
<td>Gomanth Bere¹, Bohyun Ahn¹, Justin J. Ochoa², Taesic Kim¹, Abdullah A. Hadi¹, Jinchun Choi¹</td>
</tr>
<tr>
<td></td>
<td>¹Texas A&M University-Kingsville, United States; ²Sandia National Laboratory, United States</td>
</tr>
<tr>
<td></td>
<td>Sneha Thakur, Ghanshyamsinh Gohil, Poras T. Balsara</td>
</tr>
<tr>
<td></td>
<td>The University of Texas at Dallas, United States</td>
</tr>
<tr>
<td>T15.5</td>
<td>Nodal Admittance Matrix based Area Partition Method for Small-Signal Stability Analysis of Large-Scale Power Electronics based Power Systems .. 687</td>
</tr>
<tr>
<td></td>
<td>Liang Qiao¹, Yaosuo Xue², Le Kong¹, Fred Wang¹²</td>
</tr>
<tr>
<td></td>
<td>¹The University of Tennessee Knoxville, United States; ²Oak Ridge National Laboratory, United States</td>
</tr>
</tbody>
</table>
T16: Modeling and Control of Wireless Power Transfer Systems

TRACK: Wireless Power Transfer

SESSION CHAIRS
Kerim Colak, HEVO Power Inc.
Mehdi Farasat, Louisiana State University

T16.1 Lyapunov Function-Based Stabilizing Control Scheme for Wireless Power Transfer Systems with LCC Compensation Network
Abu Shahir Md. Khalid Hasan, Indra Bhogaraju, Mehdi Farasat, Michael Malisoff
Louisiana State University, United States

T16.2 Maximizing Efficiency while Maintaining Voltage Regulation of Wireless Power Transfer Systems using a Buck-Boost Converter
Arpan Laha, Praveen Jain
Queen's University, Canada

T16.3 An Approach for High Data Rate Communications within Capacitive Power Transfer System
Weiyang Zhou, Mengqi Wang, Guanliang Liu
University of Michigan, United States

T16.4 Coupling Coefficient and Load Estimation for Wireless Power Transfer Systems with Transmitter Side Input Current
Kang Yue, Yu Liu, Peng Zhao, Minfan Fu, Haoyu Wang, Junrui Liang
ShanghaiTech University, China

T16.5 High-Frequency, Mid-Range Wireless Power Transfer System using Critical Coupling Coefficient Adjustment
Minki Kim, Jungwon Choi
University of Minnesota Twin Cities, United States

T17: Gate Drive Circuits

TRACK: Control

SESSION CHAIRS
Fei Yang, Texas Instruments
Emanuel Serban, The University of British Columbia

T17.1 Thermal Stress Reduction of Power MOSFET in Electric Drive Application with Dynamic Gate Driving Strategy
Lie Wang, Bas Vermulst, Jorge Duarte, Henk Huisman
Eindhoven University of Technology, The Netherlands

T17.2 Monolithic Integration of a 5-MHz GaN Half-Bridge in a 200-V GaN-on-SOI Process: Programmable dv/dt Control and Floating High-Voltage Level-Shifter
Wan Lin Jiang¹, Samantha Kadée Murray¹, Mohammad Shawkat Zaman¹, Herbert De Vleeschouwer², Jaume Roig², Peter Moens², Olivier Trescases¹
¹University of Toronto, Canada; ²ON Semiconductor, Belgium

T17.3 Simplified Gate Driving Strategy for GaN-Based Multi-Level Buck Converters Operating at MHz Switching Frequencies
Srikanth Yerra, Harish S. Krishnamoorthy, Gnana S. Kulothungan
University of Houston, United States

T17.4 Optimal Gate Driving Strategy for Si/SiC Hybrid Switch-Based 3L-ANPC Inverter with Improved Output Capacity
Haichen Liu, Tiefu Zhao
University of North Carolina at Charlotte, United States
T18: AC-DC-AC Applications and Matrix Converters
TRACK: Power Electronics Applications

SESSION CHAIR
Gerry Moschopoulos, University of Western Ontario

T18.1 Matrix ZVS Resonant Inverter for Domestic Induction Heating Applications Featuring a Front-End PFC Stage
Mario Pérez-Tarragona, Héctor Sarnago, Óscar Lucía, José M. Burdío
Universidad de Zaragoza, Spain

T18.2 Power Factor Correction using Asymmetrical Modulation for Flexible Induction Heating Appliances
Pablo Guillén, Héctor Sarnago, Óscar Lucía, José Miguel Burdío
Universidad de Zaragoza, Spain

T18.3 A Novel Three-Phase Oak Ridge AC / AC Converter for Wireless Mobility Energy Storage System (WMESS) Connectivity
Erdem Asa, Omer C. Onar, Veda P. Galigekere, Gui-Jia Su, Burak Ozpineci
Oak Ridge National Laboratory, United States

T18.4 Direct Torque Control of 3×5 Matrix Converter Fed Five-Phase IM Drive using Virtual Vector Concept
Utkal Ranjan Muduli, Bheemaiah Chikondra, Ranjan Kumar Behera
Indian Institute of Technology Patna, India

T19: Control of DC-DC Converters II
TRACK: Control

SESSION CHAIR
Jaber Abu Qahouq, The University of Alabama

T19.1 Synchronized Hiccup Mode Overcurrent Protection Scheme for Decentralized Multiphase Current Mode DC-DC Converters
Yingyi Yan, Qian Li, Eric Gu
Analog Devices, Inc., United States

T19.2 Stabilizing DPWM Current Mode Cascaded DC-DC Converters in DC Nano-Grid without Clock Sharing
Rabisankar Roy, Santanu Kapat
Indian Institute of Technology Kharagpur, India

T19.3 A Family of LLC Converters with Magnetic Control
Yuqi Wei, Alan Mantooth
University of Arkansas, United States

T20: Grid-Converter Efficiency Improvement
TRACK: Power Electronics for Utility Interface

SESSION CHAIRS
Ali Khajehoddin, University of Alberta
Yenan Chen, Princeton University

T20.1 Parallel Inverter System Efficiency Improvement using Alternative Adaptive Droop Control
Nima Amouzegar Ashtiani, Ali Sheykhi, S. Ali Khajehoddin
University of Alberta, Canada
T20.2 Circulating Reactive Power and Suppression Strategies in DC Power Electronics Networks ... 796
M A Awal, Hao Tu, Bei Xu, Srdjan Lukic, Iqbal Husain
North Carolina State University, United States

T20.3 A Half Bridge Type with Series Devices Modular Multilevel Converters ... 804
Yifu Liu, Yunpeng Si, Mengzhi Wang, Zhengda Zhang, Chunhui Liu, Qin Lei
Arizona State University, United States

T20.4 Reduced Parasitics Leading to a 99.2 % Efficient Single-Phase Nine-Level Inverter at a Switching Frequency of 800 kHz ... 809
Raphael Hartwig¹, Alexander Hensler¹, Thomas Ellinger², Carina Primas³
¹Siemens AG, Germany; ²Technische Universität Ilmenau, Germany

T21: Transportation: Electric Vehicle Drives
TRACK Transportation Power Electronics
SESSION CHAIRS
Krishna Raj Potti, IIT Delhi
Anindya Ray, Sandia Labs

T21.1 Predictive Control based Battery Power Sharing for Four-Wheel Drive Electric Vehicle 817
Utkal Ranjan Muduli¹, Khaled Al Jaafari², Ranjan Kumar Behera¹, Abdul R. Beig², Jamal Y. Alsawalhi²
¹Indian Institute of Technology Patna, India; ²Khalifa University, U.A.E.

T21.2 A Modified Current Source Inverter Fed Drive for Electric Vehicle Applications 822
Wesam Taha, Mehdi Narimani
McMaster University, Canada

T21.3 Ultrafast Sub-mΩ Battery Switching Module using SiC JFETs for Hybrid Electric Aircraft Propulsion Applications ... 829
Ahmad Kamal, Risha Na, Yuanfeng Zhou, Z. John Shen
Illinois Institute of Technology, United States

T21.4 DC Link Capacitor Sizing for 240°-Clamped Space Vector PWM for EV Traction Inverters .. 835
Haleema Qamar, Hafsa Qamar, Deliang Wu, Rajapandian Ayyanar
Arizona State University, United States

T22: Transportation: Modelling and Diagnostics in Electric Vehicles
TRACK Transportation Power Electronics
SESSION CHAIRS
Harish Krishnamoorthy, University of Houston
Rukmi Dutta, University of New South Wales

T22.1 Detection and Diagnosis of Long-Term Cyber-Attacks for Predictive Energy Management System in HEVs ... 842
Lulu Guo, Bowen Yang, Jin Ye
University of Georgia, United States

T22.2 Physics-Based Attack Detection for Traction Motor Drives in Electric Vehicles using Random Forest .. 849
Bowen Yang, Lulu Guo, Jin Ye
University of Georgia, United States

T22.3 Dynamic Efficiency Modeling of a Marine DC Hybrid Power System .. 855
Pramod Ghimire¹,², Mehdi Zadeh¹, Eilif Pedersen¹, Jarle Thorstensen²
¹Norwegian University of Science and Technology, Norway; ²Kongsberg Digital AS, Norway
T23: High Frequency Magnetics

SESSION CHAIRS
Christina DiMarino, Virginia Polytechnic Institute and State University
Cong Li, GE Research

T23.1 Multiphysics-Based Design Optimization of Medium Frequency Transformer with Experimental Validation ... 863
Temitayo O. Olowu, Hassan Jafari, Arif Sarwat
Florida International University, United States

T23.2 Ultra-Low Profile Hybrid Switched Capacitor Converter with Matrix Multi-Tapped Autostransformer .. 869
Roberto Rizzolatti¹, Christian Rainer¹, Stefano Saggini², Mario Ursino²
¹Infineon Technologies AG, Austria; ²University of Udine, Italy

T23.3 Design and Implementation of a Stepped Air-Gap Inductor for Buck Converters 875
Yu-Chen Liu¹, Meng-Chi Tsai¹, Ying-Jian Chen², Katherine A. Kim², Chen Chen³, Nguyen Anh Dung⁴
¹National Yilan University, Taiwan; ²National Taiwan University, Taiwan; ³National Taiwan University of Science and Technology, Taiwan; ⁴Virginia Polytechnic Institute and State University, United States

T23.4 Design, Implementation, and Evaluation of High-Efficiency High-Power Radio-Frequency Inductors .. 881
Roderick S. Bayliss III¹, Rachel S. Yang², Alex J. Hanson³, Charles R. Sullivan⁴, David J. Perreault²
¹University of California Berkeley, United States; ²Massachusetts Institute of Technology, United States; ³The University of Texas at Austin, United States; ⁴Thayer School of Engineering at Dartmouth, United States

T24: Control I

SESSION CHAIRS
Seungdeog Choi, Mississippi State University
Mostak Mohammad, Oak Ridge National Laboratory

T24.1 Online Controller Tuning in Current Mode Adaptive Off-Time Digital Control: A Large-Signal Approach ... 889
K. Hariharan, Santanu Kapat
Indian Institute of Technology Kharagpur, India

T24.2 Optimization Strategy of WBG Fractional Power Processing .. 896
Aritra Kundu, Risha Na, Asim Amir, Z. John Shen
Illinois Institute of Technology, United States

T24.3 Hybrid Power Balancing Method of Modular Power Converters to Achieve Enhanced Efficiency and Dynamic Performance 902
Mina Kim¹, Hwa-Pyeong Park², Jee-Hoon Jung¹
¹Ulsan National Institute of Science and Technology, Korea; ²Korea Institute of Energy Research, Korea

T24.4 A Fault-Tolerant Approach for Hybrid Modular Multilevel Converter using Negative Voltage Levels ... 907
Saleh Farzamkia¹, Arash Khoshkbar-Sadigh¹, Vahid Dargahi²
¹Pennsylvania State University, United States; ²University of Washington, United States

T24.5 Energy-Based Circulating Current Control of a Single-Phase Hybrid Modular Multilevel Converter ... 913
Hongmei Wang, Fa Chen, Liyan Qu, Wei Qiao
University of Nebraska-Lincoln, United States
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>T24.7</td>
<td>A Precise Sub-Milliohm DCR Current Sensing Scheme for Area-Efficient Multiphase Peak Current Mode Controller</td>
<td>Yingyi Yan, Eric Gu</td>
<td>Analog Devices, Inc., United States</td>
</tr>
<tr>
<td>T24.8</td>
<td>Lossless Current Sensing Method for Hybrid Switched Capacitor Converter</td>
<td>Christian Rainer¹, Roberto Rizzolatti¹, Stefano Saggini², Mario Ursino²</td>
<td>¹Infineon Technologies AG, Austria; ²University of Udine, Italy</td>
</tr>
<tr>
<td>T25.1</td>
<td>Composite Hybrid Energy Storage System Utilizing Capacitive Coupling for Hybrid and Electric Vehicles</td>
<td>Marium Rasheed¹, Hongjie Wang¹, Regan Zane¹, Dragan Maksimovic², Khurram Afridi³, Gregory L. Plett⁴, M. Scott Trimble⁴</td>
<td>¹Utah State University, United States; ²University of Colorado Boulder, United States; ³Cornell University, United States; ⁴University of Colorado Colorado Springs, United States</td>
</tr>
<tr>
<td>T25.2</td>
<td>Active Power and SOC Balancing Techniques for Resilient Battery Energy Storage Systems Under Asymmetric Grid Voltage Scenarios</td>
<td>Jean M.L. Fonseca¹, Siddavatam Ravi Prakash Reddy¹, Kaushik Rajashekara¹, Krishna Raj²</td>
<td>¹University of Houston, United States; ²Indian Institute of Technology Delhi, India</td>
</tr>
<tr>
<td>T25.3</td>
<td>Energy Storage System (ESS) for Compensating Unbalanced Multi-Microgrids using Modified Reverse Droop Control</td>
<td>Mehmet Emin Akdogan, Sara Ahmed</td>
<td>The University of Texas at San Antonio, United States</td>
</tr>
<tr>
<td>T25.4</td>
<td>Li-Ion Battery Health Estimation using Ultrasonic Guided Wave Data and an Extended Kalman Filter</td>
<td>Anthony Bombik, Sung Yeon Sara Ha, Mohammad Faisal Haider, Amir Nasrollahi, Fu-Kuo Chang</td>
<td>Stanford University, United States</td>
</tr>
<tr>
<td>T25.5</td>
<td>Enhancing the Cell Impedance Estimation of a Lithium-Ion Battery System with Embedded Power Path Switches</td>
<td>Bernhard Liebhart¹,², Simon Diehl¹, Dominik Schneider¹,², Christian Endisch¹,², Ralph Kenne³</td>
<td>¹Technische Hochschule Ingolstadt, Germany; ²Technische Universität München, Germany</td>
</tr>
<tr>
<td>T25.6</td>
<td>Integrated On-Line EIS Measurement Scheme Utilizing Flying Capacitor Equalizer for Series Battery String</td>
<td>Phuong-Ha La, Sung-Jin Choi</td>
<td>University of Ulsan, Korea</td>
</tr>
<tr>
<td>T25.7</td>
<td>Maximizing Energy Extraction from Direct Grid Coupled Permanent Magnet Synchronous Generators</td>
<td>Ali Bakbak¹, Hüseyin Tayyer Canseven², Mert Altinta³, Murat Ayaz³, Erkan Meşe¹</td>
<td>¹Ege University, Turkey; ²Kutahya Dumlupinar University, Turkey; ³Kocaeli University, Turkey</td>
</tr>
</tbody>
</table>
T25.8 A Series DC Arc Fault Detection Algorithm based on PV Operating Characteristics and Detailed Extraction of Pink Noise Behavior ... 989
Jonathan C. Kim¹, Brad Lehman¹, Roy Ball²
¹Northeastern University, United States; ²MERSEN USA Newburyport-MA, LLC, United States

T25.9 Distributed Charging Control of Electric Vehicles in PV-Based Charging Stations 995
Jiaming Shen, Laili Wang, Jialei Zhang
Xian Jiaotong University, China

T26: Control II
TRACK Control
SESSION CHAIR
Emanuel Serban, The University of British Columbia

T26.1 Digital Multiphase PWM Integrated Module Generated from a Single Synchronization Source ... 1001
Tom Urkin, Mor Mordechai Peretz
Ben-Gurion University of the Negev, Israel

T26.2 An Arbitrary Waveform Generator based on an Eight-Level Flying-Capacitor Multilevel Converter ... 1008
Chandan Suthar¹, V. Inder Kumar¹, Faleh Alskran², Dragan Maksimović¹
¹University of Colorado Boulder, United States; ²Advanced Energy Industries, Inc., United States

T26.3 State-Space based Current-Sensorless Finite Control Set - Modulated Model Predictive Control for a 5L-Flying Capacitor Multilevel Converter ... 1015
Waqar A. Khan¹, Armin Ebrahimian¹, Mostafa Abarzadeh², Md. Rakib-Ur Rahman¹, Nathan Weise¹
¹Marquette University, United States; ²SmartD Technologies, Canada

T26.4 Beyond Stability and Performance Limits in Digital Current Mode Control using Event-Based Sampling ... 1024
Santanu Kapat
Indian Institute of Technology Kharagpur, India

T26.5 Fixed and Variable Frequency Digital Current Mode Control: Structural Stability and Performance Limits ... 1030
Santanu Kapat
Indian Institute of Technology Kharagpur, India

T26.6 Direct Control of Capacitors Voltage using Backstepping Technique for Bidirectional Compact Multilevel Converters ... 1036
Mohammad Babaie, Kamal Al-Haddad
École de Technologie Supérieure, Université du Québec, Canada

T26.7 Real-Time Selective Harmonic Minimization using Hybrid Analog/Digital Computing 1041
Jason Poon¹, Mohit Sinha², Sairaj V. Dhople³, Juan Rivas-Davila¹
¹Stanford University, United States; ²Enphase Energy, United States; ³University of Minnesota Twin Cities, United States

T26.8 A Reconfigurable, Modular and Scalable Impedance Measurement Unit with SiC MOSFET-Based Power Electronics Building Blocks ... 1047
Sizhan Zhou¹, Bo Wen¹, Yu Rong¹, Vladimir Mitrovic¹, Rolando Burgos¹, Jake Verhulst², Mohamed Belkhayat², Dushan Boroyevich¹
¹Virginia Polytechnic Institute and State University, United States; ²Newport News Shipbuilding, United States
T27: Motor Drives and Control

TRACK Motor Drives and Inverters

SESSION CHAIRS
Rakibul Islam, Nexteer Automotive
Ziaur Rahman, DOE

T27.1 An Overmodulation Method for Torque Balance in In-Wheel Motor Systems with a Dual-PMSM Coupled to a Single Shaft
Bumun Jung1, Pooreum Jang2, Kwanghee Nam2
1Samsung Electronics, Korea; 2Pohang University of Science and Technology, Korea

T27.2 Modeling and Design of a 6-Phase Ultra-High-Speed Machine for ELF/VLF Wireless Communication Transmitter
Md Khurshedul Islam, Seungdeog Choi
Mississippi State University, United States

T27.3 An Improved PWM Method for Minimum Common-Mode Circulating Current Operation of Six Phase Three Level Inverter
Partha Pratim Das, Subhransu Satpathy, Subhashish Bhattacharya
North Carolina State University, United States

T27.4 Design of a Robust Optimal Controller for Five-Phase Permanent Magnet Assisted Synchronous Reluctance Motor in Electric Vehicle Application
Md Khurshedul Islam, Masoud Karimi-Ghartemani, Seungdeog Choi
Mississippi State University, United States

T27.5 Phase Current Reconstruction Algorithm for Four-Phase Switched Reluctance Motor under Direct Torque Control Strategy
Deepak Ronanki1, Krishna Reddy Pittam2, Apparao Dekka3, Parthiban Perumal2, Abdul R. Beig4
1Indian Institute of Technology Roorkee, India; 2National Institute of Technology Karnataka, India; 3Lake head University, Canada; 4Khalifa University, U.A.E.

T27.6 Six-Phase Three-Level Neutral Point Clamped Inverter for Capacitor Voltage Balancing and Common-Mode Voltage Cancellation
Shukai Wang, Mostafa Fereydoonian, Woongkul Lee
Michigan State University, United States

T27.7 An Accurate and Simple Electrical Measurement Method to Characterize SiC Module Loss with Synchronous Rectification
Yu Du, Eddy Aeloiza, Yuxiang Shi
ABB US Corporate Research, United States

T27.8 Performance Comparison and Demonstration of 3-L Voltage Source Inverters using 3.3 kV SiC MOSFETs for 2.3 kV High Speed Induction Motor Drive Applications
Ashish Kumar, Subhashish Bhattacharya, Jayant Baliga, Victor Veliadis
North Carolina State University, United States

T28: Components and Methods for Fault Protection

TRACK Power Electronics for Utility Interface

SESSION CHAIRS
Andy Lemmon, University of Alabama
Bilal Akin, University of Texas at Dallas

T28.1 An Open-Circuit Fault Detection and Location Strategy for MMC with Feature Extraction and Random Forest
Wenshuo Xing1, Rui Xie2, Heya Yang1, Xiaofei Chang1, Jing Sheng1, Xin Xiang1, Wuhua Li1, Xiangning He1
1Zhejiang University, China; 2Power China Huadong Engineering Corporation, China
T28.2 Developing Soft Switching in Solid-State Circuit Breakers ... 1117
Reza Kheirollahi, Zhonghao Dongye, Hua Zhang, Shuyan Zhao, Fei Lu
Drexel University, United States

T28.3 Design and Development of a Hybrid DC Circuit Breaker for 380V DC Distribution System .. 1122
Md Rifat Kaisar Rachi, Iqbal Husain
North Carolina State University, United States

T28.4 Design and Operation of Bi-Directional Hybrid Circuit Breaker based on Transient Commutation Current Injection ... 1128
Nikolay Shatalov, Yuanfeng Zhou, Risha Na, Z. John Shen
Illinois Institute of Technology, United States

T28.5 Design and Hardware Implementation of the Peak Current Mode Switching Cycle Control for Voltage Balancing of Modular Multilevel Converters .. 1134
Sizhan Zhou, Bo Wen, Jun Wang, Rolando Burgos, Dushan Boroyevich
Virginia Polytechnic Institute and State University, United States

T28.6 Selective Coordination of GaN-Based Solid State Circuit Breakers .. 1140
Asim Amir Solangi, Yuanfeng Zhou, Masoud Mohammadi, Risha Na, Z. John Shen
Illinois Institute of Technology, United States

T28.7 T-Type Modular DC Circuit Breaker (T-Breaker) for Future DC Networks ... 1146
Yue Zhang, Faisal Alsaiif, Xiao Li, Risha Na, Jin Wang
The Ohio State University, United States

T28.8 Design of 500 kHz, 18 kW Low Leakage Inductance Intraleaved Litz Wire Transformer for Bi-Directional Resonant DC-DC Converter .. 1153
Minh Ngo, Yuliang Cao, Dong Dong, Rolando Burgos
Virginia Polytechnic Institute and State University, United States

T28.9 Design and Testing of a Medium Frequency Transformer .. 1162
Xufu Ren, Jinghang Li, Haoyuan Weng, Ruizhe Wang, Dehong Xu
Zhejiang University, China

T29: Transportation: Applied Power Electronics in Electric Vehicles

T29.1 PWM Controlled Series Resonant Converter for CHAdeMo / CCS Combo Electric Vehicle Charger ... 1171
Jong-Woo Kim, Peter Barbosa
Delta Electronics Americas Ltd., United States

T29.2 Design of Partial-Discharge-Free Busbar for More-Electric Aircraft Application with Low Pressure Condition ... 1178
Zhao Yuan1, Yalin Wang1, Zhongjing Wang1, Asif Imran Emon2, Hongwu Peng1, Mustafeez Hassan2, Balaji Narayanasamy1, Fang Luo1
1University of Arkansas, United States; 2Stony Brook University, United States

T29.3 A 25kW Silicon Carbide 3kV/540V Series-Resonant Converter for Electric Aircraft Systems 1183
Xinyuan Du, Fei Diao, Zhe Zhao, Yue Zhao
University of Arkansas, United States
T29.4 Parallel Inverters using a DC Common Mode PWM Filter with an AC Differential Mode PWM Filter
Marius Takongmo, Chenchui Zhang, John Salmon
University of Alberta, Canada

T29.5 A Novel Bi-Directional AC/DC - DC/AC Wireless Power Transfer System for Grid Support Applications
Erdem Asa, Omer C. Onar, Veda P. Galigekere, Gui-Jia Su, Burak Ozpineci
Oak Ridge National Laboratory, United States

T29.6 An Interleaved 6-Level GaN Bidirectional Converter with an Active Energy Buffer for Level II Electric Vehicle Charging
Derek Chou¹, Zitao Liao², Kelly Fernandez¹, Tarek Gebrael², George Popovic², Raya Mahony¹, Nenad Miljkovic², Robert C.N. Pilawa-Podgurski¹
¹University of California Berkeley, United States; ²University of Illinois at Urbana-Champaign, United States

T29.7 An Enhanced Controller for Four Leg Inverter-Fed Loads in an Aircraft Power System
Goutham Selvaraj¹, Kaushik Rajashekara¹, Krishna Raj Ramachandran Potti²
¹University of Houston, United States; ²Indian Institute of Technology Delhi, United States

T29.8 A New Y-IGCT-Based DC Circuit Breaker for NASA N3-X Spacecraft
Siavash Beheshtaein, Robert Cuzner
University of Wisconsin Milwaukee, United States

T30: SiC Devices
TRACK Devices and Components
SESSION CHAIRS
Sudip Mazumder, University of Illinois at Chicago
Zheyu Zhang, Clemson University

T30.1 Performance Evaluation of 10 kV SiC Current Switch based PWM Current Source Inverter for 4.16 kV Motor Drive Applications
Ashish Kumar, Subhashish Bhattacharya, Jayant Baliga, Victor Veliadis
North Carolina State University, United States

T30.2 Noise Immunity of Desat Protection Circuitry for High Voltage SiC MOSFETs with High dv/dt
Xingxuan Huang¹, Shiqi Ji¹, Cheng Nie¹, Dingrui Li¹, Min Lin¹, Leon M. Tolbert¹, Fred Wang¹,², William Giewont¹
¹The University of Tennessee Knoxville, United States; ²Oak Ridge National Laboratory, United States

T30.3 Online Monitoring of Degradation Sensitive Electrical Parameters in Inverter Operation for SiC-MOSFETs
Kevin Muñoz Barón, Kanuj Sharma, Maximilian Nitzsche, Ingmar Kalffass
University of Stuttgart, Germany

T30.4 High-Bandwidth Shielded Rogowski Coil Current Sensor for SiC MOSFET Power Module
Wen Zhang¹, Fred Wang¹,², Bernhard Holzinger³
¹The University of Tennessee Knoxville, United States; ²Oak Ridge National Laboratory, United States; ³Keysight Technologies, Germany

T30.5 Active Channel Impact on SiC MOSFET Gate Oxide Reliability
Shi Pu, Bilal Akin, Fei Yang
¹The University of Texas at Dallas, United States; ¹Texas Instruments, Inc., United States
T30.6 Active dv/dt Control with Turn-Off Gate Resistance Modulation for Voltage Balancing of Series Connected SiC MOSFETs .. 1256
Inhwan Lee, Xiu Yao
University at Buffalo, United States

T30.7 3300-V SiC MOSFET Short-Circuit Reliability and Protection .. 1262
Diang Xing, Xintong Lyu, Jiawei Liu, Chen Xie, Anant Agarwal, Jin Wang
The Ohio State University, United States

T30.8 Switching Characteristics of a 1.2 kV, 50 mΩ SiC Monolithic Bidirectional Field Effect Transistor (BIDFET) with Integrated JBS Diodes .. 1267
Ajit Kanale, Tzu-Hsuan Cheng, Suyash Sushilkumar Shah, Kijeong Han, Aditi Agarwal, B. Jayant Baliga, Douglas Hopkins, Subhashish Bhattacharya
North Carolina State University, United States

T30.9 Comparison of BaSIC(DMM) and BaSIC(EMM) Topologies to Enhance Short-Circuit Capability in SiC Power MOSFETs .. 1275
Ajit Kanale, B. Jayant Baliga
North Carolina State University, United States

T31: Hybrid DC-DC Converters
TRACK DC-DC Converters
SESSION CHAIRS
Wenkang Huang, Infineon
Olivier Trescases, University of Toronto

T31.1 A Resonant Dual Extended LC-Tank Dickson Converter with 50% Two-Phase Operation at Odd Conversion Ratios .. 1282
Nathan Miles Ellis, Rajeevan Amirtharajah
University of California Davis, United States

T31.2 High Density Hybrid Switched Capacitor Converter for Data-Center Application 1288
Roberto Rizzolatti¹, Christian Rainer¹, Stefano Saggini², Mario Ursino²
¹Infineon Technologies AG, Austria; ²University of Udine, Italy

T31.3 A Comparative Study of Hybrid DC-DC Converters by Indirect Power 1294
Cheng Li, Diego Serrano, José Cobos
Universidad Politécnica de Madrid, Spain

T31.4 Always-Dual-Path Hybrid DC-DC Converter Achieving High Efficiency at Around 2:1 Step-Down Ratio .. 1302
Katsuhiro Hata¹, Yang Jiang¹,², Man-Kay Law², Makoto Takamiya¹
¹The University of Tokyo, Japan; ²University of Macau, Macau

T31.5 A 93.7% Efficient 400A 48V-1V Merged-Two-Stage Hybrid Switched-Capacitor Converter with 24V Virtual Intermediate Bus and Coupled Inductors 1308
Yenan Chen¹, Hsin Cheng¹, David M. Giuliani², Minjie Chen¹
¹Princeton University, United States; ²pSemi, United States

T31.6 Two-Staged Multi-Resonant Multi-Phased Converter for 48V Data Center Applications 1316
Jason Ku², Adel Lahham², Mohamed Badawy², Anthony Chan¹
¹Facebook Inc., United States; ²San José State University, United States

T31.7 3D LEGO-PoL: A 93.3% Efficient 48V-1.5V 450A Merged-Two-Stage Hybrid Switched-Capacitor Converter with 3D Vertical Coupled Inductors 1321
Jaeil Baek, Youssef Elasser, Minjie Chen
Princeton University, United States
T31.8 A High Performance 48-to-6 V Multi-Resonant Cascaded Series-Parallel (CaSP) Switched-Capacitor Converter
Rose A. Abramson, Zichao Ye, Ting Ge, Robert C.N. Pilawa-Podgurski
University of California Berkeley, United States

T31.9 A 48-to-12 V Cascaded Resonant Switched-Capacitor Converter Achieving 4068 W/in3 Power Density and 99.0% Peak Efficiency
Ting Ge, Zichao Ye, Rose A. Abramson, Robert C.N. Pilawa-Podgurski
University of California Berkeley, United States

T32: Miscellaneous Power Electronics Applications
TRACK Power Electronics Applications
SESSION CHAIR
Bilal Akin, University of Texas at Dallas

T32.1 Comparative Analysis of Data Driven Fault Detection using Wavelet and Fourier Transform for DC Pulsed Power Load in the All-Electric Ship
Yue Ma¹, Atif Maqsood², Damian Oslebo³, Keith Corzine¹
¹University of California Santa Cruz, United States; ²Dynapower Company, LLC., United States; ³Naval Sea Systems Command, United States

T32.2 High Current Pulsed Power Supply for Multi-Stage Induction-Based Acceleration System
Bar Halivni, Michael Evzelman, Alon Kuperman, Mor Mordechai Peretz
Ben-Gurion University of the Negev, Israel

T32.3 Analysis of a Soft Switched, Low Power and High Gain Capacitor Charger
Ilya Zeltser
Rafael Advanced Defense Systems Ltd., Israel

T32.4 A Single Gate Driver-Based Four-Stage High-Voltage SiC Switch having Dynamic Voltage Balancing Capability
A N M Wasekul Azad, Sourov Roy, Faisal Khan
University of Missouri-Kansas City, United States

T32.5 A High-Power-Density High-Efficiency Single-Phase Universal-Input to 28V Isolated AC-DC Converter Designed to Meet MIL-STD EMI Specifications
Danish Shahzad¹, Saad Pervaiz², Khurram K. Afridi¹
¹Cornell University, United States; ²University of Colorado Boulder, United States

T32.6 Self-Oscillating Buck Converter LED Driver with Indirect Inductor Current Reconstruction
David Bamgboje, William Harmon, Tingshu Hu
University of Massachusetts Lowell, United States

T32.7 Medium Voltage Shore-to-Ship Connection System Enabled by Series Connected 3.3 kV SiC MOSFETs
Raj Kumar Kokkonda, Ashish Kumar, Anup Anurag, Nithin Kolli, Sanket Parashar, Subhashish Bhattacharya
North Carolina State University, United States

T32.8 Multiple-Output Generator for Omnidirectional Electroporation and Real-Time Process Monitoring
Borja López-Alonso, Héctor Sarnago, Óscar Lucía, José M. Burdio
Universidad de Zaragoza, Spain
T32.9 A Self-Sensing Synchronous Electric Charge Extraction (SECE) Solution for Piezoelectric Energy Harvesting Enhancement .. 1393
Linglong Gao, Li Teng, Junrui Liang, Haoyu Wang, Yu Liu, Minfan Fu
ShanghaiTech University, China

T32.10 Implementation of a P&O MPPT Algorithm in Low-Milliwatt-Scale Energy Harvesting Wireless Sensor Nodes .. 1398
Kawsar Ali, Daniel J. Rogers
University of Oxford, United Kingdom

T33: Power Electronics for Renewable Energy Systems
TRACK Renewable Energy Systems
SESSION CHAIRS
Niraja Swaminathan, Oregon State University
Zhanghai Shi, Southwest Jiangtong University

T33.1 High Gain Non-Isolated Current-Fed Half-Bridge Partial Series Resonance Pulsed based Zero Current Switching Voltage Quadrupler .. 1404
Koyelia Khatun¹, Akshay Kumar Rathore², Ayan Mallik³
¹Kansas State University, United States; ²Concordia University, Canada; ³Arizona State University, United States

T33.2 A Fully ZVS Dual-Active-Bridge based Three-Port Converter with High Integration 1410
Liang Wang, Haoyu Wang, Yu Liu, Junrui Liang, Minfan Fu
ShanghaiTech University, China

T33.3 A High Step-Up Z-Source DC-DC Converter for Integration of Photovoltaic Panels into DC Microgrid .. 1416
Ramin Rahimi, Saeed Habibi, Pourya Shamsi, Mehdi Ferdowsi
Missouri University of Science and Technology, United States

T33.4 Asymmetrically Modulated Three Port Bidirectional Current Fed-Push-Pull Converter for a DC Nanogrid ... 1421
Aniruddha Mukherjee, Ramtin Rasoulinezhad, Gerry Moschopoulos
Western University, Canada

T33.5 A Common-Mode Balancing Accelerator for Single-Phase T-Type Converter with LCL Filter .. 1426
Wenlong Ding¹, Jiuyu Sun¹, Lei Ming², Changqing Yin², Manxin Chen², Poh Chiang Loh²
¹The Applied Science and Technology Research Institute, Hong Kong; ²The Chinese University of Hong Kong, Hong Kong

T33.6 Multisampling Control of Two-Cell Interleaved Three-Phase Grid-Connected Converters ... 1432
Shan He, Dao Zhou, Xiongfei Wang, Frede Blaabjerg
Aalborg University, Denmark

T33.7 A New Fully Soft-Switched, Single-Stage LLC Resonant based Grid Connected Inverter ... 1438
Parham Mohammadi, John Lam
York University, Canada

T33.8 Paralleling Operation of 10 kV SiC MOSFET-Based Modular Multi-Level Converters (MMCs) for Scalable Asynchronous Microgrid Power Conditioning System 1444
Dingrui Li¹, Xingxuan Huang¹, Cheng Nie¹, Jihao Niu¹, Ruirui Chen¹, Min Lin¹, Shiqi Ji¹, Fred Wang¹,², Leon M. Tolbert¹, William Giewont¹
¹The University of Tennessee Knoxville, United States; ²Oak Ridge National Laboratory, United States
T33.9 Loss Unbalance Issue of the Full-Bridge Inverter with Reactive Power Injection 1451
Zhongting Tang1, Yongheng Yang2, Frede Blaabjerg1
1Aalborg University, Denmark; 2Zhejiang University, China

T34: Power Converter Component Packaging and Reliability
TRACK Power Electronics Integration and Manufacturing
SESSION CHAIRS
Yenan Chen, Princeton University
Harish Krishnamoorthy, University of Houston

T34.1 Analysis of Alternative Baseplate-to-Heatsink Grounding Schemes in 10 kV SiC
MOSFET Modules with Series-Connected Devices ... 1456
Lakshmi Ravi, Xiang Lin, Yue Xu, Dong Dong, Rolando Burgos
Virginia Polytechnic Institute and State University, United States

T34.2 Optimization of Electric-Field Grading Plates in a PCB-Integrated Bus Bar for a High-
Density 10 kV SiC MOSFET Power Module .. 1464
Mark Cairnie, Christina DiMarino
Virginia Polytechnic Institute and State University, United States

T34.3 Novel Circuit for Miniaturizing Bulk Capacitors and Reducing In-Rush Current in High
Power Density AC-DC Converters .. 1472
Munadir Aziz Ahmed, Mike Matthews
Power Integrations, United States

T34.4 Safety Considerations for Evaluating Medium-Voltage Power Electronics 1476
Christopher D. New, Andrew N. Lemmon, Brian T. DeBoi, Blake W. Nelson, Jared C. Helton
The University of Alabama, United States

T34.5 Robustness Assessment of the EMI Filter in a Three-Level Inverter 1484
Zhan Shen, Mengxing Chen, Huai Wang, Xiongfei Wang, Frede Blaabjerg
Aalborg University, Denmark

T34.6 Partial Discharge Testing Platform for High Voltage Power Module Packaging Under
Square Wave Excitation ... 1491
Yalin Wang1, Zhao Yuan2, Hongwu Peng3, Yi Ding1, Yi Yin1, Fang Luo4
1Shanghai Jiao Tong University, China; 2University of Arkansas, United States; 3University of
Connecticut, United States; 4Stony Brook University, United States

T34.7 Computational Fluid Dynamic Analysis and Design of an Air Duct Cooling System for
18 kW, 500 kHz Planar Transformers .. 1496
Minh Ngo, Yuliang Cao, Khanh Nguyen, Dong Dong, Rolando Burgos
Virginia Polytechnic Institute and State University, United States

T34.8 Understanding the Impact of Wide Bandgap Inverter Topology on Medium-Voltage
Insulation Reflected-Wave Stress using Impedance Characterization 1505
Arshiah Yusuf Mirza, Weiqiang Chen, Ali M. Bazzi
University of Connecticut, United States

T34.9 Cooling Design of Integrated Motor Drives using Analytical Thermal Model, Finite
Element Analysis, and Computational Fluid Dynamics .. 1509
Renato A. Torres1, Hang Dai1, Thomas M. Jahns1, Bülent Sarlioglu1, Woongkul Lee2
1University of Wisconsin Madison, United States; 2Michigan State University, United States
T35: Components Characterization and Design

TRACK Modeling and Simulation
SESSION CHAIRS
Wenkang Huang, Infineon
Christina DiMarino, Virginia Polytechnic Institute and State University

T35.1 PowerSynth-Guided Reliability Optimization of Multi-Chip Power Module

Imam Al Razi, David R. Huitink, Yarui Peng
University of Arkansas, United States

T35.2 Comprehensive Characterization of MOSFET Intrinsic Capacitances

Sergio Jimenez, Andrew Lemmon, Blake Nelson, Brian DeBoi
The University of Alabama, United States

T35.3 Analysis and Mitigation of Self-Sustained Turn-Off Oscillations in SiC JFET Supercascode Circuits

Muhammad Foyazur Rahman¹, Tiancan Pang¹, Sean Sapper¹, Ehab Shoubaki¹, Sergio Jimenez², Andrew Lemmon², Madhav Manjrekar³
¹University of North Carolina at Charlotte, United States; ²The University of Alabama, United States

T35.4 Low Inductance PCB Layout for GaN Devices: Interleaving Scheme

Jan Hammer, Ignacio Galiano Zurbriggen, Mohammad Ali Saket, Martin Ordonez
The University of British Columbia, Canada

T35.5 A High Accuracy Characterization Method of Busbar Parasitic Capacitance for Three-Level Converters based on Vector Network Analyzer

Zhao Yuan¹, Balaji Narayanasamy¹, Zhongjing Wang¹, Yalin Wang¹, Asif Imran Emon², Mustafeez Hassan², Fang Luo²
¹University of Arkansas, United States; ²Stony Brook University, United States

T35.6 A Method of Partial Inductances to Evaluate and Optimize Switching Cells

Logan Horowitz, Nathan Pallo, Samantha Coday, Robert C.N. Pilawa-Podgurski
University of California Berkeley, United States

T35.7 Fixtures Design Considerations for Impedance Measurement

Zhongjing Wang, Zhao Yuan, Zhuxuan Ma, Fei Diao, Yue Zhao
University of Arkansas, United States

T36: Design and Analytical Methodologies of Wireless Power Transfer Systems

TRACK Wireless Power Transfer
SESSION CHAIRS
Lincoln Xue, Oak Ridge National Laboratory
Mohammad Ibrahim, Northrop Grumman

T36.1 Hybrid Planar Litz Coil Optimization for Phone Wireless Power Transfer

Mario Ursino², Stefano Saggini², Liyu Yang¹, Ruben Specogna², Liang Jia¹, Federico Iob², Li Wang¹, Qi Tian¹, Srikanth Lakshmikant¹
¹Google LLC, United States; ²University of Udine, Italy

T36.2 Design of a Resonant Reactive Shielding Coil for Wireless Power Transfer System

Jingjing Sun, Ruiyang Qin, Jie Li, Daniel J. Costinett, Leon M. Tolbert
The University of Tennessee Knoxville, United States

T36.3 High-Resolution Design Optimization for IPT Including Stray Field and Coupling Coefficient

Shuntaro Inoue, Reebal Nimri, Abhilash Kamineni, Regan Zane
Utah State University, United States
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
<th>Authors, Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T36.4</td>
<td>High Efficiency Medium Voltage to Low Voltage Wireless Power Transformation for Data Centers</td>
<td>1580</td>
<td>Guangqi Zhu¹, Birger Pahl¹, Isaac Wong², Suvendu Samanta², Subhashish Bhattacharya²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>¹Eaton, United States; ²North Carolina State University, United States</td>
</tr>
<tr>
<td>T36.5</td>
<td>Analysis of Magnetic Field Emissions and Shield Requirements for Interoperating High-Power EV Wireless Charging System</td>
<td>1586</td>
<td>Mostak Mohammad, Omer C. Onar, Jason L. Pries, Veda P. Galigekere, Gui-Jia Su, Jonathan Wilkins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oak Ridge National Laboratory, United States</td>
</tr>
<tr>
<td>T36.6</td>
<td>ZVS Tank Optimization for Class-D Amplifiers in High Frequency WPT Applications</td>
<td>1593</td>
<td>Lixin Shi, J.C. Rodriguez, Miguel Jiménez Carrizosa, Pedro Alou</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Universidad Politécnica de Madrid, Spain</td>
</tr>
<tr>
<td>T36.7</td>
<td>Minimizing the Rebar Impact on Power Dissipation in Dynamic Wireless Power Transfer Systems</td>
<td>1599</td>
<td>Reza Tavakoli¹, Ujjwal Pratik², Ercan Dede³, Chungchih Chou⁴, Zeljko Pantic²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>¹Duke University, United States; ²North Carolina State University, United States; ³Toyota Research Institute of North America, United States; ⁴Toyota Motor Corporation, Japan</td>
</tr>
<tr>
<td>T36.8</td>
<td>Comparison of Large Air-Gap Inductive and Capacitive Wireless Power Transfer Systems</td>
<td>1604</td>
<td>Sreyam Sinha, Sounak Maji, Khurram K. Afridi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cornell University, United States</td>
</tr>
<tr>
<td>T36.9</td>
<td>Efficiency Optimization of Double-Sided LCC Topology for Inductive Power Transfer Systems</td>
<td>1610</td>
<td>Van-Thuan Nguyen¹, Van-Binh Vu², Ghanshyamsinh Gohil³, Babak Fahimi¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>¹The University of Texas at Dallas, United States; ²Newcastle University, United Kingdom; ³Hitachi ABB Power Grids, United States</td>
</tr>
<tr>
<td>T36.10</td>
<td>Low-EMF Wireless Power Transfer Systems of Four-Winding Coils with Injected Reactance-Compensation Current as Active Shielding</td>
<td>1618</td>
<td>Keita Furukawa, Kéisuke Kusaka, Jun-Ichi Itoh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nagaoka University of Technology, Japan</td>
</tr>
</tbody>
</table>

T37: SST and Inverter Topologies

TRACK Power Electronics for Utility Interface

SESSION CHAIRS

Yunwei Li, University of Alberta

Jonathan Kimball, Missouri University of Science and Technology

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
<th>Authors, Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T37.1</td>
<td>A Hybrid Active Neutral-Point-Clamped Converter for Medium-Voltage High-Power Applications using Si and SiC Devices</td>
<td>1626</td>
<td>Satish Belkhode, Anshuman Shukla, Suryanarayana Doolal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indian Institute of Technology Bombay, India</td>
</tr>
<tr>
<td>T37.2</td>
<td>An Integrated LLCL Filter with Accelerated Balancing and Harmonic Attenuation for Single-Phase Converter</td>
<td>1632</td>
<td>Wenlong Ding¹, Lei Ming², Changqing Yin², Poh Chiang Loh², Jiuyu Sun¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>¹The Applied Science and Technology Research Institute, Hong Kong; ²The Chinese University of Hong Kong, Hong Kong</td>
</tr>
<tr>
<td>T37.3</td>
<td>Design and Analysis of a High-Frequency CLLC Resonant Converter with Medium Voltage Insulation for Solid-State-Transformer</td>
<td>1638</td>
<td>Chunyang Zhao, Yi-Hsun Hsieh, Fred C. Lee, Qiang Li</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Virginia Polytechnic Institute and State University, United States</td>
</tr>
</tbody>
</table>
T37.4 Quad-Port AC-DC-DC-AC Operation of Isolated Dual Three-Phase Active Bridge Converter .. 1643
M.J. Heller, F. Krismer, J.W. Kolar
ETH Zürich, Switzerland

T37.5 CLLLC Dual Active Bridge with Novel Insulation Approach for SST Applications 1651
Dorai Babu Yelaverthi, Bryce Hesterman, Mahmoud Mansour, Regan Zane
Utah State University, United States

T37.6 Analytical Expression for DC Link Capacitor Current in a Cascaded H-Bridge Multi-Level Active Front-End Converter ... 1659
Muhammad Shehroz Malik, Jonathan W. Kimball
Missouri University of Science and Technology, United States

T37.7 A Novel Synchronous H6 for Improving Light Load Efficiency of Bidirectional Inverters in a DC Distribution System ... 1666
Meshari Alshammari, Maeve Duffy
National University of Ireland Galway, Ireland

T37.8 Suppression of Device Voltage Stress from Ground Leakage Current for Soft-Switching Solid-State Transformer ... 1674
Liran Zheng, Rajendra Prasad Kandula, Deepak Divan
Georgia Institute of Technology, United States

T37.9 A Hybrid Modular DC-DC Converter Topology for Hybrid Interlink in HVDC 1681
Saurav Dey, Tanmoy Bhattacharya
Indian Institute of Technology Kharagpur, India

T38: Magnetic Analysis and Simulation

SECTIONS
Track Magnetics

SESSION CHAIRS
George Slama, Würth Elektronik
Jaeil Baek, Princeton University

T38.1 Bar-Wound Machine Voltage Stress: A Method for 2D FE Modeling and Testing 1688
Brennan Kelly, Julia Zhang, Luke Chen
The Ohio State University, United States

T38.2 Modeling and Design of a Medium Frequency Transformer with High Isolation and High Power-Density ... 1694
Rui Lu¹, Jianxiong Yu², Dingyi Feng¹, Kaiyang Bu¹, Zhaohua Yang¹, Chushan Li¹, Wuhua Li²
¹Zhejiang University/University of Illinois at Urbana-Champaign Institute, China; ²Zhejiang University, China

T38.3 Modeling Current Distribution within Conductors and between Parallel Conductors in High Frequency Transformers ... 1701
Michael Solomentsev, Alex J. Hanson
The University of Texas at Austin, United States

T38.4 Design and Optimization of the High Frequency Transformer for 100kW CLLC Converter ... 1709
Zhe Zhao, Yuheng Wu, Xinyuan Du, Yue Zhao
University of Arkansas, United States

T38.5 Modeling and Design of Vertical Multiphase Coupled Inductors with Inductance Dual Model ... 1717
Youssef Ellasser¹, Jaeil Baek¹, Charles R. Sullivan², Minjie Chen¹
¹Princeton University, United States; ²Dartmouth College, United States
T38.6 3-D Physical Model for On-Chip Power Inductor Design with Evaluation of Airgap Variation Effect ... 1725
Zhiyong Xia, Jaber A. Abu Qahouq, Sushma Kotru
The University of Alabama, United States

T38.7 Magnetic Component Design for Split Duty Cycle Coupled Multi-Phase Boost-Buck Converter .. 1730
Ahmed K. Khamis, Mohammed Agamy
State University of New York at Albany, United States

T38.8 Investigate and Improve the Distorted Waveforms for Core Loss Measurement with Arbitrary Excitations .. 1736
Zhedong Ma¹, Juntao Yao¹, Yanwen Lai², Shuo Wang¹, Honggang Sheng², Srikanth Lakshmikanthan²
¹University of Florida, United States; ²Google LLC, United States

T38.9 Tiny Wafer Level Chip Scale Packaged Inductive Components for High Frequency Isolated/Non-Isolated DC-DC Converters ... 1743
Dragan Dinulovic, Mahmoud Shousha, Martin Haug
Würth Elektronik eiSos GmbH & Co. KG, Germany

T39: DC-DC Converter Applications
TRACK DC-DC Converters
SESSION CHAIRS
Sombuddha Chakraborty, Texas Instruments
Olivier Trescases, University of Toronto

T39.1 Improved Clamp-Switch Boost Converter with Extended ZVS Range .. 1747
Burkhard Ulrich
DHBW Stuttgart, Germany

T39.2 Gate Driver Concept for Parallel Operation of Low-Voltage High-Current GaN Power Transistors for Mild-Hybrid Applications .. 1755
Dominik Koch, Julian Weimer, Mathias Weiser, Jan Hueckelheim, Ingmar Kalffass
University of Stuttgart, Germany

T39.3 Design and Analysis of a Regenerative Snubber for a 2.2 kW Active-Clamp Forward Converter with Low-Voltage Output ... 1761
Bastian Korthauer, Philipp Rehlaender, Frank Schafmeister, Joachim Böcker
Paderborn University, Germany

T39.4 A High Efficiency High Density DC/DC Converter for Battery Charger Applications .. 1767
Feng Jin, Ahmed Nabih, Chen Chen, Xingyu Chen, Qiang Li, Fred C. Lee
Virginia Polytechnic Institute and State University, United States

T39.5 A MHz High Voltage Gain PV Micro-Converter Featuring Extended ZVS Operation and Continuous Input Current with Coupled Magnetics .. 1775
Samira Ahmadiankalati, Kajanan Kanathipan, John Lam
York University, Canada

T39.6 Partial Soft-Switching Operation of Parallel Buck-Type Semi-Bridge Switching Cells with Coupled Inductors .. 1781
Yunlei Jiang, Yanfeng Shen, Xinru Li, Teng Long
University of Cambridge, United Kingdom

T39.7 Alternating Asymmetrical Phase-Shift Modulation for Full-Bridge Converters with Balanced Switching Losses to Reduce Thermal Imbalances 1787
Philipp Rehlaender, Roland Unruh, Frank Schafmeister, Joachim Böcker
Paderborn University, Germany
T39.8 Quadratic Extended-Duty-Ratio Boost Converter for Ultra High Gain Application with Low Device Stress 1796
Ankul Gupta, Nikhil Korada, Raja Ayyanar
Arizona State University, United States

T39.9 A Scalable Voltage-Balancing-Circuit based Non-Isolated High-Step-Down-Ratio Auxiliary Power Supply ... 1803
Keyao Sun, Xiang Lin, Jun Wang, Rolando Burgos, Dushan Boroyevich
Virginia Polytechnic Institute and State University, United States

T39.10 Comparison between Quasi-Resonant and Active Clamp Flyback Topologies for GaN-Based 65W Wall Charger Application ... 1809
Saikat Dey, Mani Bhushan Ray, Harshit Soni, Rajesh Ghosh, Manish Shah
Tagore Technology, India

D01: AC-DC Converters II
TRACK AC-DC Converters
SESSION CHAIR
Jungwon Choi, University of Minnesota

D01.1 Mission Profile based Reliability Analysis of a Bridgeless Boost PFC .. 1815
Zhengge Chen1,2, Pooya Davari1, Huai Wang1
1Aalborg University, Denmark; 2Southwest Jiaotong University, China

D01.2 Hybrid Voltage Balancing Control in 3-Level Bridgeless Totem-Pole PFC 1822
Rytis Beinarys, Trong Tue Vu
ICERGi Ltd., Ireland

D01.3 Two-Switch Zeta-Based Single-Phase Rectifier with Inherent Power Decoupling and No Extra Buffer Circuit .. 1830
Robson de Souza Donato, Marius Hudson de Aguiar, Roniel Ferreira Cruz, Montiê Alves Vitorino, Mauricio Beltrão de Rossiter Corrêa
Federal University of Campina Grande, Brazil

D01.4 Adaptive Tuning Method for ZVS Control in GaN-Based MHz CRM Totem-Pole PFC Rectifier ... 1837
Hongkeng Zhu, Kangping Wang, Bingyang Li, Xu Yang, Qiaoliang Chen
X'ian Jiaotong University, China

D01.5 Design and Implementation of a 5kW 99.2% Efficient High-Density GaN-Based Totem Pole Interleaved Bridgeless Bidirectional PFC ... 1843
Adithyan Vetivelan2, Zibo Chen2, Qingyun Huang2, Eric Persson1, Alex Q. Huang2
1Infineon Technologies, United States; 2The University of Texas at Austin, United States

D01.6 An Approach to Localize Circulating Current for Three Phase Interleaved AC-DC Converters .. 1848
Ripunjoy Phukan1, Sungjae Ohn2, Dong Dong1, Rolando Burgos1
1Virginia Polytechnic Institute and State University, United States; 2Tesla, United States

D02: DC-DC Converters
TRACK DC-DC Converters
SESSION CHAIR
Juan Manuel Rivas-Davila, Stanford University

D02.1 Low Cost Diode-Blocked Self-Oscillating Boost Converter .. 1854
David Bamgboje, William Harmon, Tingshu Hu
University of Massachusetts Lowell, United States
D02.2 Implementation and Stability of Charge Control for Full-Bridge LLC Converter 1859
Yuri Panov
Delta Electronics Americas Ltd., United States

D02.4 High Gain Interleaved Stacked Boost Converter ... 1867
Sukhjit Singh Ghumman, Peter W. Lehn, Mehanathan Pathmanathan
University of Toronto, Canada

D02.5 Re-Analysis on ZVS Condition for LLC Converter ... 1874
Haibin Song, Daofei Xu, Alpha J. Zhang
Delta Electronics Shanghai Co. Ltd., China

D02.6 Comparative Evaluation of Asymmetric and Symmetric Series-Capacitor Extended-Gain DC/DC Converters .. 1881
Tomas Sadilek¹, Peter Barbosa¹, Iqbal Hussain²
¹*Delta Electronics Americas Ltd., United States;* ²*North Carolina State University, United States*

D02.7 Performance Evaluation and Analysis for Resonant Switched Capacitor Converter 1889
Mengxuan Wei¹, Ze Ni², Shuai Yang¹, Maohang Qiu¹, Xiaoyan Liu¹, Dong Cao¹
¹*University of Dayton, United States;* ²*Monolithic Power System Inc., United States*

D02.8 A Transformer Flux Balancing Scheme based on Magnetizing Current Harmonic in Dual-Active-Bridge Converters .. 1894
Zihan Gao¹, Pengfei Yao², Haiguo Li¹, Shiqi Ji¹, Zhe Yang¹, Fred Wang¹,³, Yiwei Ma¹
¹*The University of Tennessee Knoxville, United States;* ²*China Huaneng Group Co., Ltd., China;* ³*Oak Ridge National Laboratory, United States*

D02.9 Optimization and Design of a 48-to-12 V, 35 A Split-Phase Dickson Switched-Capacitor Converter .. 1900
Richard Sun, Samuel Webb, Yan-Fei Liu, Paresh C. Sen
Queen’s University at Kingston, Canada

D02.10 The Analysis on Hard-Switching Phenomenon during Start-Up of LLC Converter 1908
Lei Wang, Yang Lei
Dell EMC, United States

D02.11 Applying Mode Exchange to High Step-Down Converter to Obtain Wide Input Voltage Range ... 1913
Y.T. Yau¹, C.W. Wang²,³, K.I. Hwu³
¹*National Chin-Yi University of Technology, Taiwan;* ²*Industrial Technology Research Institute, Taiwan;* ³*National Taipei University of Technology, Taiwan*

D02.12 A Soft-Switching Non-Inverting Buck-Boost Converter ... 1920
Anran Wei¹, Brad Lehman¹, William Bowhers², Mahshid Amirabadi¹
¹*Northeastern University, United States;* ²*Teradyne Inc., United States*

D02.13 Soft Start-Up of Three Phase CLLC Converter based on State Trajectory Control 1927
Ahmed Nabih, Feng Jin, Qiang Li, Fred C. Lee
Virginia Polytechnic Institute and State University, United States

D02.14 Switching Pattern Analysis of Coupled Multi-Phase Boost-Buck Converters 1933
Ahmed K. Khamis, Mohammed Agamy
State University of New York at Albany, United States

D02.15 Design Principles and Optimization Considerations of a High Frequency Transformer in GaN based 1 MHz 2.8 kW LLC Resonant Converter with Over 99% Efficiency 1939
Hao Wen, Yong Liu, Dong Jiao, Chih-Shen Yeh, Jih-Sheng Lai
Virginia Polytechnic Institute and State University, United States
D02.16 Improved LLC Resonant Converter with Rectifier Operating in Three Operation Modes for Wide Voltage Range Applications
Fahad Alaql, Abdullah Alhatlani, Issa Batarseh
University of Central Florida, United States

D02.17 Multi-Variable Hybrid Switching Frequency- Duty Cycle based Phase-Shift Control for DC-DC Resonant Converters
Abhishek Awasthi, Majid Pahlevani, Praveen Jain
Queen's University, Canada

D02.18 Modeling and Analysis of 2/3-Level Dual-Active-Bridge DC-DC Converters with the Five-Level Control Scheme
Chaochao Song¹, Yongheng Yang², Ariya Sangwongwanich¹, Yiwei Pan¹, Frede Blaabjerg¹
¹Aalborg University, Denmark; ²Zhejiang University, China

D02.19 A Current-Fed High Gain Multilevel DC-DC Converter for BESS Grid Integration Applications
Vinay Rathore¹, Kaushik Rajashekara¹, Anindya Ray², Luciano A. Garcia Rodriguez², Jacob Mueller³
¹University of Houston, United States; ²Sandia National Laboratories, United States

D02.20 Simplified Frequency-Domain Analysis of Improved Asymmetrical PWM Technique for DC-DC Resonant Converters
Abhishek Awasthi, Praveen Jain
Queen's University, Canada

D02.22 Variable DC-Link Voltage LLC Resonant DC/DC Converter using Wide Band Gap Semiconductor Devices
Shuang Zhao¹, Asantha Kempitiya¹, Wibawa Chou¹, Veljko Palija²
¹Infineon Technologies Americas Corp., United States; ²Infineon Technologies AG, Germany

D02.23 Series Resonant DC-DC Converter with an AC-Switch-Based Full-Bridge Boost Rectifier
Abualkasim Bakeer, Andrii Chub, Dmitri Vinnikov
Tallinn University of Technology, Estonia

D02.24 Switching Battery Charger with Cascaded Two Loop Control using Time-Based Techniques
Chai Yong Lim¹, Debashis Mandal², Bertan Bakkaloglu¹, Sayfe Kiaei¹
¹Arizona State University, United States; ²Indian Institute of Technology Kharagpur, India

D02.25 MMC-Based High Gain Solid-State Transformers for Energy Storage Applications
Diang Xing¹, Xiao Li¹, Yue Zhang¹, Qianyi Cheng¹, Zhining Zhang¹, Boxue Hu¹, Anant Agarwal¹, Jin Wang¹, Robert Guenter²
¹The Ohio State University, United States; ²GPEM LLC, United States

D02.26 A Novel 4-to-1 Switched-Capacitor Converter
Kin Keung Lau¹, Jaesoon Choi², Seokmum Choi², Inkuk Baek²
¹Silicon Mitus Technology, Inc., United States; ²Silicon Mitus, Inc., Korea

D02.27 A High Conversion Ratio Quasi-Resonant Flying Capacitor DC-DC Converter
Basil G. Eleftheriades, Aleksander Prodić
University of Toronto, Canada

D02.28 A 32-Phase 1200-Ampere DC/DC Converter for Data Center and Artificial Intelligence Systems
Wenkang Huang, Denny Clavette, Steve Zhou, Mark Rodrigues
Infineon Technologies, United States
D03: Utility Interface

SESSION CHAIRS
Alireza Bakhshai, Queen’s University
Praveen Jain, Queen’s University

D03.1 Dynamic Performance Improvement of Model-Based Capacitor Voltage Control for Single-Phase STATCOM with Reduced Capacitance ... 2024
Motoki Akihiro, Tomoyuki Mannen, Takanori Isobe
University of Tsukuba, Japan

D03.3 Circulating Current Suppression for Multi-Function Parallel Three-Level Four-Leg Converters ... 2030
Chenghui Zhang, Rui Zhang, Xiangyang Xing, Xiaoyan Li
Shandong University, China

D03.4 The Impact of the Lightning Surge on SiC-Based Medium-Voltage Three-Phase Four-Wire Grid-Connected Converters .. 2037
Haiguo Li¹, Yiwei Ma¹, Shiqi Ji¹, Fred Wang¹,²
¹The University of Tennessee Knoxville, United States; ²Oak Ridge National Laboratory, United States

D03.5 An Inrush Current Limit Method for SiC-Based Multi-Level Grid-Connected Converter during Low-Voltage Ride-Through .. 2044
Haiguo Li¹, Zihan Gao¹, Shiqi Ji¹, Yiwei Ma¹, Fred Wang¹,²
¹The University of Tennessee Knoxville, United States; ²Oak Ridge National Laboratory, United States

D03.6 Construction and Testing of a 13.8 kV, 750 kVA 3-Phase Current Compensator using Modular Switching Positions ... 2050
Vinson Jones¹, Roberto Fantino¹, Ahmed Rahouma¹, Juan Carlos Balda¹, Rambabu Adapa²
¹University of Arkansas, United States; ²Electric Power Research Institute, United States

D03.7 Performance Evaluation of Si/SiC Hybrid Switch-Based Three-Level Active NPC Converter .. 2058
Haichen Liu, Tiefu Zhao
University of North Carolina at Charlotte, United States

D03.8 A High-Frequency Planar Transformer with Medium-Voltage Isolation .. 2065
Satyaki Mukherjee¹, Branko Majmunović¹, Gab-Su Seo², Soham Dutta², Rahul Mallik², Brian Johnson², Dragan Maksimović¹
¹University of Colorado Boulder, United States; ²University of Washington, United States; ³National Renewable Energy Laboratory, United States

D03.10 Investigating the Effect of Grid Load Data on Optimal DG Placement and Capacity Determination .. 2071
Saeid Khademi¹, Roohalamin Zeinali Davarani¹, Roohollah Fadaeinedjad¹, Gerry Moschopoulos²
¹Graduate University of Advanced Technology, Iran; ²Western University, Canada

D03.12 Evaluation of Carrier-Based Control Strategies for Balancing the Thermal Stress of a Hybrid SiC ANPC Converter ... 2077
Mateja Novak¹, Victor Ferreira², Frede Blaabjerg¹, Marco Liserre²
¹Aalborg University, Denmark; ²Kiel University, Germany

D03.13 Optimization of PV Array-to-Inverter Power Ratio in Grid-Connected Systems to Maximize System Profit ... 2084
Ebrahim Mohammadi, Gerry Moschopoulos
Western University, Canada
D03.14 Deep Deterministic Gradient Policy (DDGP) Reinforcement Learning Assisted Degradation-Aware Control of Solid-State Transformer ... 2090
Moinul Shahidul Haque, Seungdeog Choi
Mississippi State University, United States

D03.15 Effect of Inverter-Interfaced Distributed Generation on Negative Sequence Directional Element using Typhoon Real-Time Hardware in the Loop (HIL) ... 2097
Oluwatimilehin Adeosun, Muhammad Foyazur Rahman, Ehab Shoubaki, Valentina Cecchi, Madhav Manjrekar
University of North Carolina at Charlotte, United States

D03.16 Standard Modular Architecture for Consumer End Plug and Play Interfaces 2105
Madhu Chinthavali, Radha Sree Krishna Moorthy, Aswad Adib
Oak Ridge National Laboratory, United States

D03.17 Model Predictive Control of an Arm Inductor-Less MMC-Based DC SST 2113
Sandro Martin, Hui Li
Florida State University, United States

D03.18 Medium Voltage Converter Inductor Insulation Design Considering Grid Insulation Requirements ... 2120
Haiguo Li1, Pengfei Yao1, Zihan Gao1, Fred Wang1,2
1The University of Tennessee Knoxville, United States; 2Oak Ridge National Laboratory, United States

D03.19 Integration of Active Filter to the Grid at Reduced DC Voltage with Suppressed Leakage Current and Minimal Switches ... 2127
Guddy Satpathy, Dipankar De
Indian Institute of Technology Bhubaneswar, India

D04: Design and Control of Motor Drives and Inverters
TRACK Motor Drives and Inverters
SESSION CHAIRS
Ziaur Rahman, DOE
Lee Woongkul, Michigan State University

D04.1 Model Predictive Control of a Four-Level T-NNPC Inverter without Weighting Factors 2133
Zhituo Ni1, Mehdi Narimani1, Jose Rodriguez2
1McMaster University, Canada; 2Universidad Andres Bello, Chile

D04.2 Design of Switching Current Sensor for Three-Phase SiC Inverter 2139
Sang Min Kim1, Rolando Burgos2, Taesuk Kwon1, Jinhyu Seo1
1Hyundai Mobis, Korea; 2Virginia Polytechnic Institute and State University, United States

D04.3 Two-Phase Commutation Control Method of Open-End Winding PMSM with Reduced Loss for Low Torque Operation ... 2147
Gyu Cheol Lim1, Gwangyol Noh1, Jonghun Choi1, Jae-Hoon Shim1, Hyeon-Gyu Choi2, Jung-Ik Ha1
1Seoul National University, Korea; 2LG Electronics, Korea

D04.4 A Novel MMC Topology for Decoupling Capacitance Minimization with an Integrated Three-Port Coupling Transformer ... 2154
Xicai Pan, Shangzhi Pan, Jinwu Gong, Xiaoming Zha
Wuhan University, China

D04.5 A Novel Decoupling Control of Dual Three Phase Drive with Two Independent Microprocessors Utilizing Current Observer ... 2159
Shen Wang, Kentaro Kitamura, Shinji Doki, Takashi Suzuki
Nagoya University, Japan
D04.6 A Novel Auxiliary Resonant Commutated Pole Soft-Switching Inverter

Wenkang Gong, Shangzhi Pan, Wenqiang Lin, Jinwu Gong, Yuan Shang
Wuhan University, China

D04.7 A Three-Phase 450 kVA SiC-MOSFET based Inverter with High Efficiency and High Power Density by using 3L-TNPC

Zhao Yuan¹, Asif Imran Emon², Zhongjing Wang¹, Hongwu Peng¹, Balaji Narayanasamy¹, Mustafeez Hassan³, Yalin Wang¹, Amol Deshpande¹, Fang Luo²
¹University of Arkansas, United States; ²Stony Brook University, United States

D04.9 Comparative Evaluation of Overload Capability and Rated Power Efficiency of 200V Si/GaN 7-Level FC 3-Φ Variable Speed Drive Inverter Systems

Gwendolin Rohner¹, Spasoje Mirić¹, Dominik Bortis¹, Johann W. Kolar¹, Mario Schweizer²
¹ETH Zürich, Switzerland; ²ABB Inc., Switzerland

D04.10 Switching Motion Control of Piezoelectric Actuators in Hybrid Circuit Breakers for MVDC System Protection

Chunmeng Xu, Zhiyang Jin, Lukas Graber
Georgia Institute of Technology, United States

D04.12 Decoupling Control Method of Asymmetric Dual Three-Phase PMSM with Mutual Coupling Inductance

Gyu Cheol Lim¹, Jonghun Choi¹, Gwangyol Noh¹, Yongsu Han³, Jung-Ik Ha¹
¹Seoul National University, Korea; ²Myongji University, Korea

D05: Devices I: SiC

TRACK Devices and Components

SESSION CHAIRS
Christina DiMarino, Virginia Polytechnic Institute and State University
Laili Wang, Xi’an Jiaotong University

D05.1 Four Control Freedoms AGD for Hybrid SiC MOSFET and Si IGBT Application

Yuqi Wei, Dereje Woldegiorgis, Rosten Sweeting, Alan Mantooth
University of Arkansas, United States

D05.2 Characterization of 4.5 kV Charge-Balanced SiC MOSFETs

Jack Knoll¹, Mina Shawky¹, Sheng-Hung Yen¹, Ibrahim Esheira¹, Christina DiMarino¹, Reza Ghandi², Stacey Kennerly³, Cyril Buttay⁴
¹Virginia Polytechnic Institute and State University, United States; ²GE Global Research, United States; ³University Claude-Bernard Lyon 1, INSA-Lyon, CNRS, France

D05.3 Comparative Investigation of Body Diode Reliability of 1,2-kV SiC Power Switches for the Temperature Measurement

Jianzhi Fu, Wалиd Mansour, Giorgio Kapino, Thomas Ebel, Wulf-Toke Franke
University of Southern Denmark, Denmark
D05.4 A 13.8 kV, 100 kVA Multi-Functional MMC-Based Asynchronous Microgrid Power Conditioning System with 10 kV SiC MOSFETs

Cheng Nie1, Xingxuan Huang1, Dingrui Li1, Shiqi Ji1, Min Lin1, Ruirui Chen1, Fred Wang1,2, Leon M. Tolbert1, William Giewont1

1The University of Tennessee Knoxville, United States; 2Oak Ridge National Laboratory, United States

D05.5 Evaluation of SiC MOSFETs for Solid State Circuit Breakers in DC Distribution Applications

Lakshmi Ravi1, Dong Dong1, Rolando Burgos1, Xiaoping Song2, Pietro Cairoli2

1Virginia Polytechnic Institute and State University, United States; 2ABB Inc., United States

D05.6 Radiated Electromagnetic Interference Modeling for Three Phase Motor Drive Systems with SiC Power Modules

Boyi Zhang, Shuo Wang

University of Florida, United States

D05.9 A New Cascaded SuperCascode High Voltage Power Switch

Utkarsh Mehrotra, Douglas C. Hopkins

North Carolina State University, United States

D06: Devices II: GaN and Passive

TRACK Devices and Components

SESSION CHAIRS
Gab-Su Seo, National Renewable Energy Laboratory
Cong Li, GE Research

D06.1 Investigation of Noise Spectrum and Radiated EMI in High Switching Frequency Flyback Converters

Juntao Yao, Yanwen Lai, Zhedong Ma, Shuo Wang

University of Florida, United States

D06.2 Power Electronics-Based Switched Supercapacitor Bank Circuits with Enhanced Power Delivery Capability for Pulsed Power Applications

Deepak Ronanki1, Yashwanth Dasari2, Sheldon S. Williamson2

1Indian Institute of Technology Roorkee, India; 2University of Ontario Institute of Technology, Canada

D06.3 Design of Three-Level Flying-Capacitor Commutation Cells with Four Paralleled 650 V/60 A GaN HEMTs

Hans H. Sathler1, Tianyu Zhao2, François Costa3,4, Bernardo Cougo1, Gilles Segond1, Rolando Burgos5, Denis Labrousse5

1IRT Saint Exupery, France; 2Virginia Polytechnic Institute and State University, United States; 3Université Paris Est Créteil, France; 4Université Paris-Saclay, France; 5Le CNAM, France

D06.4 A Capacitive Isolated LLC Converter

Y.T. Yau1,2, Hung-Tsung Liang2, K.I. Hwu3

1National Chin-Yi University of Technology, Taiwan; 2Asian Power Device Inc., Taiwan; 3National Taipei University of Technology, Taiwan

D06.5 Investigating GaN Power Device Double-Pulse Testing Efficacy in the Face of VTH-Shift, Dynamic Rdson, and Temperature Variations

Mohammad H. Hedayati, Harry C.P. Dymond, Rajib Goswami, Bernard H. Stark

University of Bristol, United Kingdom
D06.6 Supercapacitor Assisted Surge Absorber (SCASA) Technique: Selection of Magnetic Components based on Permeance
Silva Thotabaddurage Sadeeshvara Udayanga, Savin Kokuhennadige, Jayathu Fernando, Nihal Kularatna, D. Alistair Steyn-Ross
University of Waikato, New Zealand

D07: Power Component Design, Packaging and EMI Considerations
TRACK Power Electronics Integration and Manufacturing
SESSION CHAIR Rashmi Prasad, General motors

D07.1 Advances in Modeling and Reduction of Conducted and Radiated EMI in Non-Isoated Power Converters
Juntao Yao, Yanwen Lai, Zhedong Ma, Shuo Wang
University of Florida, United States

D07.2 Design and Optimization of 650V/60A Double-Sided Cooled Multichip GaN Module
Asif Imran Emon1, Hayden Carlton2, John Harris2, Alexis Krone2, Abdul Mirza1, Mustafeez Hassan1, Zhao Yuan3, David Huitink2, Fang Luo1
1Stony Brook University, United States; 2University of Arkansas, United States

D07.3 Design and Application Considerations of Packaging of DC-DC Converter Micromodules
Mahmoud Shousha, Dragan Dinulovic, Michael Brooks, Michael Hofer, Martin Haug
Würth Elektronik eiSos GmbH & Co. KG, Germany

D07.4 Condition Monitoring of DC-Link Capacitors using Hidden Markov Model Supported-Convolutional Neural Network
Tyler McGrew, Viktoriya Sysoeva, Chi-Hao Cheng, Mark Scott
Miami University, United States

D07.5 Effect of Mechanical Stress Induced by PCB-Embedding Fabrication on Ferrite Magnetics
Jiewen Hu, Bo Wen, Rolando Burgos
Virginia Polytechnic Institute and State University, United States

D07.6 EMI Evaluation of a SiC MOSFET Module with Organic DBC Substrate
Narayanan Rajagopal1, Christina DiMarino1, Brian DeBoi2, Andrew Lemmon2, Aaron Brovont2
1Virginia Polytechnic Institute and State University, United States; 2The University of Alabama, United States; 3PC Krause and Associates, United States

D07.7 Packaging a Top-Cooled 650 V/150 a GaN Power Modules with Insulated Thermal Pads and Gate-Drive Circuit
Yu Yan, Liyan Zhu, Jared Walden, Ziwei Liang, Hua Bai
The University of Tennessee Knoxville, United States

D07.8 Design and Characterization of 3.3 kV-15 kV Rated DBC Power Modules for Developmental Testing of WBG Devices
Utkarsh Mehrotra1, Adam J. Morgan2, Douglas C. Hopkins1
1North Carolina State University, United States; 2State University of New York Polytechnic Institute, United States

D07.9 System-Level Common-Mode EMI Analysis for Drive Applications using Unterminated Behavioral EMI Models
Harish Pulakhandam, Subhashish Bhattacharya
North Carolina State University, United States
DCM™ 1000X – Automotive Power Module Technology Platform Optimized for SiC Traction Inverters

Fabio Carastro1, Zheng Chen2, Alexander Streibel1, Ole Muehlfeld1
1Danfoss Silicon Power, Germany; 2Danfoss Silicon Power, United States

D08: Modeling and Simulation

TRACK Modeling and Simulation

SESSION CHAIRS
Kartik Iyer, Tesla
Jason Neely, Sandia National Laboratories

D08.1 Digital Twin Models of Power Electronic Converters using Dynamic Neural Networks
Andrew Wunderlich, Enrico Santi
University of South Carolina, United States

D08.2 Scalable Power Converter Architectures with Quantized Output and Envelope Prediction for Wireless Communication
Harish S. Krishnamoorthy, Tulasi Narayanan Aayer
University of Houston, United States

D08.3 A Compact Model Adopting the EKV Model for a Silicon Vertical Power MOSFET
Lixi Yan, Hao Dong, Ingmar Kalffass
University of Stuttgart, Germany

D08.4 An Accurate Compact Model for GaN Power Switches with the Physics-Based ASM-HEMT Model
Sourabh Khandelwal1, M. Labrecque2, Y. Huang2, F. Qi2, Z. Wang2, P. Smith2, Y. Wu2, R. Lal2
1Macquarie University, Australia; 2Transphorm Inc., United States

D08.5 Reduced-Order Model for Inductive Power Transfer Systems
Guangce Zheng, Kai Zhao, Peng Zhao, Haoyu Wang, Junrui Liang, Minfan Fu
ShanghaiTech University, China

D08.6 Practical Considerations of Voltage-Source-Inverters Input Impedance Modeling for System Stability Analysis
M. Sanz1, D. Ochoa1, A. Lázaro1, A. Barrado1, D. Santamargarita2, F. Huerta2
1Universidad Carlos III de Madrid, Spain; 2University of Alcalá, Spain

D08.7 Data-Driven Model-Based Smart Control of Intelligent Gate Drive for Converter Operational Performance Improvement
Dehao Qin, Liwei Wang, Shuangshuang Jin, Zheyu Zhang
Clemson University, United States

D08.9 Comparison of Finite Element Modelling Methods for Power Magnetic Components
Boyan Dinev, Wulf-Toke Franke, Thomas Ebel
University of Southern Denmark, Denmark

D08.10 Parasitic Inductances Extraction for SiC Power Modules using an Enhanced Two-Port S-Parameter Approach
Zhongjing Wang, Zhao Yuan, Yue Zhao
University of Arkansas, United States

D08.11 Optimization Algorithms for Dynamic Tuning of Wide Bandgap Semiconductor Device Models
William Collings1, Tolen Nelson1, Andrew Sellers1, Raghav Khanna1, Alan Courtay2, Sergio Jimenez3, Andrew Lemmon3
1University of Toledo, United States; 2Synopsys, Inc., United States; 3The University of Alabama, United States
D08.12 DC-Link Capacitor Current Modeling and Analysis for Three-Level Voltage Source Inverters
Zhe Zhao, Fei Diao, Yuheng Wu, Zhongjing Wang, Yue Zhao
University of Arkansas, United States

D09: Control III

SESSION CHAIR
Jaber Abu Qahouq, The University of Alabama

D09.1 An Analytical Approach of Discrete-Time Modeling of Fixed and Variable Frequency Digital Modulation
Santanu Kapat
Indian Institute of Technology Kharagpur, India

D09.2 Event-Triggered Ripple-Emulated Digital Hysteresis Current Control Architectures in DC-DC Converters
Santanu Kapat
Indian Institute of Technology Kharagpur, India

D09.3 Low-Cost Compact Approach to Reinforced Isolated Drive for LLC Converters
Edgaras Mickus, Trong Tue Vu
ICERGi Ltd., Ireland

D09.4 Passivity-Based Fixed-Order H-Infinity Controller Design for Grid-Forming VSCs
Javier Serrano-Delgado¹, Santiago Cobreces¹, Emilio J. Bueno¹, Mario Rizo²
¹University of Alcalá, Spain; ²Siemens Gamesa, Spain

D09.5 System Performance Optimization for Dual-Loop Dual-Variable Controlled Active Clamp Flyback Converter using Decoupling Compensation Technique
Shengyou Xu¹, Qinsong Qian¹, Shiyan Mao¹, Shiyun Xu¹, Tingying Wang², Weifeng Sun¹
¹Southeast University, China; ²Lianyungang JARI Electronics Co., Ltd., China

D09.6 Advanced Control Features of Hybrid Current-Programmed Digital Controller in Multiphase VRM Applications
Bar Halivni, Tom Urkin, Mor Mordechai Peretz
Ben-Gurion University of the Negev, Israel

D09.7 A 20MHz-Transformer-Based Isolated Gate Driver for 3.3kV SiC MOSFETs
Zhehui Guo, Hui Li
Florida State University, United States

D09.8 An Enhanced Linear Extended State Observer based Sensorless Control for PMSM Drives
Lizhi Qu¹, Yao Duan¹, Liang Du²
¹Toshiba International Corporation, United States; ²Temple University, United States

D09.9 Challenges and Solutions for Non-Inverting Buck-Boost Converters
Anmol Sharma, Gerhard Thiele, Joerg Kirchner, Thomas Keller, Manuel Wiersch
Texas Instruments Deutschland GmbH, Germany

D09.10 A Digital Adaptive Voltage Positioning Technique for 48-1V ISOP-LLC Converter based on Bang-Bang Charge Control
Minglong Wang, Shangzhi Pan, Jinwu Gong, Wenqiang Lin, Xiaoming Zha
Wuhan University, China
D09.11 Characterization of the Minimum Recovery Time Transients for Three-Phase PWM Rectifiers
Franco Degioanni, Ignacio Galiano Zurbriggen, Martin Ordonez
The University of British Columbia, Canada

D09.12 A Seamless Transition Control Method for Series Voltage Injection of Transformerless Perturbation Injectors
Sizhan Zhou¹, Bo Wen¹, Rolando Burgos¹, Jake Verhulst², Mohamed Belkhayat², Dushan Boroyevich¹
¹Virginia Polytechnic Institute and State University, United States; ²Newport News Shipbuilding, United States

D10: Control IV
TRACK Control
SESSION CHAIR
Martin Ordonez, The University of British Columbia

D10.1 An Effective Sliding Mode PWM Control for the PUC5 Inverter
Khaled Rayane¹,², Atallah Benalia¹, Haitham Abu-Rub¹, Shady S. Refaat², Mohamed Trabelsi²,³
¹University of Laghouat, Algeria; ²Texas A&M University at Qatar, Qatar; ³Kuwait College of Science and Technology, Kuwait

D10.2 A Digitally Current Mode Controlled Non-Inverting Buck-Boost Converter for Fast Voltage Transitions
V Inder Kumar, Santanu Kapat
¹University of Colorado Boulder, United States; ²Indian Institute of Technology Kharagpur, India

D10.3 Enhanced Gate Driver Design for SiC-Based Generator Rectifier Unit for Airborne Applications
Jiewen Hu, Xingchen Zhao, Lakshmi Ravi, Rolando Burgos, Dong Dong
Virginia Polytechnic Institute and State University, United States

D10.4 A Gate-Driver Architecture with High Common-Mode Noise Immunity under Extremely High dv/dt
Zhongjing Wang, Zhao Yuan, Yue Zhao
University of Arkansas, United States

D10.5 Finite Control Set – Modulated Model Predictive Control for a 5L-Flying Capacitor Multilevel Converter
Armin Ebrahimian¹, Waqar A. Khan¹, Mostafa Abarzadeh², Md. Rakib-Ur Rahman¹, Nathan Weise¹
¹Marquette University, United States; ²SmartD Technologies, Canada

D10.7 Improved De-Saturation Protection Circuits for Silicon Carbide MOSFET Gate Drivers
Bokang Zhou¹, Dongwoo Han¹, Fang Z. Peng¹, Suman Dwari²
¹Florida State University, United States; ²Raytheon Technologies Research Center, United States

D10.8 Modeling and Analysis of Current Mode and V² Controls with Adaptive Voltage Positioning (AVP) Design
Xin Lou¹, Qiang Li¹, Fred C. Lee¹, Mohamed H. Ahmed²
¹Virginia Polytechnic Institute and State University, United States; ²Texas Instruments, Inc., United States
D11: Wireless Power Transfer Systems
TRACK Wireless Power Transfer

SESSION CHAIRS
Mostak Mohammad, Oak Ridge National Laboratory
Erdem Asa, Oak Ridge National Laboratory

D11.1 Design of a Self-Switching Rectifier Circuit for Microwave Power Transmission 2556
Yiwen Xiao, Ke Jin, Xirui Zhu
Nanjing University of Aeronautics and Astronautics, China

D11.2 An Improved Bidirectional Gain-Configurable AGC Circuit at Transmitter 2560
Dongqin Mao, Ke Jin, Yiwen Xiao
Nanjing University of Aeronautics and Astronautics, China

D11.4 Heat Distribution of IPT Receiver with Low-Voltage and High-Current Output 2565
Peng Zhao, Yifan Jiang, Guanrce Zheng, Kang Yue, Yu Liu, Minfan Fu
ShanghaiTech University, China

D11.5 High Efficiency, Low Power IC Step-Down Controller for Ultra-Low Power Applications .. 2571
Federico Iob, Stefano Saggini, Mario Ursino
University of Udine, Italy

D11.6 Improved Control Strategy of Grid Interface for EV High-Power Dynamic Wireless Charging ... 2574
Rong Zeng, Veda P. Galigekere, Omer C. Onar, Burak Ozpineci
Oak Ridge National Laboratory, United States

D11.7 Design of a One-to-Four Isolated DC-DC Converter using a 13.56 MHz Resonant Air-Core Transformer ... 2580
Juan M. Arteaga, Christopher H. Kwan, Ioannis Nikiforidis, Nunzio Pucci, Lingxin Lan,
David C. Yates, Paul D. Mitcheson
Imperial College London, United Kingdom

D11.8 Experimental and Usability Evaluation of Wireless Power Devices based on the AirFuel Alliance Magnetic Resonance Standard ... 2586
Benny J. Varghese1, Ky Sealy2, Sanjay Gupta3, Zeljko Pantic4
1Utah State University, United States; 2Witricity Corporation, United States; 3AirFuel Alliance, United States; 4North Carolina State University, United States

D12: Renewable Energy Systems I
TRACK Renewable Energy Systems

SESSION CHAIRS
Alejandro Garces, Universidad Tecnologica de Pereira
Junrui Liang, Shanghai Tech University

D12.1 A Generalized Design Methodology of Dual Active Bridge DC-DC Converters for DC Power Distribution .. 2593
Kenta Terada1, Shusei Nakashima1, Daisuke Nakashima1, Hiroshige Yanagl2, Yoichi Ishizuka1
1Nagasaki University, Japan; 2TDK-Lambda Co., Ltd., Japan

D12.3 Double-Vector Model Predictive Control for Lower Harmonics with Common-Mode Voltage Elimination in Five-Level ANPC Converter ... 2601
Chang Liu, Xiaoyan Li, Xiangyang Xing, Ying Jiang, Rui Zhang, Chenghui Zhang
Shandong University, China
D12.4 Power Loss Modeling and Thermal Comparison of SiC-MOSFET-Based 2-Level Inverter and 3-Level Flying Capacitor Multicell Inverter ... 2607
Ramin Rahimzadeh Khorsani¹, Saleh Farzamkia¹, Fanfu Wu¹, Arash Khoshkbar-Sadigh¹,
Michael Thomas Brady¹, Vahid Dargahi²
¹Pennsylvania State University, United States; ²University of Washington, United States

D12.5 A Single-Stage Capacitor-Bridge Boost Converter Topology for PV-Battery Series Integration in Regulated DC Microgrids ... 2613
Namwon Kim, Chondon Roy, Babak Parkhideh
University of North Carolina at Charlotte, United States

D12.6 Performance Comparison of PV Inverter Systems Considering System Voltage Ratings and Installation Sites .. 2620
Jinkui He¹, Ariya Sangwongwanich¹, Yongheng Yang², Francesco Iannuzzo¹
¹Aalborg University, Denmark; ²Zhejiang University, China

D12.7 Fault Tolerant Schemes for Multi-Channel 3L-NPC Bi-Directional PWM Power Converter Fed Asynchronous Hydro-Generating Unit ... 2626
Raghu Selvaraj, Karthik Desingu, Thanga Raj Chelliah
Indian Institute of Technology Roorkee, India

D12.8 Preventing Voltage Divergence in Series-Stacked Bidirectional Battery Energy Storage DC-DC Converter under Asymmetrical Operating Conditions 2632
Namwon Kim¹, Robert Cox¹, Madhu Sudhan Chinthavali², Aswad Adib²
¹University of North Carolina at Charlotte, United States; ²Oak Ridge National Laboratory, United States

D12.9 Parallel Operation of Standalone Inverters with Online Parameter Update ... 2639
Vikram Roy Chowdhury¹, Jonathan W. Kimball²
¹Georgia Institute of Technology, United States; ²Missouri University of Science and Technology, United States

D12.10 A SOH Estimation Method based on ICA Peaks on Temperature-Robust and Aging Mechanism Analysis under High Temperature ... 2646
Seongyun Park¹, Pyeongyeon Lee¹, Deokhan Kim¹, Sunggoen Hong¹, Woonki Na², Jonghoon Kim¹
¹Chungnam National University, Korea; ²California State University, United States

D12.11 Single-Stage Three-Phase Step-Up SEPIC Differential Grid-Tied Inverter Features an In-Depth Mathematical Analysis for Solving Practical Design Issues 2650
Ahmed Shawky¹, Mahmoud A. Sayed², Takaharu Takeshita³
¹Aswan University, Egypt; ²South Valley University, Egypt; ³Nagoya Institute of Technology, Japan

D12.12 Fault Tolerant Operation of Interleaved Converters using a Bypass Switch Arrangement ... 2657
Ripunjoy Phukan¹, Sungjae Ohn², Dong Dong¹, Rolando Burgos¹, Gopal Mondal³, Sebastian Nielebock³
¹Virginia Polytechnic Institute and State University, United States; ²Tesla, United States; ³Siemens AG, Germany

Yu Geng¹, Debashis Mandal¹, Bertan Bakkaloglu¹, Sayfe Kiaei¹
¹Arizona State University, United States; ²Indian Institute of Technology Kharagpur, India
D13.2 A Model-Free Predictive Controller for Networked Microgrids with Random Communication Delays .. 2667
Subham Sahoo, Frede Blaabjerg
Aalborg University, Denmark

D13.3 An Auto-Regressive Model for Battery Voltage Prediction 2673
Søren B. Vilsen, Daniel-Ioan Stroe
Aalborg University, Denmark

D13.4 A New Reactive Power Compensation Method for Voltage Regulation of Low Voltage Distribution Line .. 2681
Joungjin Seo, Hanju Cha
Chungnam National University, Korea

D13.5 Enabling Resilient Community Microgrids with Multiple Points of Common Coupling via a Rank-Based Model Predictive Control Framework 2686
Brevann Nun¹, Muhammad Farooq Umar², Mohammad B. Shadmand²
¹Kansas State University, United States; ²University of Illinois at Chicago, United States

D13.6 Distributed Unbalanced Voltage Suppression in Bipolar DC Microgrids with Smart Loads .. 2692
Javad Khodabakhsh, Gerry Moschopoulos
Western University, Canada

D13.7 Adaptive Control of a Three-Phase Grid-Connected Inverter with Near Deadbeat Response .. 2698
Vikram Roy Chowdhury¹, Jonathan W. Kimball²
¹Georgia Institute of Technology, United States; ²Missouri University of Science and Technology, United States

D13.8 An Enhanced Control Strategy for Harmonic Current Suppression of Grid-Connected PV System without Phase-Locked Loop under Distorted Grid Voltage Conditions 2702
Manash Kumar Mishra, V.N. Lal
Indian Institute of Technology (BHU) Varanasi, India

D13.9 Model Predictive Control for Optimal Power Management in Fuel Cell Hybrid Electric Vehicles in Real-Time .. 2708
Qian Xun¹, Xiaoliang Huang¹, Yujing Liu¹, Haotian Xie²
¹Chalmers University of Technology, Sweden; ²Technical University of Munich, Germany

D13.11 Analysis of the Cell-to-Cell Imbalance in Battery Pack based on the Over-Discharge Prognosis and Maximum Available Current Prediction for Comprehensive Management Strategy .. 2714
Jinhyeong Park¹, Jaeewon Kim¹, Myoung Lee¹, Sangwuk Kwon¹, Woonki Na², Jonghoon Kim²
¹Chungnam National University, Korea; ²California State University, United States

D13.12 Analysis and Performance Evaluation of Single-Stage Three-Phase SEPIC Differential Inverter with Continuous Input Current for PV Grid-Connected Applications 2719
Ahmed Shawky¹, Takaharu Takeshita², Mahmoud A. Sayed³
¹Aswan University, Egypt; ²Nagoya Institute of Technology, Japan; ³South Valley University, Egypt
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
</table>
| D13.13 | Optimized Virtual DC Machine Control for Voltage Inertia and Damping Support in DC Microgrid | Xiangyu Zhang1,2, Hao Li1,2, Yuan Fu1,2
1North China Electric Power University, China; 2State Key Laboratory of New Energy Power System, China | 2727 |
The University of Texas at San Antonio, United States | 2733 |
| D14: Transportation: More Electric Transportation | TRACK Transportation Power Electronics |
SESSION CHAIRS
Yingying Kuai, Caterpillar Inc.
Di Pan, GE Global Research |
| D14.2 | Advanced Super Capacitor based Converter for Power Regeneration of Electric Vehicle Applications | Mahmoud A. Sayed1,2, Tatsuyuki Ohashi1, Takaharu Takeshita3
1F.C.C. Co., Ltd., Japan; 2South Valley University, Egypt; 3Nagoya Institute of Technology, Japan | 2740 |
| D14.3 | Real-Time Cluster Analysis based Fault Detection for DC Pulsed Power Load in the All-Electric Ship | Yue Ma1, Atif Maqsood2, Damian Oslebo2, Keith Corzine1
1University of California Santa Cruz, United States; 2Dynapower Company, LLC., United States; 3Naval Sea Systems Command, United States | 2748 |
| D14.4 | LLC Converter in Capacitive Operation Utilizing ZCS for IGBTs – Theory, Concept and Verification of a 2 kW DC-DC Converter for EVs | Daniel Urbanheck, Philipp Rehlender, Joachim Böcker, Frank Schafmeister
Paderborn University, Germany | 2753 |
| D14.5 | An Artificial Intelligence based Fault Monitoring of Power Trains: Design & Implementation | L. Gong1, A. Sharma2, M. Abdul Bhuiya1, H. Awad2, M.Z. Youssef
1University of Ontario Institute of Technology, Canada; 2Helwan University, Egypt | 2761 |
| D14.6 | Design of Transformerless Electric Vehicle Charger with Symmetric AC and DC Interfaces | Liwei Zhou1, Michael Eull1, Weizhong Wang1, Gangqi Cen2, Matthias Preindl1
1Columbia University, United States; 2Longmax Corporation Ltd., China | 2769 |
| D14.7 | Analysis and Design of Light-Load Control of Bidirectional DC-DC Converter for Electric Vehicle Applications | Misha Kumar1, Yungtaek Jang1, Peter M. Barbosa1, Juan M. Ruiz1, Lu Hao2, Wei Tao2
1Delta Electronics Americas Ltd., United States; 2Delta Electronics Shanghai Co. Ltd., China | 2775 |
| D14.8 | Common-Mode-Free Bidirectional Three-Phase PFC-Rectifier for Non-Isolated EV Charger | B. Strothmann, F. Schafmeister, J. Böcker
Paderborn University, Germany | 2783 |
| D14.9 | A Generalized Scalable Configuration of Hybrid “Si+SiC” Paralleled Modular ANPC Converter | Mostafa Abarzadeh1, Nathan Weise2, Simon Caron1
1SmartD Technologies Inc., Canada; 2Marquette University, United States | 2791 |
D14.10 A 10-Level GaN-Based Flying Capacitor Multilevel Boost Converter for Radiation-Hardened Operation in Space Applications .. 2798
Samantha Coday1, Ansel Barchowsky2, Robert C.N. Pilawa-Podgurski3
1University of California Berkeley, United States; 2NASA Jet Propulsion Laboratory, United States

D15: Power Applications
TRACK Power Electronics Applications

D15.1 Design of a Fault-Tolerant Controller for Three-Phase Active Front End Converter used for Power Conditioning Applications .. 2804
Semih Isik, Sanket Parashar, Subhashish Bhattacharya
North Carolina State University, United States

D15.3 Double Inverter with Common Resonant Capacitor for Elliptical Coil Induction Heating Device .. 2812
Claudio Carretero, Jesús Acero, José M. Burdio
Universidad de Zaragoza, Spain

D15.4 Reconfigurable Multi-Cell Battery Pack for Portable Electronic Devices with the Capability of Simultaneous Charging and Discharging .. 2818
Sangwon Lee1, Gwangyol Noh1,2, Jung-Ik Ha1
1Seoul National University, Korea; 2Samsung Electronics, Korea

D15.5 Digital Average Current Control Technique for High Performance Simo-Based Dimmable LED Driving ... 2825
Santanu Kapat
Indian Institute of Technology Kharagpur, India

D15.6 Adaptive Time-Division Multiplexing Driving System for Solid State Lighting with Multiple Tunable Channels .. 2830
Lingxiao Xue, Burak Ozpineci
Oak Ridge National Laboratory, United States

D15.7 Cascaded Switching Capacitor based Multi-Phase Three-Level Buck Converter for Communication Envelope Tracking ... 2836
Srikanth Yerra1, Harish S. Krishnamoorthy1, Joshua Hawke2
1University of Houston, United States; 2Naval Surface Warfare Center, United States

D16: Magnetics
TRACK Magnetics

D16.1 Domestic Induction Heating System with Standard Primary Inductor for Reduced-Size and High Distance Cookware ... 2842
Emilio Plumed1, Ignacio Lope2, Jesús Acero1, José Miguel Burdio1
1Universidad de Zaragoza, Spain; 2BSH Hausgeräte, Spain

D16.2 A Graphical Approach to Fast Identification of the Voltage and Current Requirements to Measure Core Loss at Target Measurement Conditions with Application to High-Frequency Power Amplifier Utilization .. 2848
Teodora Plamenova Todorova
Technical University of Sofia, Bulgaria
D16.3 Design of Planar Transformer for Dual Active Bridge for Renewable Energy Sources and Grid Integration Applications ... 2857
Sneha Thakur, Ghanshyamsinh Gohil, Poras T. Balsara
The University of Texas at Dallas, United States

D16.4 A Novel Power Inductor and Its Application for Compact, Large Current DC-DC Converters ... 2865
Yunfan Zhang, Xiongzi Guo, Guohua Wang, Qiang Xiao
POCO Holding Co., Ltd., China

D16.5 Flexible-Printed-Circuits based Magnetizing Coil for a High-Frequency and Large-Amplitude Magnetic-Field Generator .. 2870
Tomoyuki Mannen, Kentaro Mori, Yuhei Kanai, Takanori Isobe, Eiji Kita, Hideto Yanagihara
University of Tsukuba, Japan

D16.6 Highly Integrated Monolithic Filter Building Block for SiC based Three-Phase Interleaved Converters ... 2876
Ripunjoy Phukan¹, David Nam¹, Dong Dong¹, Rolando Burgos¹, Gopal Mondal², Sebastian Nielebock²
¹Virginia Polytechnic Institute and State University, United States; ²Siemens AG, Germany

D16.7 Design and Implementation of an Integrated Planar Transformer for High-Frequency LLC Resonant Converters .. 2883
Yu-Chen Liu¹, Chen Chen², Kai-De Chen², Yong-Long Syu², Ching-Chia Chen², Kang-Shi Liu², Xing-Rou Chen², Huang-Jen Chiu²
¹National Ilan University, Taiwan; ²National Taiwan University of Science and Technology, Taiwan

D16.8 Novel Flexible Nanocrystalline Flake Ribbons for High-Frequency Transformer Design 2891
Xinru Li, Chaoqiang Jiang, Hui Zhao, Bo Wen, Yunlei Jiang, Teng Long
University of Cambridge, United Kingdom

D16.9 High Frequency Magnetic Sheet Materials – Performance Factor Comparisons and Design of Toroidal Inductors Embedded in PCB ... 2897
Ruaidhri Murphy, Paul McCloskey, Zhibo Cao, Cian Ó Mathúna, Séamus O'Driscoll
¹University College Cork, Ireland; ²IHP, Leibniz-Institut, Germany